
Omni-HealthData™ HealthViews
User's Guide
Version 3.1

August 09, 2018

Active Technologies, EDA, EDA/SQL, FIDEL, FOCUS, Information Builders, the Information Builders logo, iWay, iWay
Software, Parlay, PC/FOCUS, RStat, Table Talk, Web390, WebFOCUS, WebFOCUS Active Technologies, and WebFOCUS
Magnify are registered trademarks, and DataMigrator and Hyperstage are trademarks of Information Builders, Inc.

Adobe, the Adobe logo, Acrobat, Adobe Reader, Flash, Adobe Flash Builder, Flex, and PostScript are either registered
trademarks or trademarks of Adobe Systems Incorporated in the United States and/or other countries.

Due to the nature of this material, this document refers to numerous hardware and software products by their
trademarks. In most, if not all cases, these designations are claimed as trademarks or registered trademarks by their
respective companies. It is not this publisher's intent to use any of these names generically. The reader is therefore
cautioned to investigate all claimed trademark rights before using any of these names other than to refer to the product
described.

Copyright © 2018, by Information Builders, Inc. and iWay Software. All rights reserved. Patent Pending. This manual, or
parts thereof, may not be reproduced in any form without the written permission of Information Builders, Inc.

Contents

Preface . 5

Documentation Conventions .5

Related Publications . 6

Customer Support . 6

Help Us to Serve You Better .7

User Feedback . 8

Information Builders Consulting and Training . 9

1. Configuring Omni-HealthData HealthViews . 11

Omni-HealthData HealthViews Components Configuration Overview .12

Understanding the Architecture of Omni-HealthData HealthViews . 13

Omni-HealthData HealthViews Prerequisites and Supported Platforms . 13

HealthViews Distribution .13

2. Installing and Setting Up HealthViews for Microsoft SQL Server 15

Installing HealthViews for Microsoft SQL Server .15

Setting Up the HealthViews Database. 15

Installing the Stored Procedures. 16

Installing the hash64 Function. .17

Installing the split_part Function. 17

Installing the p_hvtabstatscollector Function. .17

Installing the p_count_ohd_table_rows Function. .17

Omnihealthdata Indexes. 17

Setting Up the HealthViews Batch Process . 18

Installing the HealthViews Scripts. 18

Configuring the HealthViews Process. 18

Executing the Scripts. 18

Automating the HealthViews Process. 19

3. Installing and Setting Up HealthViews for PostgreSQL .21

Installing HealthViews for PostgreSQL . 21

Setting Up the HealthViews Schema. 21

Installing the Stored Procedures. 21

Installing the hash64 Function. .22

Omni-HealthData™ HealthViews User's Guide 3

Installing the fn_hvtabstatscollector Function. 24

Installing the fn_hvpartstatcollector Function. 24

Other Setup Steps. 25

Setting Up the HealthViews Batch Process . 25

Installing the HealthViews Scripts. 25

Configuring the HealthViews Process. 25

Executing the Scripts. 26

Automating the HealthViews Process. 26

4. HealthViews Scripts . 27

Scripts and Tables .27

Code Sets . 35

Mastered and Non-Mastered Subjects . 35

Selective Running of Scripts . 36

Reporting Indexes . 36

Contents

4 Information Builders

Preface

This documentation provides prerequisites and instructions to configure Omni-HealthData
HealthViews.

How This Manual Is Organized

This manual includes the following chapters:

Chapter/Appendix Contents

1 Configuring Omni-HealthData
HealthViews

Provides an overview for Omni-HealthData
HealthViews.

2 Installing and Setting Up
HealthViews for Microsoft
SQL Server

Describes how to install and set up the HealthViews
database for Microsoft SQL Server.

3 Installing and Setting Up
HealthViews for PostgreSQL

Describes how to install and set up the HealthViews
database for PostgreSQL.

4 HealthViews Scripts Describes the HealthView scripts and the tables
and views they create.

Documentation Conventions

The following table lists and describes the documentation conventions that are used in this
manual.

Convention Description

THIS TYPEFACE

or

this typeface

Denotes syntax that you must type exactly as shown.

this typeface Represents a placeholder (or variable), a cross-reference, or an
important term. It may also indicate a button, menu item, or dialog
box option that you can click or select.

underscore Indicates a default setting.

Key + Key Indicates keys that you must press simultaneously.

Omni-HealthData™ HealthViews User's Guide 5

Convention Description

{} Indicates two or three choices. Type one of them, not the braces.

| Separates mutually exclusive choices in syntax. Type one of them,
not the symbol.

... Indicates that you can enter a parameter multiple times. Type only
the parameter, not the ellipsis (...).

.

.

.

Indicates that there are (or could be) intervening or additional
commands.

Related Publications

Visit our Technical Documentation Library at http://documentation.informationbuilders.com. You
can also contact the Publications Order Department at (800) 969-4636.

Customer Support

Do you have any questions about this product?

Join the Focal Point community. Focal Point is our online developer center and more than a
message board. It is an interactive network of more than 3,000 developers from almost every
profession and industry, collaborating on solutions and sharing tips and techniques. Access
Focal Point at http://forums.informationbuilders.com/eve/forums.

You can also access support services electronically, 24 hours a day, with InfoResponse
Online. InfoResponse Online is accessible through our website, http://
www.informationbuilders.com. It connects you to the tracking system and known-problem
database at the Information Builders support center. Registered users can open, update, and
view the status of cases in the tracking system and read descriptions of reported software
issues. New users can register immediately for this service. The technical support section of
http://www.informationbuilders.com also provides usage techniques, diagnostic tips, and
answers to frequently asked questions.

