
TIBCO iWay® Service Manager

Copyright © 2021. TIBCO Software Inc. All Rights Reserved.

HTTP Solutions Development Guide

Version 8.0 and Higher
March 2021
DN3502291.0321

Contents

1. Introducing iWay HTTP Solutions . 7

HTTP Services Overview . 7

What is HTTP? . 7

Native HTTP. 8

Secure HTTPS. 8

Non-blocking nHTTP. 9

iWay Service Manager Suite of HTTP Tools . 10

Client Suite. 10

Sample Applications. .10

Server Suite. .11

Sample Applications. .11

Common Listener Functionality. 12

Table of HTTP Listeners . 12

Table of HTTP Emitters . 12

Table of HTTP Services . 13

Table of HTTP Preparsers . 14

2. Configuring HTTP Components . 15

HTTP . 15

HTTP Listener Parameters. .16

HTTP Emitter Parameters. 20

nHTTP . 22

nHTTP REST Support. 22

iWay Providers. .22

Features. .22

Configuring nHTTP Listeners. .23

Associating Session Information With an HTTP Interaction. 34

Configuring Sessions on an nHTTP Listener. 35

Using Session Information in an Application. 36

HTTP Session Invalidator Service (com.ibi.agents.XDHttpSessionInvalidator). 38

Configuring Emit Services. 38

Response Edges for nHTTPEmitAgent. .43

nHTTP Samples. .44

HTTP Solutions Development Guide 3

nHTTP Listener Event Schema. 44

Supported nHTTP Requests. 46

Maximum Allowed Connections. 47

SSL Host Verification. .47

Sonic Message Queuing . 48

Queuing Messages With Sonic. .48

Registering Sonic Client JAR Files. 49

iWay Adapter for Sonic MQ Listener Capability. 51

Configuring a Sonic Listener Using TCP or HTTP. 51

Sonic Listener Properties for TCP or HTTP. 52

Sonic TCP Listener Configuration Example. .59

Configuring a Sonic Listener Using SSL. 60

Setting Java System Properties for Sonic SSL. .61

Sonic Listener Properties for SSL. 62

Configuring a Sonic Listener Using SSL Client Certificate. 70

Sonic Listener Properties for SSL With Client Certificate. .72

Configuring a Sonic Listener Using HTTPS. 79

iWay Adapter for Sonic Emitter Functionality. 80

Configuring a Sonic Emitter Using TCP or HTTP. 80

Sonic Emitter Properties for TCP or HTTP. .81

Sonic Emitter Configuration Example. 83

Configuring a Sonic Emitter Using SSL. 85

Sonic Emitter Properties for SSL With Certificate. 86

Sonic Message Queuing Troubleshooting. .89

3. Configuring iWay HTTP Services (Adapters) . 91

HTTP Services Configuration Overview . 91

HTTP Services . 91

Add Attachment From File Service (com.ibi.agents.XDAddAttachmentFromFileAgent). 92

Add Attachment Service (com.ibi.agents.XDAddAttachmentAgent). .93

Attachment Operations Service (com.ibi.agents.XDAttachOps). .94

Attachment to Document Service (com.ibi.agents.XDAttachmentToDocAgent).95

Cross-Origin Resource Sharing Service (com.ibi.agents.XDCorsAgent). 96

Contents

4

Examples. .100

Document to Attachment Service (com.ibi.agents.XDAttachmentFromDocAgent). 102

HTTP Cookie Agent Service (com.ibi.agents.XDCookieAgent). 103

HTTP Emit Service (com.ibi.agents.XDHTTPEmitAgent). 104

HTTP Nonblocking Emit Service (com.ibi.agents.XDNHttpEmitAgent).110

HTTP Read Agent (com.ibi.agents.XDHTTPReadAgent). .114

HTTP ReST Routing Service (XDReSTRouteAgent and XDReSTRouteReviewer). 117

HTTP Session Invalidator Service (com.ibi.agents.XDHttpSessionInvalidator). 126

OAuth 1.0 Authentication Service. 126

OAuth 2.0 Authentication Service. 131

WS HTTP Client Agent (com.ibi.agents.XDWSHttpClientAgent). 139

4. Configuring HTTP Preparsers .141

HTTP Preparser Configuration Overview . 141

HTTP Preparser (com.ibi.preparsers.XDHTTPpreParser) . 141

Multipart for nHTTP Preparser (com.ibi.preparsers.XDMultiPartForNHTTP)142

5. Configuring HTTP Headers and Special Registers .145

HTTP Header and SREG History . 145

Issue to be Addressed . 145

Special Registers and HTTP .146

6. Configuring Common Parameters . 149

Listener Configuration Parameters . 149

7. Configuring iWay Service Manager Components . 153

Configuring Listeners . 153

Configuring Services . 157

Legal and Third-Party Notices . 163

Contents

HTTP Solutions Development Guide 5

Contents

6

Chapter1
Introducing iWay HTTP Solutions

This section provides an introduction to iWay Service Manager (iSM) HTTP solutions. For
more information on additional transport protocol adapters that are supported by iSM,
see the iWay Service Manager Protocol Guide.

In this chapter:

HTTP Services Overview

What is HTTP?

iWay Service Manager Suite of HTTP Tools

Table of HTTP Listeners

Table of HTTP Emitters

Table of HTTP Services

Table of HTTP Preparsers

HTTP Services Overview

iWay Service Manager (iSM) Hypertext Transfer Protocol (HTTP) services provide tools that
enhance the development and implementation of applications where file transport services are
required. The enhancements are accomplished by:

reducing the requirement for custom programming when implementing a range of file
transport services; and by

providing access to packaged third-party adapter products.

In minimizing the amount of code required for their implementation, these HTTP services
provide a solid foundation for flexible, service-oriented architecture.

What is HTTP?

Before you begin using the HTTP tools that are available in iSM, it is recommended that you
have a good understanding of HTTP, and the types you plan to support.

HTTP Solutions Development Guide 7

Native HTTP

Hypertext Transfer Protocol (HTTP) is the foundation of data communication for Web browsers
and servers. It is the default network request/response system used to transfer files from one
host to another over the Internet.

HTTP is an application-layer network protocol built on top of Transmission Control Protocol -
Internet Protocol (TCP/IP) which enables two hosts to establish a connection between them
and exchange files or data streams. In addition:

HTTP employs the client-server model, using separate control and data connections
between a client (such as a Web browser) and a server.

HTTP users can connect and authenticate themselves using a clear text sign-in, but can
also connect anonymously (when the server is so configured).

HTTP is a stateless protocol; one that processes requests without any knowledge of
requests that came before. It processes one request/response pair at a time.

The HTTP connection can be closed after a single request/response is processed.
Optionally, the connection can remain open (or persistent) which can result in a decrease in
system latency.

Communication can be monitored through HTTP status codes which appear on the first line
of the response file.

HTTP communication is unencrypted, typically through port 80 or some related port.

HTTP first came into common use in 1996, prior to the creation of today’s encryption
mechanisms. Other aspects of the protocol that have come to be viewed as shortcomings are
being addressed in technologies such as JavaScript and ActiveX. Nevertheless, HTTP remains
a bedrock technology. One reason for this is encryption capability has been appended to HTTP
as detailed in the following section.

Secure HTTPS

To implement secure transmissions that encrypt the user name, password, and content, HTTP
is often protected with Secure Sockets Layer - Transport Layer Security (SSL/TLS). The
designation HTTPS indicates HTTP that uses SSL/TLS.

In addition, HTTPS provides bidirectional encryption for counterparty authentication, designed
to prevent packet capture and other man-in-the-middle attacks. Originally used for payment
transactions on the World Wide Web, HTTPS grew to be used for e-mail and for any other
private transactions in corporate information systems.

What is HTTP?

8

Due to encryption processing, it may be slower than native HTTP. HTTPS typically uses port
443.

HTTP versus HTTPS

The following table compares HTTP to HTTPS.

HTTP HTTPS

Default Port - 80 Default Port - 443

Additional Protocol - No Additional Protocol - Yes. Uses the Secure
Sockets Layer (SSL) which transports
secure data to and from the server.

Sender/Receiver Identification - No Sender/Receiver Identification - Yes. SSL
encrypts the data, preventing third party
access.

Certificate - No Certificate - Yes. The owner of the Web site
purchases a certificate from a trusted
authority.

Non-blocking nHTTP

Native HTTP is synchronous, processing one request/response pair at a time. It blocks the
next request, preventing it from beginning until the active request has completed. However,
this behavior is not always desirable.

Non-blocking HTTP (nHTTP) is asynchronous. It permits subsequent requests to begin
processing before the current request has completed. In addition to improved performance,
nHTTP provides an array of configurable parameters for security, connectivity, and header
manipulation.

HTTP versus nHTTP

The following table compares HTTP to nHTTP.

HTTP nHTTP

Synchronous - waits for a task to finish
before processing the next task.

Asynchronous - Begins to processes other
tasks before the current one completes.

1. Introducing iWay HTTP Solutions

HTTP Solutions Development Guide 9

HTTP nHTTP

Blocking - processes one request/response
pair at a time - the protocol handler is not
required to match a request to its paired
response.

Non-Blocking - can process a request and its
related response independently from one
another, therefore the protocol handler must
match a request to its paired response.

Stateless - provides a response after a
request, then requires no further attention.
For high availability, a stateless service
requires redundant, load-balanced
instances.

Stateful - can process subsequent requests
to the service depending on the results of a
prior request. For high availability, a stateful
service can use an active/passive or active/
active configuration.

iWay Service Manager Suite of HTTP Tools

iWay Service Manager (iSM) offers a full complement of HTTP services that are designed
specifically to be used in transactional situations. These services include client and server-
side, RFC-compliant capabilities for HTTP, HTTPS, and nHTTP.

This section describes features in the iSM HTTP suite of tools for the client side and the server
side of the HTTP suite.