Related Publications

6 Information Builders

http://documentation.informationbuilders.com
http://forums.informationbuilders.com/eve/forums
http://www.informationbuilders.com
http://www.informationbuilders.com
http://www.informationbuilders.com

Call Information Builders Customer Support Services (CSS) at (800) 736-6130 or (212)
736-6130. Customer Support Consultants are available Monday through Friday between 8:00
a.m. and 8:00 p.m. EST to address all your questions. Information Builders consultants can
also give you general guidance regarding product capabilities and documentation. Please be
ready to provide your six-digit site code number (xxxx.xx) when you call.

To learn about the full range of available support services, ask your Information Builders
representative about InfoResponse Online, or call (800) 969-INFO.

Help Us to Serve You Better

To help our consultants answer your questions effectively, be prepared to provide
specifications and sample files and to answer questions about errors and problems.

The following tables list the environment information our consultants require.

Platform

Operating System

OS Version

JVM Vendor

JVM Version

The following table lists additional questions to help us serve you better.

Request/Question Error/Problem Details or Information

Did the problem arise through
a service or event?

Provide usage scenarios or
summarize the application that
produces the problem.

When did the problem start?

Can you reproduce this
problem consistently?

Describe the problem.

Preface

Omni-HealthData™ HealthViews User's Guide 7

Request/Question Error/Problem Details or Information

Describe the steps to
reproduce the problem.

Specify the error message(s).

Any change in the application
environment: software
configuration, EIS/database
configuration, application, and
so forth?

Under what circumstance does
the problem not occur?

The following is a list of error/problem files that might be applicable.

Input documents (XML instance, XML schema, non-XML documents)

Transformation files

Error screen shots

Error output files

Trace files

Custom functions and agents in use

Diagnostic Zip

Transaction log

User Feedback

In an effort to produce effective documentation, the Technical Content Management staff
welcomes your opinions regarding this document. Please use the Reader Comments form at
the end of this document to communicate your feedback to us or to suggest changes that will
support improvements to our documentation. You can also contact us through our website,
http://documentation.informationbuilders.com/connections.asp.

Thank you, in advance, for your comments.

User Feedback

8 Information Builders

http://documentation.informationbuilders.com/connections.asp

Information Builders Consulting and Training

Interested in training? Information Builders Education Department offers a wide variety of
training courses for this and other Information Builders products.

For information on course descriptions, locations, and dates, or to register for classes, visit
our website (http://education.informationbuilders.com) or call (800) 969-INFO to speak to an
Education Representative.

Preface

Omni-HealthData™ HealthViews User's Guide 9

http://education.informationbuilders.com

Information Builders Consulting and Training

10 Information Builders

Chapter1
Configuring Omni-HealthData
HealthViews

Omni-HealthData HealthViews is a set of scripts that implements denormalized tables
and views.

Omni-HealthData HealthViews enables organizations to leverage existing clinical data,
generating valuable actionable insights, which lead to tangible business results.
Leveraging Omni-HealthData HealthViews to compile and relate content across the entire
organizational spectrum, business users can be empowered to communicate, visualize,
and analyze data effectively.

This section provides an overview for Omni-HealthData HealthViews and key features, in
addition to describing the configuration steps that are required.

In this chapter:

Omni-HealthData HealthViews Components Configuration Overview

Understanding the Architecture of Omni-HealthData HealthViews

Omni-HealthData HealthViews Prerequisites and Supported Platforms

HealthViews Distribution

Omni-HealthData™ HealthViews User's Guide 11

Omni-HealthData HealthViews Components Configuration Overview

Omni-HealthData HealthViews offers a commercial, off the shelf, clinical and operational data
model with dynamic views to empower healthcare analytics and reporting.

Omni-HealthData HealthViews provides a centralized data model, which is organized by Domain
and Subject. In addition, client expansion and customization are supported.

Key features include:

Centralized model to collect disparate healthcare data.

Self-service healthcare business intelligence.

Framework for developing clinical-centric analytic and data mining applications.

Analysis for Patient Movement, Demographics, Habits, Outcomes, Volumes, Infections, and
more.

Clinical health care COTS (commercial off the shelf) data model.

Multi-tenant data storage, allowing for custom content to be stored and integrated with the
Omni-HealthData HealthViews data model.

Omni-HealthData HealthViews Components Configuration Overview

12 Information Builders

Data model relationships clearly defined to expedite content creation (reports, analytics).

Optimized data model to ensure rapid answers to difficult questions.

Capability of Omni-HealthData HealthViews to host data that generates Healthcare
Performance Analytics dashboards, and balance scorecards.

HealthViews statistics, including batch run time, records loaded per table, records added
per table since the last load, and so on.

Understanding the Architecture of Omni-HealthData HealthViews

Omni-HealthData HealthViews implements a star schema model that has been denormalized
for ease of use for reporting purposes. It is implemented as dynamic views over tables and
provides the ability to view patient facts by date and time and also correlated clinical event
data.

Key components include:

Healthcare data model (star schema). Definition of common healthcare data and
relationship for storage and reporting.

Dynamic database views of the data model. A layer of abstraction of the data model to
simplify business intelligence reporting.

Omni-HealthData HealthViews Prerequisites and Supported Platforms

Omni-HealthData HealthViews is currently supported on the following platforms:

Microsoft Windows Server 2003 and higher. Microsoft SQL Server 2012 and higher as the
database server.

PostgreSQL Version 9.3 and higher.

HealthViews Distribution

HealthViews is distributed through a HealthViews.zip file that contains the following directories:

Docs - contains documentation, including this manual.

Setup_scripts - contains scripts used to set up the HealthViews environment.

Stored_procs - contains stored procedures used by HealthViews.

The HealthViews scripts are located in the root directory of the zip file.

1. Configuring Omni-HealthData HealthViews

Omni-HealthData™ HealthViews User's Guide 13

In addition:

For Microsoft SQL Server, a command-line utility for executing the scripts as a batch can be
found in the root directory of the zip file.

For PostgreSQL, a bash script to run the scripts is stored in the root directory of the zip file.

HealthViews Distribution

14 Information Builders

Chapter2 Installing and Setting Up HealthViews
for Microsoft SQL Server

This section describes how to install and set up the HealthViews database for Microsoft
SQL Server.

In this chapter:

Installing HealthViews for Microsoft SQL Server

Setting Up the HealthViews Batch Process

Installing HealthViews for Microsoft SQL Server

To install HealthView for Microsoft SQL Server, expand the HealthViews .zip file on the
machine that will be running the HealthViews batch process. It is recommended to set up a
HealthViews directory, and within that directory create subdirectories for each environment to
be supported (DEV, PROD, QA, and so on).

Setting Up the HealthViews Database

In a Microsoft SQL Server environment, HealthViews run on their own database called
healthviews. Use SQL Server Management Studio to create the database. Once it is created,
the collation for the database should be set to match the collation of the omnihealthdata
database. To check the collation of omnihealthdata using SQL Server Management Studio,
right-click the database and select Properties.

Omni-HealthData™ HealthViews User's Guide 15

The Database Properties dialog box displays. The collation is in the General tab, as shown in
the following image.

To change the collation of healthviews to match omnihealthdata, use the following commands:

Use Master;
GO
ALTER DATABASE healthviews
SET SINGLE_USER
WITH ROLLBACK IMMEDIATE;
GO
Alter database healthviews
Collate SQL_Latin1_General_CP1_CS_AS;
GO
ALTER DATABASE healthviews
SET MULTI_USER;
GO

Installing the Stored Procedures

Once the healthviews database has been created, four functions need to be installed:

hash64

split_part

p_hvtabstatcollector

p_count_ohd_table_rows

Scripts for all the stored procedures can be found in the \stored_procs folder in the
HealthViews.zip file.

Installing HealthViews for Microsoft SQL Server

16 Information Builders

Installing the hash64 Function

HealthViews uses the hash64 function to create unique hashed values for ID fields. Using
hashed values for ID fields allows for faster joins.

The hash64.sql script is provided for installing the hash64 function. Execute the script in the
healthviews database. After running, dbo.hash64 should be listed as a scalar-valued function
for the healthviews database.

Installing the split_part Function

The split_part.sql script is provided for installing the split_part function. The split_part function
is used to divide data fields into smaller blocks and only use part of that block. Execute the
script in the healthviews database. After running, dbo.split_part should be listed as a scalar-
valued function in the healthviews database.

Installing the p_hvtabstatscollector Function

The fn_hvtabstatscollector function is used to compile statistics on the HealthViews data. It
tracks the amount of records in each HealthViews table and also the number of records added
since the last time the table was updated.

The p_hvtabstatscollector.sql script is provided for installing the p_tabstatscollector function.
Execute the script in the healthviews database. After running, dbo.p_tabstatscollector should
be listed as a stored procedure in the healthviews database.

Installing the p_count_ohd_table_rows Function

The p_count_ohd_table_rows function is used to determine the number of rows in each table in
the omnihealthdata database, which can be useful for comparing to HealthViews.

The p_count_ohd_table_rows.sql script is provided for installing the p_count_ohd_table_rows
function. Execute the script in the omnihealthdata database. After running, dbo.
p_count_ohd_table_rows should be listed as a stored procedure in the omnihealthdata
database.

Omnihealthdata Indexes

HealthViews uses indexes on certain Omni-HealthData tables to improve performance. The
001_create_omni_indexes.sql script, located in the \Setup_scripts directory of the
HealthViews.zip file, is provided to create the indexes. This script should be run prior to the
initial running of HealthViews to create the indexes and re-run if the omnihealthdata database
is recreated.

2. Installing and Setting Up HealthViews for Microsoft SQL Server

Omni-HealthData™ HealthViews User's Guide 17

Setting Up the HealthViews Batch Process

HealthViews is implemented using a batch of SQL scripts that retrieve data from the
omnihealthdata database and denormalize the data. The running of the scripts is automated
through a command file, build_all.cmd.

Installing the HealthViews Scripts

All HealthViews scripts, as well as build_all.cmd, should be installed in the same directory. It is
recommended to use a separate directory for each database instance to be supported (DEV,
PROD, QA, and so on).

Configuring the HealthViews Process

The first part of the build_all.cmd file sets environmental variables that are used by the
HealthViews scripts. The settings are as follows:

set target_server=name of the server hosting the database
set user=user name to execute the scripts
set password=password for that user
set target_db=target database, usually healthviews
set source_db=source database, usually omnihealthdata
set check_source=whether or not to check if the script needs to be run
set debug_query=turns debugging of source check on and off

Executing the Scripts

The build_all.cmd file gets a directory of every .sql script in the current directory and runs them
in order, using the configuration information defined above. Scripts are run singly, no scripts
run concurrently.

To execute the scripts, open a command prompt in the directory containing the scripts and the
build_all.cmd file. At the prompt type:

build_all.cmd > [logfile_name].log

It is recommended to pipe the output of build_all.cmd to a log file so that any errors can be
noted and debugged.

Setting Up the HealthViews Batch Process

18 Information Builders

Automating the HealthViews Process

The Windows Task Scheduler can be used to automate the running of the HealthViews
process. Through the Task Scheduler, you can configure HealthViews to run at a specific time
on specific days of the week, as shown in the following image.