Client Suite

The HTTP client suite allows iSM to connect to and interact with an HTTP, HTTPS, or nHTTP
server. The client is capable of detecting the existence of a file on the remote server and
reacting to this existence (through an iSM HTTP, HTTPS, or nHTTP listener).

The reaction of the client based on the existence of a file could be as simple as retrieving the
file. It can also involve a complex iSM process flow that includes a series of steps that can
manipulate that file or a group of files on the remote system or other systems that iSM is
capable of accessing.

Sample Applications

The HTTP client suite of tools can be used to handle a variety of application requirements,
such as:

The HTTP/nHTTP listener can be configured to monitor a directory on the server.

When a specific file name (and/or extension) is written to that directory, that file will be
retrieved and saved to a directory on the client.

iWay Service Manager Suite of HTTP Tools

10

Alternately, the file that is retrieved can be presented to an iSM process flow and used
as the input for additional processing by iSM (for example, updating a database table
and initiating an SAP transaction).

When used in conjunction with other iSM listeners, the HTTP/nHTTP clients can be used
within an iSM process flow to transfer data from the client system to the server.

A messaging listener such as MSMQ or JMS can be used to take a message from a
queue. The message itself or specific message contents can be transferred to the
server.

An SAP IDoc that is obtained using the iWay Application Adapter for mySAP ERP (SAP
JCo 3.x) could be sent to the server.

Sending an EDI file to a VAN.

Server Suite

The HTTP server suite of tools provides two listeners:

HTTP/HTTPS Server Listener

nHTTP Server Listener

Both listeners have the same characteristics. The listeners can be configured to interact with
the client in the same way that any HTTP/nHTTP server would. For example, handling the
request of the client (send, receive, rename, delete, and so on) as the server. The advantage
of the HTTP server suite of tools is the ability to configure the listeners to use the file(s) that
are received as messages that can be used to initiate a complex iSM process flow.
Corresponding results are then returned from those process flows.

Security

The HTTP server suite of tools can be configured to handle login security using standard server
authentication realms (LDAP, RDBMS, text based property file, Kerberos, and so on) as well as
a complete directory authorization capability and user role tracking.

Sample Applications

The HTTP server suite of tools can be used to handle a variety of application requirements,
such as:

Receiving transaction messages (including EDI) from partners who need to use a standard
protocol, and then passing these messages to a process flow. This a good solution for
participating in standard EDI networks by EDI splitters and transformers.

1. Introducing iWay HTTP Solutions

HTTP Solutions Development Guide 11

Receiving files and using a process flow to redistribute the incoming files to one or more
internal recipients.

Act as a relay for large files where not having the actual file materialized on a local disk is
required. This can include the receipt of a file outside of a firewall and then relaying the file
through the firewall.

Common Listener Functionality

All listeners offer the standard server startup failure flows to handle processing issues when
the listener begins and when specific error conditions occur during the operation of the
listener.

Table of HTTP Listeners

The following table provides a quick reference to the iSM listeners that are defined in this
documentation for HTTP services.

Listener Name

HTTP Listener Parameters on page 16

How to Configure an nHTTP Listener on page 23

Table of HTTP Emitters

The following table provides a quick reference to the iSM emitters that are defined in this
documentation for HTTP services.

Emitter Name

HTTP Emitter Parameters on page 20

HTTP Nonblocking Emitter Configuration Parameters on page 39

Table of HTTP Listeners

12

Table of HTTP Services

The following table provides a quick reference to the iSM services that are defined in this
documentation for HTTP services.

Service Name

Add Attachment From File Service (com.ibi.agents.XDAddAttachmentFromFileAgent) on page
92

Add Attachment Service (com.ibi.agents.XDAddAttachmentAgent) on page 93

Attachment Operations Service (com.ibi.agents.XDAttachOps) on page 94.

Attachment to Document Service (com.ibi.agents.XDAttachmentToDocAgent) on page 95

Cross-Origin Resource Sharing Service (com.ibi.agents.XDCorsAgent) on page 96

Document to Attachment Service (com.ibi.agents.XDAttachmentFromDocAgent) on page 102

HTTP Cookie Agent Service (com.ibi.agents.XDCookieAgent) on page 103

HTTP Emit Service (com.ibi.agents.XDHTTPEmitAgent) on page 104

HTTP Nonblocking Emit Service (com.ibi.agents.XDNHttpEmitAgent) on page 110

HTTP Read Agent (com.ibi.agents.XDHTTPReadAgent) on page 114

HTTP ReST Routing Service (XDReSTRouteAgent and XDReSTRouteReviewer) on page 117

HTTP Session Invalidator Service (com.ibi.agents.XDHttpSessionInvalidator) on page 38

OAuth 1.0 Authentication Service on page 126

OAuth 2.0 Authentication Service on page 131

WS HTTP Client Agent (com.ibi.agents.XDWSHttpClientAgent) on page 139

1. Introducing iWay HTTP Solutions

HTTP Solutions Development Guide 13

Table of HTTP Preparsers

The following table provides a quick reference to the iSM preparsers that are defined in this
documentation for HTTP services.

Preparser Name

HTTP Preparser (com.ibi.preparsers.XDHTTPpreParser) on page 141

Multipart for nHTTP Preparser (com.ibi.preparsers.XDMultiPartForNHTTP) on page 142

Table of HTTP Preparsers

14

Chapter2
Configuring HTTP Components

The protocols for the iWay transport utility protocol adapters support email exchanges
and file transfers between Internet users. The protocols also support exchanges and file
transfers between those connected through TCP/IP and other networks.

iWay transport utility protocol adapters provide tools that simplify the implementation of
service-oriented architectures. The simplification is accomplished by reducing the
requirement for custom programming when implementing a range of distributed
messaging services and file transport services and by providing access to packaged
third-party adapter products. By minimizing the amount of code required for their
implementation, these adapters provide a solid foundation for flexible service-oriented
architecture.

In this chapter:

HTTP

nHTTP

Sonic Message Queuing

HTTP

The Hypertext Transfer Protocol (HTTP) is an application-level protocol with the lightness and
speed required for distributed, collaborative, hyper-media information systems. HTTP enables
easy management of agent resources through management applications, such as Firefox,
Internet Explorer, and so on, which are readily available in all systems.

The iWay Adapter for HTTP/S provides the iWay Service Manager Server Integration platform
with the ability to send and receive messages over secure HTTP. It enables you to take
advantage of the Internet by providing secure, reliable, and efficient communication with
external business systems, whether within or outside of your enterprise.

The iWay Adapter for HTTP/S:

Provides a bidirectional adapter.

Enables HTTP clients to invoke business processes within iWay Service Manager through a
URL.

HTTP Solutions Development Guide 15

Enables a business process to request data from an HTTP server through a URL, thus
acting as an HTTP client.

Includes a built-in multi-threaded HTTP listener, as part of the iWay Service Manager base
configuration, which is used to serve the iWay Configuration pages to the user.

Supports HTTP and HTTPS protocols, both synchronous and asynchronous bidirectional
invocation, and includes a limited-use license for the XML Data Handler.

For inbound messages, the adapter receives incoming messages through the registered URL,
with the message payload being either an XML message or an arbitrary proprietary data
structure.

HTTP Listener Parameters

The following table lists and describes the HTTP listener parameters. For instructions on
creating a listener, see Configuring Listeners on page 153.

Note: Parameters that are common to all components are omitted from the following table. For
a list of these properties refrer to Configuring Common Parameters on page 149 in the
appendix of this manual.

Parameter Description

Port (required) The TCP port for receipt of HTTP requests.

Local bind
address

The local bind address for multi-homed hosts. This is usually left empty.

Document Root
(required)

The base directory from which all HTTP pages are served.

Timeout The timeout interval for the TCP socket.

Set TCP No
Delay

If set to true, this disables Nagle's Algorithm on the client socket. This
results in faster line turnaround at the expense of an increased number
of packets.False is the default.

Defer Close of
Socket

If set to true, (default) the close of the client socket is deferred for one
second after the response is written. This compensates for an issue
seen on some older versions of z/OS.

HTTP

16

Parameter Description

Default Page The default page if none is identified in the incoming HTTP or HTTPS
request.

Response
content type

This overrides content type of response. Select one of the following
options from the drop-down list:

application/EDI-X12

application/EDIFACT

application/XML

text/html

text/plain

Default Text The default text sent with 200 OK. The default text takes the configured
Content Type.

Keystore The full path to the keystore file, which provides certificate material to
be used for a secure connection.

Keystore
Password

The password to access the keystore file.

Keystore Type The type of keystore file. .JKS is the default value.

Truststore The file that provides trust certificates used to authenticate clients.
Leave this blank to use the default JVM truststore. For more
information on security, see the iWay Adapter for EDIINT User's Guide.

Truststore
Password

The password to access the truststore file, if required.

Truststore Type The type of truststore. For more information on security, see the iWay
Adapter for EDIINT User's Guide.

Security Provider
Class

This will override the default Sun security provider, which is:

com.sun.net.ssl.internal.ssl.Provider

2. Configuring HTTP Components

HTTP Solutions Development Guide 17

Parameter Description

Security Protocol The protocol to enable security. Security protocol values include:

SSL - Supports some version of SSL. May support other versions.

SSLv2 - Supports SSL version 2 or higher.

SSLv3 - Supports SSL version 3. May support other versions.

TLS - (default) Supports some version of TLS.

TLSv1 - Supports TLS version 1. May support other versions.

Security
Algorithm

This overrides the default security algorithm, which is:

SunX509

Client
Authentication

If set to true, authentication is required from the client. False is the
default.

Require
Authorization

If set to true, the listener implements HTTP basic authentication using
one or more authorization drivers. False is the default.

Always reply to
listener default

If set to true, the default reply definition is used in addition to defined
replies.
False is the default.