2. Installing and Setting Up HealthViews for Microsoft SQL Server

Omni-HealthData™ HealthViews User's Guide 19

Output from build_all.cmd can be directed to a log file, indicating the date as part of the file
name, as shown in the following image.

Setting Up the HealthViews Batch Process

20 Information Builders

Chapter3 Installing and Setting Up HealthViews
for PostgreSQL

This section describes how to install and set up the HealthViews database for
PostgreSQL.

In this chapter:

Installing HealthViews for PostgreSQL

Setting Up the HealthViews Batch Process

Installing HealthViews for PostgreSQL

To install HealthViews for PostgreSQL, expand the HealthViews .zip file on the machine that
will be running the HealthViews batch process. It is recommended to set up a HealthViews
directory, and within that directory create subdirectories for each environment to be supported
(DEV, PROD, QA, and so on).

Setting Up the HealthViews Schema

It is recommended that the HealthViews materialized views be located in their own schema,
typically called healthviews. The schema should be owned by the role responsible for loading
the HealthViews materialized views. Using an administrative role, type the following:

create schema healthviews;
alter schema healthviews owner to hv_user;

Installing the Stored Procedures

Once the healthviews database has been created, three functions need to be installed:

hash64

fn_hvtabstatcollector

fn_hvpartstatcollector

Scripts for all the stored procedures can be found in the \stored_procs folder in the
HealthViews.zip file.

Omni-HealthData™ HealthViews User's Guide 21

Installing the hash64 Function

HealthViews uses the hash64 function to create unique hashed values for ID fields. Using
hashed values for ID fields allows for faster joins.

The hash64 function uses a compiled C object and is PostgreSQL version specific. Information
Builders distributes a version compiled for PostgreSQL 9.3 and PostgreSQL 9.6. The compiled
object can be found in a \9.3 or \9.6 subdirectory, depending on the version. A script to
register the function (register.sh) can be found in the \source directory.

Copy the appropriate ibi_functions.so and register.sh files to a common directory. Then, set
the permissions to execute by typing:

sudo chmod 777 ibi_functions.so
sudo chmod 777 register.sh

The register.sh shell script contains the following:

#!/bin/bash
PGHOME="$PWD"
UDFHOME="$PWD"
if [[$# -ne 1]]; then
 echo "USAGE: register.sh <DB_NAME>"
 exit 1
fi
L_DBNAME=${1}
psql -d ${L_DBNAME} <<EOF
create or replace function hash64(text) returns int8
as '$UDFHOME/ibi_functions.so', 'hash64'
language C strict immutable;
EOF

It is necessary to execute register.sh as the postgres user. Ensure that there are appropriate
permissions for the entire directory tree to the register.sh and ibi_functions.so files before
proceeding.

Next, register the function by typing:

./register.sh [db_name]

Installing HealthViews for PostgreSQL

22 Information Builders

where [db_name] is the name of the database being used by Omni-HealthData and
HealthViews. When the script completes, there should be a hash64 function listed in the
public schema for your database, as shown in the following image.

For PostgreSQL versions other than 9.3 and 9.6, the source files used to compile
ibi_functions.so can be found in the \source directory. You will also need the PostgreSQL
header files installed on your system. Use your package manager to install the header files
appropriate for your version of PostgreSQL. For example, Debian distributions of PostgreSQL
would use package postgresql-server-dev-9.5, which can be installed by typing:

sudo apt-get install postgresql-server-dev-9.5

3. Installing and Setting Up HealthViews for PostgreSQL

Omni-HealthData™ HealthViews User's Guide 23

Installing the fn_hvtabstatscollector Function

The fn_hvtabstatscollector function is used to compile statistics on the HealthViews data. It
tracks the number of records in each HealthViews table and also the number of records added
since the last time the table was updated.

The fn_hvtabstatscollector.sql script is provided for installing the fn_tabstatscollector function.
Execute the script in the public schema. After running, fn_tabstatscollector should be listed as
a stored procedure in the public schema, as shown in the following image.

Installing the fn_hvpartstatcollector Function

The fn_hvpartstatcollector function is used to collect statistics on any partitions in the
healthviews database.

The fn_hvpartcollector.sql script is provided for installing the fn_hvpartstatcollector function.
Execute the script in the public schema. After running, fn_hvpartstatcollector should be listed
as a stored procedure in the public schema, as shown in the following image.

Installing HealthViews for PostgreSQL

24 Information Builders

Other Setup Steps

A table, hv_availability, needs to be created in the public schema. The aa_hv_availability.sql
script for this is provided in the setup_scripts directory. Run this script in the public schema
prior to the first load of Healthviews.

Setting Up the HealthViews Batch Process

HealthViews is implemented using a batch of SQL scripts that retrieve data from the
omnihealthdata database and denormalize the data. The running of the scripts is automated
through a shell script, build_all.sh.

The script first configures variables:

L_PROGNAME=$(basename $0)
L_DB_CONFIG=db_config/postgresql.properties
L_TEMPFILE=$(mktemp /tmp/healthviews-XXXX)
L_SQL_FILES=$(\ls *.sql)

The script assumes that the configuration file will be located in a subdirectory named
db_config. Change this value if a different directory is used. It also gets a list of all SQL scripts
in the current directory. The scripts are processed in order later in the script:

echo "start: ${L_SQL_FILE} $(date)"
psql -h ${database_host} -U ${database_username} -d ${database_name}
-q -f ${L_TEMPFILE}
echo "end: ${L_SQL_FILE} $(date)"

The two echo statements are used to create log file entries. The script then calls each
HealthViews script and executes it.