Channel Failure
Flow

Name of published process flow to run if this channel cannot start or
fails during message use. The server will attempt to call this process
flow during channel close down due to the error.

Channel Startup
Flow

The name of the published process flow to run prior to starting the
channel.

Channel
Shutdown Flow

The name of the published process flow to run after the channel is shut
down.

Startup
Dependencies

A comma-separated list of channel names that must be started before
this one is called.

HTTP

18

Note: The HTTP listener supports streaming. Streaming is used for large documents or
documents for which the application needs to split the input into sections under the same
transaction. For more information on streaming and configuring streaming preparsers, see the
iWay Service Manager Component and Functional Language Reference Guide.

Reference: HTTP Listener Special Registers

The following table lists and describes the special registers on the HTTP listener.

Name Level Type Description

... Header String Each header value from the message.

action Document String The action field of the post.

docroot Document String The defined docroot from configuration.

ip Document String The IP address of the sender.

iwayconfig System String The current active configuration name.

iwayhome System String The base at which the server is loaded.

iwayworkdir System String The path to the base of the current
configuration.

msgsize Document Integer The physical length of the message payload.

name System String The assigned name of the master (listener).

protocol System String The protocol on which message was received.

requestType Header String The type of HTTP request (GET, POST, or
HEAD).

source Document String The host name of the sender.

url Header String The type of full URL of the HTTP (GET, POST,
or HEAD).

tid Document String Unique transaction ID.

2. Configuring HTTP Components

HTTP Solutions Development Guide 19

HTTP Emitter Parameters

The following table lists and describes the HTTP emitter parameters. For instructions on
creating an HTTP emitter, see Configuring Emitters.

Parameter Description

Configuration Parameters HTTP Emitter

Destination (required) The URL to which to post this information.

Action Method Select GET (with data on the URL and URL encoded) or
POST (with a content length header).

Request content type This overrides request content type value. Choose from
among the following values:

application/EDI-X12

application/EDIFACT

application/XML

text/html

text/plain

User ID A valid user ID for basic authentication challenges.

Password A password associated with the user ID.

Response Timeout value in
seconds

The time (in seconds) to wait for response before signaling
an error as integer.

IP Interface Host The local IP interface from which the outgoing IP socket
originates.

IP Interface Port The local IP port from which the outgoing IP socket
originates.

Relay Inbound Content Type If set to true, then the relay headers are received as content
type.

HTTP

20

Parameter Description

Set TCP No Delay If set to true, then this parameter disables the Nagle
Algorithm on the client socket. This results in a faster line
turnaround at the expense of an increased number of
packets.

Proxy

Proxy If set to true, emit through proxy server. False is the default.

Proxy URL The URL of the proxy server.

Proxy User ID The user ID for proxy authentication challenges.

Proxy Password The password to access proxy server.

HTTPS

Secure Connection If set to true, then the emitter uses a secure connection.
You may be required to configure the keystore under the
HTTPS section of the system properties if client
authentication is required, or if a certificate is used that
does not have a matching entry in the default truststore of
the JVM. False is the default.

Use 128-bit Encryption Select true to use 128-bit encryption. False is the default.

Security Protocol Select from the drop-down list.

SSL - Supports some version of SSL. May support other
versions.

SSLv2 - Supports SSL version 2 or higher.

SSLv3 - Supports SSL version 3. May support other
versions.

TLS - (default) Supports some version of TLS. May support
other versions.

TLSv1 - Supports TLS version 1. May support other versions.

2. Configuring HTTP Components

HTTP Solutions Development Guide 21

nHTTP

The nHTTP adapter is a nonblocking HTTP with improvement in performance, connection
management, and various other security features.

The nHTTP adapter provides extensive flexibility by exposing an array of configurable
parameters for security, connectivity, and header manipulation. Below are descriptions of
some features that have been added as part of the improvement to the nHTTP component.

nHTTP REST Support

Representational State Transfer (REST) is a simpler alternative to SOAP and Web Services
Description Language (WSDL)-based web services. There are many advantages of using this
simpler HEEP-based design approach to calling server-based services, and it has been widely
adopted by many advanced web service providers including Amazon, Google, and Facebook.
These entities have either avoided SOAP or offered REST as a simpler alternative.

A RESTful service:

Uses explicit HTTP methods.

Is stateless (no session management is allowed or required).

Exposes the calling URI as a directory-like structure.

Transfers the payload as XML, JavaScript Object Notation (JSON), or both.

iWay Service Manager (iSM) offers a group of facilities to enable the use of RESTful services
when executed by process flows. The nHTTP listener for iSM complies with the HTTP 1.1
specification. This listener implements all of the available verbs used in REST-style
communication, including the main verbs (GET, POST, PUT, and DELETE).

iWay Providers

Named SSL Context Provider

Since this provider uses configured keystore/truststore providers, it allows you to configure
multiple SSL context providers and use them as named providers in the nHTTP configuration.

Features

Persistent Connection Support. The nHTTP adapter supports persistent connections, which
will allow for better connection handling and management.

Session Resumption. Session resumption is one of the new features available for the SSL
configuration.

nHTTP

22

Large File Limit. The nHTTP adapter contains various internal improvements to handle large
file sizes. As an addition, a new option has been exposed on the nHTTP inbound
processing that allows the user to limit the message size accepted by the adapter.

Configuring nHTTP Listeners

A listener is a component that is responsible for receiving inbound messages through an
assigned listener protocol. After a listener is created, it must be added to an inlet
configuration. An inlet will become part of the final channel configuration that will consist of an
inlet, route, and an outlet. For more information on configuring channels, see the iWay Service
Manager User's Guide.

Procedure: How to Configure an nHTTP Listener

To configure an nHTTP listener:

1. Ensure that iWay Service Manager is running.

On Windows, you can start iWay Service Manager by clicking Start, selecting Programs,
iWay 7.0 Service Manager, and then Start Service Manager for the configuration you are
currently using.

For more information on starting and stopping iWay Service Manager, see the iWay Service
Manager User's Guide.

2. Open a browser window and point to the following URL:

http://host:port/ism

where:

host

Is the host machine on which iWay Service Manager is installed.

port

Is the port on which iWay Service Manager is listening. The default port is 9999.

On Windows, alternatively, you can click Start, select Programs, iWay 7.0 Service Manager,
and then click Console.

A login dialog box opens.

3. Type a user name and password for the configuration you are using, and click OK.

The iWay Service Manager Administration Console opens.

4. Click Registry in the top pane, and then click Listeners in the left pane.

2. Configuring HTTP Components

HTTP Solutions Development Guide 23

The Listeners pane opens.

The table that is provided lists all the previously configured listeners and a brief
description for each.

5. Click Add.

The Select listener type pane opens.

6. Select HTTP 1.1 [nonblocking] (nhttp) from the Type drop-down list and click Next.

nHTTP

24

The Configuration parameters for the nHTTP listener pane opens.

Note: The parameters prefixed with an asterisk (*) in the listener configuration pane are
required.

7. Provide the appropriate values for the nHTTP listener parameters.

For more information, see Listener Configuration Parameters on page 149.

8. Click Next.

2. Configuring HTTP Components

HTTP Solutions Development Guide 25

You are returned to the Select listener type pane.

9. Enter a name for the nHTTP listener (required) and description (optional).

10. Click Finish.

You can now use this listener as part of your channel configuration where the business
logic will be applied to the received messages.

Reference: nHTTP Listener Configuration Parameters

The following table lists and describes parameters for the nHTTP listener.

Note: Properties that are common to all components are omitted from the following table. For
a list of these properties refrer to Configuring Common Parameters on page 149 in the
appendix of this manual.

Parameter Description

IP Properties

Port (required) The TCP port for receipt of HTTP requests.

Local bind address The local bind address for multi-homed hosts. This parameter
value is usually not specified.

Persistence If set to true, then the connection is maintained when the
client requests to do so. If set to false, the connection is
closed.

nHTTP

26

Parameter Description

Maximum Connections This defines the maximum number of simultaneous
connections that are allowed. When this threshold is reached,
new connections will not be accepted until current
connections are closed and the total number of connections
is below the limit. Leave this field blank (default) or set a
value of zero to have no maximum limit of connections.

Persistence Timeout value
in Minutes

The maximum length of time that a connection persists with
no activity.

Set Response No Delay If set to true, the Nagle Algorithm is disabled on the
response. This will result in a faster line turnaround at the
expense of an increased number of packets. False is the
default.

Reuse Address If set to true, then when a connection is closed, it
immediately makes the address available, bypassing the TCP
defaults. False is the default.

Allowable Clients If supplied, then only messages from this list of fully qualified
host names and/or IP addresses are accepted. Accepts
comma-separated list or use the FILE() function.

Secure Connection If set to true, then a connection using secure HTTP (HTTPS) is
made. False is the default.

SSL Context Provider The named iWay Security provider for SSL Context.

Redirect Insecure
Requests

If set to true, a plain text request is redirected to the
equivalent secure URL. Some HTTP clients can interpret the
301 response and retry the request over HTTPS. False is the
default.

General Properties

2. Configuring HTTP Components

HTTP Solutions Development Guide 27

Parameter Description

GET Handling This determines how GET requests are handled. Options
include:

docroot - Attempts to serve a file from the document root
directory.

error - Returns an HTTP 405 Method Not Allowed.

event - Generates an event message.

PUT and DELETE Handling This determines how PUT and DELETE requests are handled.
Options include:

unavailable - Returns an HTTP 405 Method Not Allowed.

event - Generates an event message.

OPTIONS Handling his determines how OPTIONS requests are handled. Options
include:

automatic - Returns a response indicating which HTTP
methods are handled.

event - Generates an event message.

Document Root The base directory from which all HTTP pages are served
through GET if GET Handling is enabled for page access.

Default Page The default page displayed if no page is identified in the
incoming HTTP[s] request.

Default Text The default text sent with 200 OK, which will take configured
ContentType.

nHTTP

28

Parameter Description

Response content type This overrides the content type of the response.

This overrides request content type value. Choose from
among the following values:

application/EDI-X12

application/EDIFACT

application/XML

text/html

text/plain

HTTP Response Code Indicates the HTTP status code to send with the response.
Usually this is left blank, which allows the channel to
determine the appropriate response code.

You can specify an iWay Functional Language (iFL) expression
as a value for this parameter to be evaluated during the final
emit process. If you specify an iFL expression, then ensure to
include a leading backtick (`) character to prevent this
expression from being evaluated until it is required. For
example:

`sreg(responsecode)

If you decide to use a Special Register (SREG), then ensure to
set it in the Message scope. The Message scope survives the
process flow that elects to set the value. For example:

message:responsecode | 500 |

For more information on setting SREGs into scopes, see SREG
Service (com.ibi.agents.XDSREGAgent) in the iWay Service
Manager Component Reference Guide.

The status code from nHTTP emits during the process flow are
stored in a SREG called httpstatus, which is in the defined
response SREG namespace of the emit service.

2. Configuring HTTP Components

HTTP Solutions Development Guide 29

Parameter Description

Authentication Scheme The scheme to apply when authenticating HTTP requests.
Select one of the following options from the drop-down list:

Digest Auth

Basic Auth

Negotiate

None (default)

Authentication Realm If authentication is required, then this provides the name of
the configured Realm provider to use.

Cookie Namespace Special register namespace into which cookies from the
incoming request will be saved. The default is to use the
namespace cookie.

Request Header
Namespace

The special register namespace to which HTTP headers from
the incoming requests are saved. The Default option creates
HDR type special registers without a namespace prefix.

Response Header
Namespace

The special register namespace from which HTTP headers for
the outgoing response are taken. The Default option sends
HDR type registers with no namespace prefix. If none is
selected, no special registers are sent as HTTP headers.

Response Main Part
Header Namespace

The special register namespace from which MIME headers for
the outgoing response are taken. Provide a prefix to control
the response Main BodyPart headers in the presence of
attachments. Selecting none means that no special registers
are sent as MIME headers. An empty namespace prefix is
treated as none.

Excluded Headers A comma delimited list (case-insensitive) of headers that
should not be sent with the response, even if they are found
in the response header namespace.

nHTTP

30

Parameter Description

Compress Response If set, the HTTP request entity will be compressed using the
selected encoding and the Content-Encoding header will be
set accordingly.

deflate

gzip

none

HTTP Session

Session Support If set to true, supports sessions by automatically creating a
JSESSIONID cookie when absent, and providing a special
register scope to hold session attributes. For example, a
session attribute called a1 would be retrieved as special
register called a1 in the register scope called "session". False
is the default.

Maximum Sessions Maximum number of active HTTP sessions. Beyond this
threshold, the least recently used session will be deleted to
make room for a newly created session. The value 0 means
unlimited.

Session Max Inactive
Interval

Maximum time interval that the listener will keep this session
open between client accesses. The format is [xxh][xxm]xx[s],
for example 1h30m is 90 minutes.

Cookie Path Value of the Path attribute in the generated JSESSIONID
cookie. The value / matches any path. This restricts the
exchange of the cookie to the identified domain and optionally
its subdomains. Most applications for iSM sessions will not
need these settings

Cookie Domain Value of the domain attribute in the generated JSESSIONID
cookie. Leave empty to match the originating server.

2. Configuring HTTP Components

HTTP Solutions Development Guide 31

Parameter Description

Cookie Max Age Value of the Max-Age attribute in the generated JSESSIONID
cookie. This indicates the maximum lifetime of the cookie,
represented as the number of seconds. Leave blank to omit
the attribute which lets the user agent determine when the
session is over.

Cookie Secure Whether to add the Secure attribute in the generated
JSESSIONID cookie. The attribute is automatically added when
the listener is secure. This is meant to keep cookie
communications limited to encrypted transmissions, directing
browsers to use cookies only through secure and encrypted
connections.

Select one of the following options from the drop-down list:

automatic (default)

false

true

Cookie HttpOnly If set to true, directs browsers (or other clients) to use the
JSESSIONID cookie through the HTTP protocol only (this
includes HTTPS. HttpOnly is not the opposite of Secure). An
HttpOnly cookie is not accessible through non-HTTP methods,
such as calls using JavaScript (for example, referencing
document.cookie), and therefore cannot be stolen easily
through cross-site scripting. False is the default.

Denial of Service Protection

Maximum Request Entry
Size

On receipt of a request larger than the maximum, the listener
will return HTTP 413 Request Entity Too Large; and close the
connection. 0 means no maximum, empty defaults to 256KB.

Maximum Request
Preamble Length

Maximum collective length for request preamble (in bytes). If
the header length (key + value) plus the request exceeds this
maximum, an error will be returned. Set the maximum to zero
to avoid this test (no limit).

nHTTP

32

Parameter Description

Events

Channel Startup Flow The name of the published process flow to run prior to
starting the channel.

Channel Shutdown Flow The name of the published process flow to run after the
channel is shut down.

Note: The nHTTP listener supports streaming. Streaming is used for large documents or
documents for which the application needs to split the input into sections under the same
transaction. For more information on streaming and configuring streaming preparsers, see the
iWay Service Manager Component and Functional Language Reference Guide.

Reference: Special Registers for the nHTTP Listener

The following table lists and describes the special registers for the nHTTP listener.

Special Register Level Description

... Header Each header value from the message.

action Document The action field of the post.

docroot Document The defined docroot from configuration.

ip Document The IP of the sending system.

iwayconfig System The current active configuration name.

iwayhome System The base at which the server is loaded.

iwayworkdir System The path to base of the current configuration.

msgsize Document The physical length of the message payload.

name System The assigned name of the master (listener).

protocol System The protocol on which the message was
received.

requestType Header The type of HTTP request (GET, POST, or HEAD).

2. Configuring HTTP Components

HTTP Solutions Development Guide 33

Special Register Level Description

source Document The host name of the sending system.

url Header The full URL of the HTTP request (GET, POST, or
HEAD).

tid Document Unique transaction ID.

Associating Session Information With an HTTP Interaction

In HTTP, a session is a sequence of network request-response transactions. A session may
encompass a group of console screens or web interactions for a specific purpose. In
transactional HTTP, such as REST or web services, a session may represent one or more
request-response activities, such as sending a group of related shipping operations.

Applications can associate session information with an HTTP interaction. The session
information is not actually carried between the client and the server. Rather, a token is
assigned by iSM, which is carried between interactions. The token identifies the current
session, much as a transaction ID represents the action of a single transaction within the
session. By not carrying the session information between interactions, security is enhanced
and network traffic is reduced.

Session information is carried in Special Registers (SREGs), which are created by the
application and available in the later steps where they can be referenced and changed as
required. The session SREGs are carried in a SREG scope called session. The session scope
is not a namespace, although namespaces can be used within the session.

Registers in a specific scope can be set using the Special Register Setting Service
(com.ibi.agents.XDSREGAgent). These registers can be referenced by the syntax session:name.
For example, a database key carried in the dbkey SREG would be referenced as session:dbkey.
The colon identifies the register as being in a named scope.

Note: Users are cautioned that scopes (denoted by the colon) are not namespaces. It is
possible to use namespaces within the session scope (as it is in any scope), but usually in
session scope namespaces do not add facility.

The session registers can be assigned to a type, such as USER, METRIC, or HDR. User
registers can optionally be carried between channels within a transaction. All register
attributes, including marshalling control and context recording can apply to session registers.

nHTTP

34

The session key is exchanged with the client by using the standard JSESSIONID cookie. As a
result, management of the session involves dealing with the treatment of this cookie.

Configuring Sessions on an nHTTP Listener

Sessions are configured on the nHTTP listener in the HTTP Session section. Set the Session
Support parameter to true to enable sessions.

The details of the session definition extend beyond the scope of this document. For more
information, application designers should refer to other HTTP documentation.

2. Configuring HTTP Components

HTTP Solutions Development Guide 35

The values specified for the Maximum Sessions and Session Max Inactive Interval parameters
are important. Either of these settings can result in the loss of the session information for the
session, even though a session token is received from the client. In such a case, the
application must be designed to handle the loss of the session and session restart. For
example, a shopping cart might be maintained in the session information. If the session
expires, the shopping cart would be deleted and the application must reacquire the information
that has been eliminated. While setting the listener to prevent expiration seems to avoid this
situation, application designers must be aware that clients can be abandoned, resulting in the
loss of the resources used to hold the session information in the server.

Because the session information is exchanged as a cookie (JSESSIONID), the cookie attributes
can be applied. The cookie attributes are a cookie domain, a path, expiration time or maximum
age, secure flag, and HttpOnly flag. Browsers will not return cookie attributes to the server.
They will only send the name-value pair of the cookie. Cookie attributes are used by browsers
to determine when to delete a cookie, block a cookie, or whether to send a cookie (name-value
pair) to the server. The default entries for these attribute fields allow the cookie (session
information) to be exchanged for all interactions.

Cookie parameters are defined in the HTTP Session section of the previous table.

Using Session Information in an Application

Setting the session information for an application is configured by using the Special Register
Setting Service (com.ibi.agents.XDSREGAgent).

nHTTP

36

From the Scope of variable drop-down list, select HTTP Session {session}, as shown in the
following image.

You must have the session support configured for the channel in order for the register to
automatically appear in the next client interaction.

To reference the value of the register, you can use the following function from the iWay
Functional Language (iFL):

_sreg('session:dbkey')

The HTTP Session Invalidator Service (com.ibi.agents.XDHttpSessionInvalidator) can be used in
a process flow to invalidate the current session. This deletes all information in the session and
prevents the session from being exchanged in subsequent client-server interactions. As a best
practice, you can call for invalidating (deleting) the session once it is no longer required. An
example would be a console logout or a determination of a catastrophic error situation that
requires the user to restart an operation.