Installing the HealthViews Scripts

All HealthViews scripts, as well as build_all.sh should be installed in the same directory. It is
recommended to use a separate directory for each database instance to be supported (DEV,
PROD, QA, and so on).

Configuring the HealthViews Process

A configuration file, postgresql.properties, is used to configure the HealthViews batch process.
This file should be located in a \db_config directory, under the main HealthViews directory.

The settings are as follows:

3. Installing and Setting Up HealthViews for PostgreSQL

Omni-HealthData™ HealthViews User's Guide 25

database.type=the type of database. Should be set to POSTGRESQL
database.host=the location of the database server. Can be either a
logical name or a dotted IP address.
database.name=the name of the database for OmniHealthData and
HealthViews.
database.username=the user name to log in to the database with.
database.src_schema=the schema for OmniHealthData. Typically public.
database.targ_schema=the schema for HealthViews. Typically healthviews.

Executing the Scripts

The build_all.sh file takes a directory listing of every .sql script in the current directory and runs
them in order, using the configuration information defined above. Scripts are run singly, no
scripts run concurrently.

To execute the scripts, navigate to the directory containing build_all.sh and the HealthViews
scripts. At the prompt, type:

./build_all.sh &> [logfile_name].log

It is recommended to pipe the output of build_all.sh (including stderr) to a log file so that any
errors can be noted and debugged.

Automating the HealthViews Process

Generally, the HealthViews batch process is manually run on a regular basis. To automate this,
use a cron job to schedule the running of the build_all.sh. For example:

[hv_user@hv_machine]$ crontab –e

opens the crontab for the current user for editing

01 00 * * 1,2,3,4,5 * \hv_dir\build_all.sh &> hv_dir/log/
build_healthviews.${L_TODAY}.log)

This creates a job scheduled to run at 12:01 AM every Monday, Tuesday, Wednesday,
Thursday, and Friday with a log created with the date of the log in the file name in a \log
directory. The first two digits (01) represent the minutes, the second two (00) represent the
hour (using a 24-hour clock), the two consecutive asterisks indicate the job should be
executed all months and all days of the month, the 1,2,3,4,5 represent the days of the week
(Sunday is represented by either 0 or 7), and the final asterisk indicates the job should run all
years. The entry then gives the command to be run, including sending the output to a log file.

Setting Up the HealthViews Batch Process

26 Information Builders

Chapter4
HealthViews Scripts

Each HealthViews script creates a materialized view using data from Omni-HealthData. In
addition to the standard HealthViews materialized views, custom scripts can be used to
populate dashboards, update important metrics, and so on. The Information Builders
team can work with your organization to identify specific needs and create scripts to
meet those needs. Contact your Information Builders representative to find out more
information.

In this chapter:

Scripts and Tables

Code Sets

Mastered and Non-Mastered Subjects

Selective Running of Scripts

Reporting Indexes

Scripts and Tables

The scripts and the tables and views they create are as follows:

001_aa_t_hv_availability.sql - Script to record the start time of the HealthViews process,
which can be used to track performance.

001_date_dimension.sql - Creates a materialized view for system dates in HealthViews.

002_time_dimension.sql - Creates a materialized view for system times in HealthViews.

003_t_codeset_lookup.sql - Creates a materialized view for all codesets in the system. This
view is used by subsequent scripts to expand the code ID to include description, parent, and
parent description.

003_t_dim_codemap_lookup.sql - Creates a materialized view for all codemaps in the system,
including the type of code map, the concept (drug, diagnosis, and so on), the mapping Created
(for example, SNOMED CT to ICD-9), and so on.

005_t_dim_patient.sql - Creates a materialized view for all patient records in the system,
including demographic and contact information.

Omni-HealthData™ HealthViews User's Guide 27

005_t_dim_patient_master.sql - Creates a materialized view for all patient records in the
system, including demographic and contact information. Although the script is intended for
mastered data, it will also support early stage deployments when patient mastering has
typically not been implemented yet.

006_t_dim_provider.sql - Creates a materialized view for all provider records in the system,
including contact and demographic information, as well as status (active, inactive, and so on).
Although the script is intended for mastered data, it will also support early stage deployments
when provider mastering has typically not been implemented yet.

007_t_dim_facility.sql - Creates a materialized view for all facility records in the system
including location and status (active or inactive).

007_t_dim_facility_master.sql - Creates a materialized view for all mastered facility records in
the system, including location, status, and type.

007_t_facility_location.sql - Creates a materialized view for all facility location records in the
system.

008_t_dim_organization.sql - Creates a materialized view for all organization records in the
system.

008_t_dim_organization_master.sql - Creates a materialized view for all mastered organization
records in the system.

008_t_organizational_unit.sql - Creates a materialized view for all organizational unit records
in the system.

010_t_encounter.sql - Creates a materialized view for all encounter records in the system,
including the type of encounter, the patient, the arrival, and departure time, and so on.

010_t_provider_specialty.sql - Creates a materialized view for all provider specialty records in
the system.

010_t_provider_specialty_master.sql - Creates a materialized view for all mastered provider
specialty records in the system.

011_t_admission_event.sql - Creates a materialized view for all admission event records in
the system, including the patient, provider, and facility, as well as the event time. All
admission events are also joined to their corresponding encounters.

011_t_admission_event_provider.sql - Creates a materialized view of all admission event
provider records in the system, including the admission event ID which can be used to join
back to the event.

Scripts and Tables

28 Information Builders

012_t_death_event.sql - Creates a materialized view for all death event records in the system,
including the patient, provider, and facility, as well as the event time. All death events are also
joined to their corresponding encounters.

012_t_death_event_provider.sql- Creates a materialized view for all death event provider
records in the system, including the death event ID which can be used to join back to the
event.

013_t_diagnosis_event.sql - Creates a materialized view for all diagnosis event records in the
system including the patient, provider, and facility, as well as the event time. All diagnosis
events are also joined to their corresponding encounters.

013_t_diagnosis_event_provider.sql - Creates a materialized view for all diagnosis event
provider records in the system, including the diagnosis event ID which can be used to join back
to the event.

014_t_discharge_event.sql - Creates a materialized view for all discharge event records in the
system, including the patient, provider, and facility, as well as the event time. All discharge
events are also joined to their corresponding encounters.

014_t_discharge_event_provider.sql - Creates a materialized view of all discharge event
providers in the system, including the discharge event ID which can be used to join to the
event.

015_t_procedure_event.sql - Creates a materialized view for all procedure event records in the
system, including the patient, provider, and facility, as well as the event time. All procedure
events are also joined to their corresponding encounters.

015_t_procedure_event_provider.sql - Creates a materialized view for all procedure event
providers in the system, including the procedure event ID which can be used to join back to the
event.

016_t_observation_event.sql - Creates a materialized view for all observation event records in
the system, including the patient, provider, and facility, as well as the event time. All
observation events are also joined to their corresponding encounters.

016_t_observation_event_provider.sql - Creates a materialized view of all observation event
providers in the system including the observation event ID which can be used to join back to
the event.

017_t_medication_admin_event.sql - Creates a materialized view for all medication
administration event records in the system, including the patient, prescription information,
route for the medication, and so on. All medication administration events are also joined to
their corresponding encounters.

4. HealthViews Scripts

Omni-HealthData™ HealthViews User's Guide 29

017_t_medication_admin_event_provider.sql - Creates a materialized view for all medication
administration event providers in the system, including the medication administration event ID
which can be used to join back to the event.

017_t_medication_order_event.sql - Creates a materialized view for all medication order event
records in the system, including the patient, provider, and facility, as well as the event time. All
medication order events are also joined to their corresponding encounters.

017_t_medication_order_event_provider.sql - Creates a materialized view for all medication
order event provider records in the system, including the medication order event ID which can
be used to join back to the event.

018_t_diagnostic_test_order_event.sql - Creates a materialized view for all diagnostic test
order events in the system, including the patient, the diagnostic test code, the diagnostic test
procedure, and so on. All diagnostic test order events are also joined to their corresponding
encounters.

018_t_diagnostic_test_order_event_provider.sql - Creates a materialized view for all
diagnostic test order event providers in the system, including the diagnostic test order event ID
which can be used to join back to the event.

019_t_diet_order_event.sql - Creates a materialized view for all diet order events in the
system, including the patient, the diet specification code, the service period, and so on. All
diet order events are also joined to their corresponding encounters.

019_t_diet_order_event_provider.sql - Creates a materialized view for all diet order event
provider records in the system, including the diet order event ID which can be used to join back
to the event.

020_t_movement_event.sql - Creates a materialized view for all movement events in the
system, including the patient, the facility, the type of move, and so on. All movement events
are also joined to their corresponding encounters.

020_t_movement_event_provider.sql - Creates a materialized view for all movement event
providers in the system, including the movement event ID which can be used to join back to
the event.

021_t_pharmacy_dispense_event.sql - Creates a materialized view for all pharmacy dispense
events in the system, including the patient, the prescription, the amount dispensed, and so
on. All pharmacy dispense events are also joined to their corresponding encounters.

021_t_pharmacy_dispense_event_provider.sql - Creates a materialized view for all pharmacy
dispense event providers in the system, including the pharmacy dispense event ID which can
be used to join back to the event.

Scripts and Tables

30 Information Builders

022_t_medical_supply_order_event.sql - Creates a materialized view for all medical supply
order events in the system, including part number, the quantity, and so on. All medical supply
order events are also joined to their corresponding encounters.

022_t_medical_supply_order_event_provider.sql - Creates a materialized view for all medical
supply order event providers in the system, including the medical supply order event ID which
can be used to join back to the event.

023_t_procedure_order_event.sql - Creates a materialized view for all procedure order events
in the system, including the procedure code, the patient, and so on. All procedure order events
are joined to their corresponding encounters.

023_t_procedure_order_event_provider.sql - Creates a materialized view for all procedure
order event providers in the system, including the procedure order event ID which can be used
to join back to the event.

024_t_radiology_event.sql - Creates a materialized view for all radiology events in the system,
including the patient, the body part to receive treatment, the modality, and so on. All radiology
order events are joined to their corresponding encounters.

024_t_radiology_event_provider.sql - Creates a materialized view for all radiology event
providers in the system, including the radiology order event ID which can be used to join back
to the event.

025_t_referral_order_event.sql - Creates a materialized view for all referral order events in the
system, including the patient, the referral description, the indicating condition, and so on. All
referral order events are joined to their corresponding encounters.

025_t_referral_order_event_provider.sql - Creates a materialized view for all referral order
event providers, including the referral order event ID which can be used to join back to the
event.

026_t_service_order_event.sql - Creates a materialized view for all service order events in the
system, including the patient, the service code, and so on. All service order events are joined
to their corresponding encounters.

026_t_service_order_event_provider.sql - Creates a materialized view for all service order
event providers in the system, including the service order event ID which can be used to join
back to the event.

027_t_transfer_event.sql - Creates a materialized view for all transfer event records in the
system, including the patient, the type of transfer (for example, admit), the destination facility,
and so on. All transfer events are also joined to their corresponding encounters.