2. Configuring HTTP Components

HTTP Solutions Development Guide 37

An application might keep an event count in the session, such that a count of 0 means this is
the start of a session. Using 0 as the default value of an _sreg() lookup in a process flow test,
the process flow can take whatever action is needed to begin the application session.
Following the test, a Special Register Setting Service (com.ibi.agents.XDSREGAgent) might set
the event count to the command shown in the following table:

eventcount _sreg('session:eventcount','0')+1

HTTP Session Invalidator Service (com.ibi.agents.XDHttpSessionInvalidator)

This service is used to terminate the session. The following table lists and describes its
parameter.

Parameter Description

Expire Cookie Determines how the termination is to be effected.

If set to false, it removes the session information from the
server. No further action is taken.

If set to true, in addition to removing the session
information, it sends an instruction to the client to delete
the JSESSIONID cookie itself.

The service returns the input document on the success edge.

As a good practice, you can use this service when the application has completed the session,
so as to reduce server resource requirements.

Configuring Emit Services

You can configure outbound processing of HTTP messages as a service that can be used
within a process flow, which will become part of the route configuration or directly as a service
assigned to a route. In this case, a business process can continue after an HTTP message has
been sent out to the client. The following section describes how to configure an HTTP
nonblocking emit service. For more information on configuring outlets and routes, see the iWay
Service Manager User's Guide.

Procedure: How to Configure an HTTP Nonblocking Emit Service

To configure an HTTP nonblocking emit service:

nHTTP

38

1. Click Registry in the top pane, and then click Services in the left pane.

The Services pane opens.

The table that is provided lists all the previously configured services and a brief
description for each.

2. Click Add.

The Select Service type pane opens.

3. Select HTTP Nonblocking Emit from the Type drop-down list.

4. Click Next.

The configuration parameters pane for the HTTP nonblocking emit service opens.

5. Provide the appropriate values for the HTTP nonblocking emit service parameters.

For more information, see HTTP Nonblocking Emit Service
(com.ibi.agents.XDNHttpEmitAgent) on page 110.

6. Click Next.

The name and description pane opens.

7. Enter a name for the service and description (optional).

8. Click Finish.

Reference: HTTP Nonblocking Emitter Configuration Parameters

The following table lists and describes parameters for the HTTP nonblocking emitter.

Parameter Description

Configuration Parameters

2. Configuring HTTP Components

HTTP Solutions Development Guide 39

Parameter Description

Destination (required) The destination URL to post information that uses the
following format:

http[s]://host[:port]/action

HTTP Client Provider
(required)

The HTTP client Provider that is used to manage connections
for this emitter.

Cookie Store Name Allows thread-specific management of cookies. If a name is
not specified, a cookie store global to the HTTP Client provider
will be used.

Action Method Select one of the following supported methods from the drop-
down list:

GET - with encoded data on the URL.

DELETE

HEAD

POST method with a Content-Length header. This value is
selected by default.

PUT

Request Content Type The content type for the HTTP request sent by this emitter.
Select a value from the drop-down list or provide your own.
Available values from the drop-down list include:

application/EDI-X12

application/EDIFACT

application/XML

text/html

text/plain

User ID The user ID for Basic Authentication challenges.

Password The password for Basic Authentication challenges.

nHTTP

40

Parameter Description

Domain The domain for NTLM authentication challenges. Note that to
use NTLM, you must enable connection persistence.

Request Header
Namespace

The special register namespace from which HTTP headers for
the outgoing request will be taken. Choose Default
Namespace to send HDR type registers with no namespace
prefix, or supply a namespace prefix here. None means that
no special registers will be sent as HTTP headers.

Request Main Part Header
Namespace

The special register namespace from which MIME headers for
the outgoing request will be taken. Provide a prefix to control
the request Main BodyPart headers in the presence of
attachments. Selecting none means that no special registers
will be sent as MIME headers.

Response Header
Namespace

The special register namespace into which HTTP headers from
the incoming response will be saved. Choose Default
Namespace to create special registers with no namespace
prefix, or supply a namespace prefix here. None means that
no special registers will be created.

An empty namespace prefix will be treated as the default.

Excluded Headers A comma delimited list (case-insensitive) of headers that
should not be sent with the request, even if they are found in
the request header namespace.

Ask for Compressed
Response

If set to true, the request will set the accept-encoding to
indicate that the client can accept a compressed response. If
the response has a compressed content encoding, the client
will automatically inflate the response.

Compress Request If set to true, the request entities will be compressed using
the selected encoding and the content-encoding header will
be set accordingly.

2. Configuring HTTP Components

HTTP Solutions Development Guide 41

Parameter Description

Release Connection
Immediately

If set to true, then the connection will be released to the
connection pool immediately. This is the default.

If set to false, then the connection identifier is stored in the
httpclient-key special register and the HTTP Client Manager
agent must be called later to release the connection explicitly.

The main reason to retain the connection is to reuse it for
streaming of other services.

Maximum HTTP Client
Manager Delay

The maximum time for the HTTP Client Manager to handle a
particular connection before it is automatically aborted. The
format is [xxh][xxm]xx[s]. The default is 60 seconds.

Try Expect/Continue
Handshake?

If set to true, the client will send the HTTP Expect: 100-
continue header and await HTTP 100 response before
sending the request body. By default, false is selected.

Chunk Encoded Request? If set to true, the request entity will be sent with chunk
encoding. By default, false is selected.

Maximum Request Size The maximum size (after compression) of a request entity that
can be sent with this emitter. A value of zero (0) means there
is no maximum size limit and if no value is specified, the
default value of 256KB is applied.

Maximum Response Size The maximum size of a response entity that can be received
by this emitter. A value of zero (0) means there is no
maximum size limit and if no value is specified, the default
value of 256KB is applied.

TCP

Persistence If set to true, the server is requested to maintain the
connection.

Response Timeout value
in seconds

The value in seconds to wait for a response before generating
an error. The default value is 60 seconds.

nHTTP

42

Response Edges for nHTTPEmitAgent

When you connect the nHTTPEmitAgent object to an End object using the OnCustom build
relation in a process flow, line edges are provided in the Line Configuration dialog box.

The following line edges are provided:

OnError

OnSuccess

OnFailure

fail_connect

fail_info

fail_redirection

fail_client

2. Configuring HTTP Components

HTTP Solutions Development Guide 43

fail_server

fail_operation

fail_parse

fail_unsigned

nHTTP Samples

This section provides additional information about the nHTTP listener and includes samples
you can use as a reference.

nHTTP Listener Event Schema

The nHTTP listener allows you to configure the handling of incoming HTTP requests. For
example, the available options for the GET Handling parameter include docroot, error, and
event. If you select event, an event document is created for the incoming request. This
document can then be used in your process to determine an action for the request. The event
document corresponds to the following structure:

nHTTP

44

<http user="auto" type="GET">
 <parms>
 <parm name="ibse-port">9000</parm>
 <parm name="Host">clientbox:10000</parm>
 <parm name="Connection">Keep-Alive</parm>
 <parm name="pdm">0</parm>
 <parm name="version">1.1</parm>
 <parm name="Accept-Language">en-AU</parm>
 <parm name="action">user.req?
user=999999999&account=1234567890123456&tranid=tid1234</parm>
 <parm name="Accept">text/html, application/xhtml+xml, */*</parm>
 <parm name="User-Agent">Mozilla/5.0 (compatible; MSIE 9.0; Windows NT
6.1; WOW64; Trident/5.0)</parm>
 <parm name="url">/user.req?
user=999999999&account=1234567890123456&tranid=tid1234</parm>
 <parm name="ip">127.0.0.1</parm>
 <parm name="source">hostname unknown</parm>
 <parm name="Accept-Encoding">gzip, deflate</parm>
 <parm name="reqType">GET</parm>
 </parms>
 <body />
 <url secure="false">
 <host>clientbox</host>
 <port>10000</port>
 <path>/user.req</path>
 <query>user=999999999&account=1234567890123456&tranid=tid1234</query>
 <queryparms>
 <queryparm name="user">99999999</queryparm>
 <queryparm name="account">1234567890123456</queryparm>
 <queryparm name="tranid">tid1234</queryparm>
 </queryparms>
 <incomingurl> http:clientbox:1000/
user=999999999&account=1234567890123456&tranid=tid1234
 </incomingurl>
 </url>
 <version>1.1</version>
</http>

The following syntax is a sample document for the GET event:

2. Configuring HTTP Components

HTTP Solutions Development Guide 45

<?xml version="1.0" encoding="ISO-8859-1" ?>
<http user="unknown" type="GET">
<parms>
 <parm name="version">1.1</parm>
 <parm name="source">beck-xp.ibi.com</parm>
 <parm name="ua-cpu">x86</parm>
 <parm name="reqType">GET</parm>
 <parm name="accept-encoding">gzip, deflate</parm>
 <parm name="accept-language">en-us</parm>
 <parm name="connection">keep-alive</parm>
 <parm name="url">/TEST?A=B&C=D</parm>
 <parm name="user-agent">Mozilla/4.0 (compatible; Win 5.1</parm>
 <parm name="host">theservercom:7777</parm>
 <parm name="ip">172.19.22.60</parm>
</parms>
<body />
<url secure="true">
 <host>theserver.com</host>
 <port>7777</port>
 <path>/TEST</path>
 <query>A=B&C=D</query>
</url>
<version>1.1</version>
</http>

Supported nHTTP Requests

The following table lists the supported HTTP requests that can be processed by the nHTTP
listener. Flow refers to the generation of the event signal document that can be processed
within a process flow. A Reject action causes the client request to be rejected with an HTTP
405 Method Not Allowed response.