4. HealthViews Scripts

Omni-HealthData™ HealthViews User's Guide 31

027_t_transfer_event-provider.sql - Creates a materialized view for all transfer event providers
in the system, including the transfer event ID which can be used to join back to the event.

028_t_transfusion_order_event.sql - Creates a materialized view for all transfusion order
events in the system, including the patient, the blood type, the amount of blood, and so on. All
transfusion order events are joined to their corresponding encounters.

028_t_transfusion_order_event_provider.sql - Creates a materialized view for all transfusion
order event providers, including the transfusion order event ID which can be used to join back
to the event.

029_t_vaccination_admin_event.sql - Creates a materialized view for all vaccination
administration events, including the patient, the vaccine, the manufacturer, and so on. All
vaccination administration events are joined to their corresponding encounters.

029_t_vaccination_admin_event_provider.sql - Creates a materialized view for all vaccination
administration event providers, including the vaccination admin event ID which can be used to
join back to the event.

030_t_account.sql - Creates a materialized view for all account records in the system,
including account type, the associated patient, and so on.

031_t_account_guarantor.sql - Creates a materialized view for all account guarantor records in
the system.

033_t_account_transaction.sql - Creates a materialized view for all account transaction
records in the system, including the amount of the transaction, the payer ID, the account
associated with the transaction, the date and time of the transaction, any adjustments, and
the cost center associated with the transaction.

036_t_charge.sql - Creates a materialized view for all charge records in the system, including
the charge amount, the cost center, the associated account, and so on.

037_t_provider_claim.sql - Creates a materialized view for all provider claim records in the
system, including the account, the patient, the claim amount, the status, and so on.

038_t_patient_health_plan.sql - Creates a materialized view for all patient health plan records
in the system, including the plan number, the subscriber, the relation of the subscriber to the
patient, and so on.

039_t_provider_practice_specialty_master.sql - Creates a materialized view for all mastered
provider specialty practice records in the system, including whether they are a primary care
physician, accept walk-ins, and so on.

Scripts and Tables

32 Information Builders

040_t_provider_practice.sql - Creates a materialized view for all provider practice records in
the system, including the provider, the physical and mailing address, the provider number, and
so on.

040_t_provider_practice_master.sql - Creates a materialized view for all mastered provider
practice records in the system, including the provider, the physical and mailing address, the
provider number, and so on.

041_t_daily_census.sql - Creates a materialized view for all daily census records in the
system, including facility ID, the admissions, the discharges, and so on.

042_t_cart_item.sql - Creates a materialized view for all cart items in the system including the
item, the fulfillment facility, the return facility, and so on.

043_t_patient_preferred_provider.sql - Creates a materialized view for all patient preferred
provider records in the system, including the provider ID and the start and end dates.

043_t_patient_preferred_provider_master.sql - Creates a materialized view for all mastered
patient preferred provider records in the system, including the patient master ID, the provider
master ID, and the start and end dates.

044_t_provider_license.sql - Creates a materialized view for all provider license records in the
system, including the license type, the licensing authority, the license status, and so on.

044_t_provider_license_master.sql - Creates a materialized view of all mastered provider
license records in the system, including the license type, the licensing authority, the license
status, and so on.

045_t_provider_identifier.sql - Creates a materialized view of all provider identifiers in the
system, including the type of identifier, the issuing authority, the start and end date, and so
on.

045_t_provider_identifier_master.sql - Creates a materialized view of all mastered provider
identifier records in the system, including the type of identifier, the issuing authority, the start
and end date, and so on.

046_t_provider_privilege.sql - Creates a materialized view for all provider privilege records in
the system, including the privilege code, the start and end date, the facility, and so on.

046_t_provider_privilege_master.sql - Creates a materialized view for all mastered provider
privilege records in the system, including the privilege code, the start and end date, the facility,
and so on.

047_t_encounter_health_plan_coverage.sql - Creates a materialized view for all encounter
health plan coverage records in the system, including the insurance coverage type code and
the patient health plan ID.

4. HealthViews Scripts

Omni-HealthData™ HealthViews User's Guide 33

080_t_health_plan.sql - Creates a materialized view for all health plan records in the system,
including the plan number, plan payer, financial code, and so on.

260_t_guarantor.sql - Creates a materialized view for all guarantor records in the system,
including the payer, the relation of the payer to the patient, and so on.

290_t_payer.sql - Creates a materialized view for all payer records in the system, including the
payer name and contact information.

311_t_episode.sql - Creates a materialized view for all episode records in the system,
including the start and end date, the episode treatment group, the episode number, and so on.

316_t_specimen.sql - Creates a materialized view for all specimen records in the system,
including the collection method, the source, the amount, and so on.

322_t_surgery_case.sql - Creates a materialized view for all surgery case records in the
system, including the facility, the related encounter ID, the patient, pre-operation tests, type of
surgery, and so on.

324_t_surgery_case_cart.sql - Creates a materialized view for all surgery case cart records in
the system.

326_t_surgery_procedure.sql - Creates a materialized view for all surgery procedure records in
the system, including the type of procedure, the scheduled time for the procedure, the
location, the anesthesia requirements, and so on.

325_t_surgery_movement.sql - Creates a materialized view for all surgery movement records
in the system, including provider being relieved, the reason for the relief, and so on.

333_t_care_plan.sql - Creates a materialized view for all care plan records in the system,
including the care plan status, the start date, and the end date.

334_t_accessibility_appointment.sql - Creates a materialized view for all accessibility
appointment records in the system, including scheduling information, the location of the
appointment, and so on.

335_t_practice_facility.sql - Creates a materialized view for all practice facility records in the
system, including legal name for the practice and the address and phone number for the
practice.

336_t_provider_practice.sql - Creates a materialized view for all provider practice records in
the system, including practice name and the physical and mailing address of the practice.

337_t_referral_source.sql - Creates a materialized view for all referral source records in the
system, including the patient, the provider, the requested service, and so on.

Scripts and Tables

34 Information Builders

322_t_surgery_case.sql - Creates a materialized view for all surgery case records in the
system, including the facility, the related encounter ID, the patient, pre-operation tests, type of
surgery, and so on.

324_t_surgery_case_cart.sql - Creates a materialized view for all surgery case cart records in
the system.

326_t_surgery_procedure.sql - Creates a materialized view for all surgery procedure records in
the system, including the type of procedure, the scheduled time for the procedure, the
location, the anesthesia requirements, and so on.

904_t_hvtabstats.sql - Registers record counts for all tables in HealthViews, which can be
used to track database growth over time.

905_ohd_counts.sql - Records the record counts for all tables in the omnihealthdata
database.

999_t_hv_availability.sql - Records the stop time and calculates the duration for the
HealthViews process.

Code Sets

HealthViews has its own code set table, t_dim_codeset_lookup, which is used to expand upon
the codes provided in Omni-HealthData tables. For example, the Omni-HealthData table,
og_patient, contains a column for tax_id_type_code. HealthViews, in the v_dim_patient view,
expands upon the code ID to also include the code description and the parent code ID and
description. As a result, HealthViews views will contain more columns than the Omni-
HealthData table from which they are derived.

Mastered and Non-Mastered Subjects

Certain subject areas with Omni-HealthData and HealthViews can contain mastered data,
These include Patient, Provider, Facility, and Organization. Typically, customers do not master
Patient or Provider at the beginning of their deployments. The mastering rules take time to
develop and there needs to be a sufficient number of patients and providers for mastering to
be meaningful. HealthViews represents the master ID for Patient and Provider, but will
substitute the instance ID if those subjects have not been mastered. When mastering is
implemented, no change in code is necessary. HealthViews will automatically switch to using
the mastered values for those fields.

4. HealthViews Scripts

Omni-HealthData™ HealthViews User's Guide 35

Selective Running of Scripts

In most Omni-HealthData deployments, daily data loads do not update every subject area.
Logic is built into select HealthViews scripts to determine whether there is new data that
needs to be loaded or not. If there is no new data, the script does not run. The logic compares
record counts, the maximum omni_created_date, and the maximum omni_modified_date, to
determine whether there are new records. This capability is currently found in the following four
scripts:

030_t_account.sql

031_t_account_guarantor.sql

033_t_account_transaction.sql

036_t_charge.sql

Whether or not to check for new data is controlled through the set check_source= parameter in
build_all.cmd. If this is set to Y, then the script will first check for the need to run. If it is set to
anything other than Y, the script will run regardless of whether there is new data or not.

Reporting Indexes

Many scripts include one or more reporting indexes that are intended to improve the
performance of other Omni-HealthData products, such as Cohort Builder. These indexes can be
commented out if they are not needed and building the indexes impact performance. All
reporting indexes are prefixed with a comment line indicating where they start.

Selective Running of Scripts

36 Information Builders

Feedback
Customer success is our top priority. Connect with us today!

Information Builders Technical Content Management team is comprised of many talented
individuals who work together to design and deliver quality technical documentation products.
Your feedback supports our ongoing efforts!

You can also preview new innovations to get an early look at new content products and
services. Your participation helps us create great experiences for every customer.

To send us feedback or make a connection, contact Sarah Buccellato, Technical Editor,
Technical Content Management at Sarah_Buccellato@ibi.com.

To request permission to repurpose copyrighted material, please contact Frances Gambino,
Vice President, Technical Content Management at Frances_Gambino@ibi.com.

Information Builders, Inc.
Two Penn Plaza
New York, NY 10121-2898

Omni-HealthData™ HealthViews User's Guide
Version 3.1

DN3502337.0818

	Contents
	Preface
	Documentation Conventions
	Related Publications
	Customer Support
	Help Us to Serve You Better
	User Feedback
	Information Builders Consulting and Training

	1. Configuring Omni-HealthData HealthViews
	Omni-HealthData HealthViews Components Configuration Overview
	Understanding the Architecture of Omni-HealthData HealthViews
	Omni-HealthData HealthViews Prerequisites and Supported Platforms
	HealthViews Distribution

	2. Installing and Setting Up HealthViews for Microsoft SQL Server
	Installing HealthViews for Microsoft SQL Server
	Setting Up the HealthViews Database
	Installing the Stored Procedures
	Installing the hash64 Function
	Installing the split_part Function
	Installing the p_hvtabstatscollector Function
	Installing the p_count_ohd_table_rows Function

	Omnihealthdata Indexes

	Setting Up the HealthViews Batch Process
	Installing the HealthViews Scripts
	Configuring the HealthViews Process
	Executing the Scripts
	Automating the HealthViews Process

	3. Installing and Setting Up HealthViews for PostgreSQL
	Installing HealthViews for PostgreSQL
	Setting Up the HealthViews Schema
	Installing the Stored Procedures
	Installing the hash64 Function
	Installing the fn_hvtabstatscollector Function
	Installing the fn_hvpartstatcollector Function

	Other Setup Steps

	Setting Up the HealthViews Batch Process
	Installing the HealthViews Scripts
	Configuring the HealthViews Process
	Executing the Scripts
	Automating the HealthViews Process

	4. HealthViews Scripts
	Scripts and Tables
	Code Sets
	Mastered and Non-Mastered Subjects
	Selective Running of Scripts
	Reporting Indexes

	Feedback