Request Type Available Actions

DELETE Flow or Reject

GET From File, Flow, or Reject

HEAD Like GET

OPTION Reject

POST Flow

PUT Flow or Reject

TRACE Echoes request as per RFC

nHTTP

46

Maximum Allowed Connections

The nHTTP listener has a parameter that can be configured to limit the number of
simultaneous connections. However, this is not related to pool sizes or persistent
connections. This parameter simply limits the number of clients that can connect to the server
at once, persistent or not.

The listener tracks the current number of connections. When a new connection is accepted,
the count is raised. When a connection closes, the count is lowered. Before accepting a new
connection, the listener checks the current number of connections against the max
connections parameter. If the current number is at the threshold, the new connection is not
accepted and the following error message is written to the log:

ERROR (nh2) max connection threshold exceeded

Please note that the client has no knowledge of this back-end functionality. From its point of
view, the connection might just be slow. The client will continue making connection attempts
until it times out. As a result, it is normal to see multiple instances of this error message when
simultaneous connections are over the limit. If the client does not time out and another
connection closes, the new connection will be accepted and normal processing is continued

A blank value or 0 specified for the parameter indicates no limit.

SSL Host Verification

When SSL Host Verification is enabled, the client verifies that the certificate the server is
presenting in the handshake matches the server hostname.

So, in the keystore of the server SSL context, there needs to be a key pair with CN == server
hostname. If there is more than one private key in this keystore, you need to specify the server
key alias to point to this key.

The client needs to add the <certificate of the CA that signed the server certificate> to its
truststore. In the case of a self-signed certificate, this is the server certificate itself. The server
never verifies the client hostname, even if SSL client authentication is enabled.

The following shows some of the information in a self-signed certificate with the CN in the
subject Distinguished Name set to the host and port as required by the host name verifier.

2. Configuring HTTP Components

HTTP Solutions Development Guide 47

Owner CN=myMachine.ibi.com:7777, OU=iWay, O=IBI, L=Cranston, ST=Rhode
Island, C=US
Issuer CN=myMachine.ibi.com:7777, OU=iWay, O=IBI, L=Cranston, ST=Rhode
Island, C=US
Serial number 46141cb7
Valid from Wed Apr 04 17:46:31 EDT 2007 until: Mon Oct 01 17:46:31 EDT
2007
Certificate fingerprints
MD5 61:02:2E:F2:D6:C2:0B:A8:AF:1F:6F:86:64:23:C9:17
SHA1 5F:7B:6C:A5:0E:FC:0C:33:F6:4C:4D:48:1B:C9:07:A4:DD:EF:54:62

Sonic Message Queuing

Sonic Message Queuing delivers a high performance and high reliability messaging system and
provides certified Java Message Service Queue (JMSQ) implementation that includes both
Queue Point-to-Point messaging and Publish/Subscribe messaging. It has an extended client/
server feature that enables hierarchical security management. Sonic Message Queuing
guarantees message persistence over the Internet. It contains message security, encryption,
and certificate management.

The Sonic patent-pending Dynamic Routing Architecture (DRA) enables enterprises to
participate in global e-Business exchanges through a single broker. When trading domains
come online, Sonic dynamically discovers destinations and delivers messages between the
servers on an optimized routing path. The Sonic architecture sets a foundation for high-
throughput e-Business integration by robustly providing the following e-Business essentials:
scalability, availability, and reliability.

The iWay Adapter for Sonic MQ provides bidirectional capability to and from Sonic destinations.

This topic describes how to:

Listen on Sonic queues.

Redirect output from a non-Sonic destination to a Sonic destination.

To redirect output to a destination, see iWay Adapter for Sonic Emitter Functionality on page
80.

Queuing Messages With Sonic

The iWay Adapter for Sonic MQ enables Service Manager to read messages arriving on a
named queue or topic and route the messages to either another queue or topic, or to a non-
Sonic destination. Similarly, messages received through any of the other iWay protocol adapter
listeners can be directed to a Sonic queue. During the message flow, Service Manager can
apply standard document analysis, validation, transformation, and business logic capabilities
to the document.

Sonic Message Queuing

48

The iWay Adapter for Sonic MQ provides bidirectional support for Sonic queues (a listener and
an emitter). The adapter provides support for topics for a TopicSession in the Publish and
Subscribe domain, as well as queue support (for a QueueSession in the PTP domain). Support
is provided for persistent and non-persistent messages. The persistent option prevents
messages from being lost in the event of a network or system failure. The iWay Adapter for
Sonic MQ can operate over TCP, SSL, or HTTP(S).

The iWay Adapter for Sonic MQ includes high availability features. The adapter monitors the
connection for an exception and re-establishes the connection if it was dropped. The adapter
also supports load balancing. With load balancing enabled, a connect request can be
redirected to another broker with a Sonic cluster. Similarly, failover capability is implemented.
The adapter can redirect the message to another broker if it is unable to connect to the
original broker.

Registering Sonic Client JAR Files

The following tables list the required .jar files for registration.

For instructions on registering JAR files, see iWay Service Manager Protocol Guide.

For Listeners:

Type JAR Files

SSL Sonic_Client.jar

Found at %Sonic_Home%/lib/.

Add the Sonic_Client to the Path Settings
PreClassPath section.

Sonic_Crypto.jar

jsafe.jar

sonic_SSL.jar

certj.jar

sslj.jar

Add the files to the Path Settings PreClassPath section.

2. Configuring HTTP Components

HTTP Solutions Development Guide 49

Type JAR Files

SSL Client Certificate Sonic_Client.jar

Found at %Sonic_Home%/lib/.

Add the Sonic_Client to the Path Settings
PreClassPath section.

Sonic_Crypto.jar

jsafe.jar

sonic_SSL.jar

certj.jar

sslj.jar

For Emitters:

Type JAR Files

TCP or HTTP Sonic_Client.jar

Found at %Sonic_Home%/lib/.

Add the Sonic_Client to the Path Settings PreClassPath section.

SSL Sonic_Client.jar

jsafe.jar

sonic_SSL.jar

certj.jar

sslj.jar

Found at %Sonic_Home%/lib.

Add the JAR files to the Path Settings PreClassPath section.

For instructions on registering JAR files, see iWay Service Manager Protocol Guide.

Sonic Message Queuing

50

iWay Adapter for Sonic MQ Listener Capability

Sonic supports standard Internet protocols including Secure Socket Layer (SSL), HTTP,
encryption, TCP, and security. iWay Service Manager can listen on Sonic queues using TCP,
SSL, HTTP, and HTTPS protocols. Each protocol requires setup specific to the unique protocol.
This topic details configuration information for each individual protocol.

Procedure: How to Configure Reconnect Support

1. Click the Server link at the top left of the Service Manager console.

2. Under Settings in the left pane, click General Settings.

3. In the Retry Interval entry field, enter a value to enable the listeners to retry the connection
if it fails for external causes.

The default value is 120 seconds.

The retry interval is a global property that controls the configured listeners. It marks the
frequency in seconds in which Service Manager attempts to reconnect to a broker if the
connection is lost or cannot be established.

Configuring a Sonic Listener Using TCP or HTTP

The Transport Control Protocol (TCP) is a connection-oriented protocol that establishes a
connection with another host before it sends data. Before a connection is started between two
hosts, control messages called a handshake are sent out to initiate the connection. TCP is the
default protocol of a Sonic broker installation. Client applications that are Internet-enabled
generally use TCP/IP protocols.

Hypertext Transfer Protocol (HTTP), the underlying protocol used by the World Wide Web,
defines how messages are formatted and transmitted and the actions web servers and
browsers must take in response to various commands.

HTTP operates over TCP connections. After a successful connection, the client transmits a
request message to the server, which returns a reply message.

By server design or by company security policy, proxy servers and firewalls frequently allow only
HTTP-based traffic to pass through. You can establish a direct connection to a Sonic broker
using HTTP tunneling as the protocol. However, because the HTTP tunneling protocol is
significantly slower than TCP or SSL, this option is recommended only when TCP and SSL
protocols are not available.

You require JAR files supplied by Sonic to emit messages to a Sonic message queue.

2. Configuring HTTP Components

HTTP Solutions Development Guide 51

Sonic Listener Properties for TCP or HTTP

The following table lists and describes the Sonic listener properties for TCP or HTTP. For
instructions on creating a listener, see Configuring Listeners on page 153.

Property Name Property Description

Form of Input TOPIC

Is for a TopicSession in the Publish and Subscribe domain.

QUEUE

Is for a QueueSession in the PTP domain.

Receiver Name
(required)

The name of the queue on which input documents will be received
for processing by Service Manager.

Default Output
Form

The topic or queue target.

Standard Reply To The queue or topic to which the system writes response messages.
The property may be overwritten by the configuration properties.

Broker URL
(required)

The URL (address) used by the listener to connect to the Sonic
broker. The format of the URL is Protocol://host:port. If Service
Manager is listening on a Sonic broker configured to listen on TCP,
the format of the URL is tcp://host:port. The default TCP port on
which Sonic listens is 2506. This value is configured in the Sonic
broker.ini file. When Service Manager listens to Sonic, the URL is in
the form of http://host:port where the HTTP port is defined in the
Sonic broker.ini file.

The Sonic listener supports failover if unable to reach a particular
broker. You must provide a comma-separated list of broker URLs.
The client attempts to connect to brokers in the list, for example,
tcp://host:port, tcp://host:port.

Pending Queue If system resources are down or temporarily unavailable, requests
that cannot be completed can be placed into the pending system for
later execution. When listening on a TOPIC, the iWay adapter uses a
Sonic queue for pending.

Sonic Message Queuing

52

Property Name Property Description

Form of
Acknowledgment

Acknowledgment mode support: the session acknowledgment mode
is either Transactional (to send and receive a series of messages
and then explicitly commit or roll back the group) or in one of the
following acknowledgment modes:

Client Provides - An explicit acknowledge on a message
acknowledges the receipt of all messages that were produced and
consumed by the session that gives the acknowledgment. When a
session is forced to recover, it restarts with its first unacknowledged
message.

Duplicates Permitted - The session lazily acknowledges the delivery
of messages to consumers, possibly allowing some duplicate
messages after a system outage.

Auto Acknowledge - The session automatically acknowledges the
client receipt of a message by successfully returning from a call to
receive (synchronous mode) or when the session message listener
successfully returns (asynchronous mode). The last message can be
delivered again.

Send Persistently The support for persistent and non-persistent messages. In the
event of a network or system failure, the persistent option prevents
messages from being lost.

In the event of a broker or Service Manager failure, non-persistent
messages are volatile. Persistent messages are saved to disk.

2. Configuring HTTP Components

HTTP Solutions Development Guide 53

Property Name Property Description

Durable Topic
Subscriber

The support for durable topic subscribers. In Publish and Subscribe
messaging, messages are not stored for later delivery unless the
client establishes a subscription name that is associated with its
user identity on the message broker.

False (Non-Durable Subscribers) - A client uses a topic subscriber to
receive messages that were published to a topic. A regular topic
subscription is not durable. Messages are delivered when active but
never retained.

True (Durable Subscribers) - If a client must receive all messages
published on a topic including those published while the subscriber
is inactive, it uses a durable TopicSubscriber.

The message broker retains a record of this durable subscription
and ensures that all messages from the topic publishers are
retained until they are either acknowledged by this durable
subscriber or expire. Sessions with durable subscribers must always
provide the same client identifier. In addition, each client must
specify a name that uniquely identifies (within the client identifier)
each durable subscription it creates. Within a session, durable topic
subscribers must be uniquely named.

Message Priority The Sonic broker attempts to deliver messages with a higher priority
ahead of messages with lower values. Priority is suggested to the
JMSQ provider and can only order the delivery of undelivered
messages. JMSQ defines ten levels of message priority with values
0 through 9, where 0 is the lowest, and 9 is the highest. Zero
through four are considered normal settings and five through nine,
expedited. The Message Priority field is the default priority value set
in the JMSQ header.

Set Reply
Correlation Id

If set to a value, that value is used as the correlation ID of the
response.

Load Balance If set to true, the load balancing option is enabled on the Service
Manager listener. With load balancing enabled, a connect request
can be redirected to another broker within a Sonic cluster, if load
balancing was not disabled on the broker side.

Sonic Message Queuing

54

Property Name Property Description

Duplicates Detect You can configure the broker to commit transactions to index a
universally unique, 64-character identifier (UUID) supplied by the
sender. The sender then uses a commit method that commits the
transacted messages, unless a previously sent transaction identifier
is still unexpired. Otherwise, the method forces a rollback of the
transaction.

For more information, see the INDEXED_TXN_ server properties in
the installation section of the Sonic MQ V5 Configuration and
Administration Guide.

User A valid user ID defined to Sonic. You can use the Sonic Explorer
Users option (found under message broker) to display users defined
to Sonic. The user ID is required only when Sonic security is
enabled.

Password A valid user ID and password combination defined to Sonic. Use the
Sonic Explorer Users option (found under message broker) to display
users defined to Sonic.

Client ID The broker retains messages for durable subscriber, using the
userName and clientID of the connection plus the subscriptionName
to index the subscription. The Client ID is a unique identifier that can
prevent conflicts for durable subscriptions when many clients use
the same user name and the same subscription name.

Connection ID Identifies the connection. When combined with Client ID, must be
unique at the broker.

Subscription Name A subscription name always includes the name of the topic. To
distinguish different message selectors used in subscriptions, you
can include a string that helps identify the message selector. For
example, you can use a subscription named Atlas_priority4 for a
subscription to the Atlas topic with selector JMSPriority=4. This
construct enables you to create many durable subscriptions that are
easily understood and nonconflicting.

2. Configuring HTTP Components

HTTP Solutions Development Guide 55

Property Name Property Description

Message Selector In PTP domains, all message selection takes place on the server.
However, in Pub/Sub domains, all messages for a subscribed topic
are delivered by default to the subscriber, and then, the filter is
applied to decide what is consumed. Message selectors can consist
of:

Literals and indefinites

Operators and expressions

Comparison tests

Parentheses

White space

Output Message
Type

Select Bytes, Text, or Dynamic.

Prefetch Count Only applies to queue messages. Does not apply to topic messages.
Prefetch count is the number of messages buffered locally. A worker
(thread) prefetches messages to this limit. Injudicious use of this
configuration can result in unbalanced thread use and appear to
cause worker starvation. For example, if a prefetch count is set to 3
and two workers are defined and three messages are in the queue,
the first worker prefetches all three messages. The second worker
finds the queue empty and awaits the arrival of yet another
message. Thus, it appears that the first worker processes three
messages while the second does no work. To achieve balance, set
the prefetch count to 1 and the prefetch threshold to 0. Use of
prefetch count and threshold can result in improved performance
through overall reduction in network traffic to the broker.

Prefetch Threshold Fewer messages cause prefetch to be initiated. For additional
information, see the description of the Prefetch Count property.

Duration The maximum time a document can remain in the retry pending
queue.

Retry The interval between retrying pending requests.

Sonic Message Queuing

56

Property Name Property Description

Preserve
Undelivered

The preserve messages that are not retrieved to a dead letter
queue.

Notify Undelivered Notify the broker administrator if undelivered messages are
preserved.

Sequential Determines the order in which the connection to the brokers is made
when multiple brokers are listed. If this property is enabled,
connection occurs sequentially. If disabled, connection occurs in a
random manner.

Fault Tolerant Determines whether the listener is connecting to the Sonic Broker as
a fault tolerant client or not. The default value is false, that is, the
listener is not connecting as a fault tolerant client.

This feature is supported only when the Sonic Broker is installed
with a Sonic Fault Tolerance license code.

Reconnect Fault
Timeout

Sets the interval, in seconds, of how long to wait before attempting
to reconnect to the broker if the session is lost.

Initial Connect
Timeout

Sets the interval, in seconds, of how long to wait before attempting
to connect to the broker, or to another broker on the list, if
connection fails when the listener is first started.

Whitespace
Normalization

Specifies how the parser treats whitespace in Element content.
Choose preserve to turn off all normalization as prescribed by the
XML Specification. Choose condense to remove extra whitespace in
pretty printed documents and for compatibility with earlier versions.

Accepts non-XML
(flat) only

If set to true, then non-XML input is expected. If enabled, XML input
still can be passed to the listener. Preparsers do not run.

Optimize Favoring Use this option to customize listener performance. For smaller
transactions, select performance. For large payloads that could
monopolize the amount of memory used by Service Manager, select
memory.

2. Configuring HTTP Components

HTTP Solutions Development Guide 57

Property Name Property Description

Multithreading The number of worker threads. (Equivalent to the number of requests
that Service Manager can handle in parallel.) Setting this to a value
of greater than 1 enables the listener to handle a second request
while an earlier request is being processed. The total throughput of a
system can depend on the number of threads operating.

Default: 1 Max value: 99

Execution Time
Limit

The maximum time a request can take to complete. A request that
takes longer to complete terminates. Prevents runaway requests.

Note: The kill interval property checks for runaway requests that
have exceeded their maximum life. Default is 60 (seconds). Duration
is xxhxxmxxs, for example, 1h2m3s = one hour, two minutes, and
three seconds.

Polling Interval Indicates frequency in seconds that the listener returns control to
Service Manager to determine if a stop listener was requested.
Listener is constantly connected to the queue to retrieve incoming
messages. The default value is 2.0.

Default Java File
Encoding

The default encoding if incoming message is not self-declaring (that
is, XML).

Agent Precedence Sets the order by which Service Manager selects agents. Service
Manager selects the agent(s) to process the document by searching
through the configuration dictionary. Usually, it looks for a document
entry in the configuration and when a match is found, the agent
specified in that document entry is selected. If a matching document
entry is not found or no agent is specified, the engine looks in the
input protocol configuration (listener). To have the processing agent
taken directly from the listener (thus ignoring the document entry),
use <listener> overrides <document>.

<document> overrides <listener> is the default value.

Always reply to
listener default

If set to true, the default reply definition is used in addition to
defined destinations.

Sonic Message Queuing

58

Property Name Property Description

Error Documents
treated normally

If set to true, error documents are processed by configured
preemitters.

Listener is
Transaction
Manager

If set to true, agents run in a local transaction. Agents can roll back
uncompleted transactions.

Record in Activity
Log(s)

If set to true, activity on this channel will be recorded in the activity
logs, else the activity will not be recorded.

Note: The Sonic listener supports streaming. Streaming is used for large documents or
documents for which the application needs to split the input into sections under the same
transaction. For more information on streaming and configuring streaming preparsers, see the
iWay Service Manager Component and Functional Language Reference Guide.

Sonic TCP Listener Configuration Example

You would like to listen on a Sonic MQ queue named SampleQ2, hosted by a broker on
machine iwxfoc, which listens on default Sonic MQ port 2056. You would also like to output
messages to the queue SampleQ4 on the same broker. The broker does not have security
enabled.

To configure the components needed to support this scenario, you need to configure the
following in Service Manager:

Note: For information on the steps required to accomplish these tasks, see the iWay Service
Manager User’s Guide.

Copy the Default Channel provided with SM installation and rename it as
sonic_lsn_channel.

Create a listener of type Sonic, and call it jsm_sm_lsn_sonic. The listener will connect to
Sonic MQ on iwxfoc machine (tcp://iwxfoc:2506). It will get messages from SampleQ2
queue and output them into a queue named SampleQ4 at the same broker.

Add the listener to an Inlet.

Add the Inlet to the Channel.

The other parts of the channel will stay the same as default channel. After building and
deploying the sonic_lsn_channel, you can see messages being transferred from SampleQ2 to
SampleQ4 on the iwxfoc Sonic MQ broker.

2. Configuring HTTP Components

HTTP Solutions Development Guide 59

Specify the listener values as follows. Leave default values for all other fields.

Type: Sonic

Form of Input: queue

Receiver Name: SampleQ2

Standard Reply To: SampleQ4

Broker URL: tcp://iwxfoc :2506

The following image shows the Sonic listener configuration pane.

Configuring a Sonic Listener Using SSL

Secure Sockets Layer (SSL) provides authentication and encryption techniques that require the
broker to set the appropriate properties and certificates on a security-enabled database. The
client also must have the appropriate libraries and properties to call an SSL connection. A
complete implementation sample is provided in the Protocols section of the Sonic MQ V5
Configuration and Administration Guide.

Sonic Message Queuing

60

Note: You must have SSL libraries installed from RSA with the appropriate Sonic license or
from supported third-parties such as Institute for Applied Information Processing and
Communications (IAIK) or Java Secure Socket Extension (JSSE).

The manner in which you configure SSL for your application depends on whether you
implement client authentication with a user name and password or with a client certificate.

When the Sonic broker is configured with the SSL property
SSL_CLIENT_AUTHENTICATION=FALSE in the broker.ini configuration file, no client certificate is
required, and the client is authenticated with a user name and password. The client reads the
user name and password and then passes them to the broker.

The following diagram shows Step 1, in which the broker sends the certificate to the client to
authenticate itself; Step 2, in which the client presents its certificate information to
authenticate the connection; and Step 3, in which an SSL connection is established.

You must add JAR files, supplied by Sonic, to emit messages to a Sonic message queue using
the SSL protocol. For more information, see Registering Sonic Client JAR Files on page 49.

Setting Java System Properties for Sonic SSL

For instructions on setting Java system properties, see the iWay Service Manager Protocol
Guide.

In the Property field, type SSL_CA_CERTIFICATES_DIR. In the Value field, type the location of
the CA certificate to be used by Service Manager.

The default certificate shipped with the Sonic product is located in:

2. Configuring HTTP Components

HTTP Solutions Development Guide 61

%SONIC_HOME%\certs\ca

Sonic Listener Properties for SSL

The following table lists and describes the Sonic listener properties for SSL. For instructions
on creating a listener, see Configuring Listeners on page 153.

Property Name Property Description

Form of Input TOPIC

Is for a TopicSession in the Publish and Subscribe domain.

QUEUE

Is for a QueueSession in the PTP domain.

Receiver Name
(required)

The name of the queue on which input documents will be received
for processing by Service Manager.

Default Output
Form

The topic or queue target.

Standard Reply To The queue or topic to which the system writes response messages.
The property may be overridden by the configuration properties.

Broker URL
(required)

The URL (address) used by the listener to connect to the Sonic
broker. The format of the URL is Protocol://host:port. If Service
Manager is listening on a Sonic broker configured to listen on SSL,
the URL would be in the format of ssl://host:port. This value is
configured in the Sonic broker.ini file. The Sonic listener supports
failover if unable to reach a particular broker. You must provide a
comma-separated list of broker URLs. The client attempts to connect
to brokers in this list, for example, ssl://host:port.

Pending Queue Requests that cannot be completed because system resources are
down or temporarily unavailable can be placed into the pending
system for later execution. When listening on a TOPIC, the adapter
uses a Sonic queue for pending.

Sonic Message Queuing

62

Property Name Property Description

Form of
Acknowledgment

Acknowledgment mode support: The session acknowledgment mode
is either Transactional (to send and receive a series of messages
and then explicitly commit or rollback the group) or one of the
available acknowledgment modes.

Client Provides - An explicit acknowledge on a message
acknowledges the receipt of all messages that are produced and
consumed by the session that gives the acknowledgment. When a
session is forced to recover, it restarts with its first unacknowledged
message.

Duplicates Permitted - The session lazily acknowledges the delivery
of messages to consumers, possibly allowing some duplicate
messages after a system outage.

Auto Acknowledge - The session automatically acknowledges the
client receipt of a message by successfully returning from a call to
receive it (synchronous mode) or when the session message listener
successfully returns the receipt (asynchronous mode). The last
message can be delivered again.

Send Persistently Support for persistent and non-persistent messages. In the event of
a network or system failure, the persistent option prevents
messages from being lost.

In the event of a broker or iWay Service Manager failure, non-
persistent messages are volatile. Persistent messages are saved to
disk.

2. Configuring HTTP Components

HTTP Solutions Development Guide 63

Property Name Property Description

Durable Topic
Subscriber

Support for durable topic subscribers. In Publish and Subscribe
messaging, messages are not stored for later delivery unless the
client establishes a subscription name that is associated with its
user identity on the message broker.

False (Non-durable subscribers) - A client uses a topic subscriber to
receive messages that have been published to a topic. A regular
topic subscription is not durable. Messages are delivered when
active but never retained.

True (Durable subscribers) - If a client must receive all the messages
published on a topic including those published while the subscriber
is inactive, it uses a durable TopicSubscriber.

The message broker retains a record of this durable subscription
and ensures that all messages from the topic publishers are
retained until they are either acknowledged by this durable
subscriber or expire. Sessions with durable subscribers must always
provide the same client identifier. In addition, each client must
specify a name that uniquely identifies (within the client identifier)
each durable subscription it creates. Within a session, durable topic
subscribers must be uniquely named.

Message Priority The Sonic broker attempts to deliver messages with a higher priority
ahead of messages with lower values. Priority is suggested to the
JMSQ provider, and only orders delivery of undelivered messages.
JMSQ defines ten levels of message priority with values 0 through 9,
where 0 is the lowest and 9 is the highest. Zero through four are
considered normal settings and five through nine, expedited. The
Message Priority field is the default priority value set in the JMSQ
header.

Set Reply
Correlation Id

If set to a value, that value used as the correlation ID of the
response.

Load Balance Select true to enable the load balancing option on the Service
Manager listener. With load balancing enabled, a connect request
can be redirected to another broker within a Sonic cluster, if load
balancing was not disabled on the broker side.

Sonic Message Queuing

64

Property Name Property Description

Duplicates Detect You can configure the broker to commit transactions such that they
index a universally unique, 64-character identifier (UUID) supplied by
the sender. The sender then uses a commit method that commits
the transacted messages, unless a previously sent transaction
identifier is still unexpired. Otherwise, the method forces a rollback
of the transaction.

For more information, see the INDEXED_TXN_ server properties in
the installation section of the Sonic MQ V5 Configuration and
Administration Guide.

User A valid user ID defined to Sonic. You can use the Sonic Explorer
Users option (found under message broker) to display users defined
to Sonic. The user ID is required when listening on a Sonic queue
with client authentication.

Password A valid user ID and password combination defined to Sonic. You can
use the Sonic Explorer Users option (found under message broker)
to display users defined to Sonic. The password is required when
listening on a Sonic queue with client authentication.

Client ID The broker retains messages for durable subscriber, using the
userName and clientID of the connection, plus the subscriptionName
to index the subscription. The Client ID is a unique identifier that can
prevent conflicts for durable subscriptions when many clients are
using the same user name and the same subscription name.

Connection ID The identifies the connection. When combined with Client ID, must
be unique at the broker.

Subscription Name A subscription name always includes the name of the topic. To
distinguish different message selectors used in subscriptions, you
can include a string that helps identify the message selector. For
example, you can use a subscription named Atlas_priority4 for a
subscription to the Atlas topic with selector JMSPriority=4. This
construct enables you to create many durable subscriptions that are
easily understood and non-conflicting.

2. Configuring HTTP Components

HTTP Solutions Development Guide 65

Property Name Property Description

Message Selector In PTP domains, all message selection takes place on the server.
However, in Pub/Sub domains, all messages for a subscribed topic
are by default delivered to the subscriber and then, the filter is
applied to decide what is consumed. Message selectors can consist
of:

Literals and indefinites

Operators and expressions

Comparison tests

Parentheses

White space

Output Message
Type

Select Bytes, Text, or Dynamic.

Prefetch Count Only applies to queue messages; does not apply to topic messages.
Prefetch count is the number of messages buffered locally. A worker
(thread) prefetches messages to this limit. Injudicious use of this
configuration can result in unbalanced thread use and appear to
cause worker starvation. For example, if a prefetch count is set to 3
and two workers are defined and three messages are in the queue,
the first worker prefetches all three messages. The second worker
finds the queue empty and awaits the arrival of yet another
message. Thus, it appears that the first worker processes three
messages while the second does no work. To achieve balance, set
the prefetch count to 1 and the prefetch threshold to 0. Use of
prefetch count and threshold can result in improved performance
through overall reduction in network traffic to the broker.

Prefetch Threshold Fewer messages cause prefetch to be initiated. For additional
information, see the description of the Prefetch Count property.

Duration The maximum time that a document can remain in the retry pending
queue.

Retry The interval between retrying pending requests.

Sonic Message Queuing

66

Property Name Property Description

Preserve
Undelivered

The preserve messages that are not retrieved to a dead letter
queue.

Notify Undelivered Notifies the broker administrator if undelivered are preserved.

Sequential Determines the order in which the connection to the brokers is made
when multiple brokers are listed. If this property is enabled,
connection occurs sequentially. If disabled, connection occurs in a
random manner.

Fault Tolerant Determines whether the listener is connecting to the Sonic Broker as
a fault tolerant client or not. The default value is false, that is, the
listener is not connecting as a fault tolerant client.

This feature is supported only when the Sonic Broker is installed
with a Sonic Fault Tolerance license code.

Reconnect Fault
Timeout

Sets the interval, in seconds, of how long to wait before attempting
to reconnect to the broker if the session is lost.

Initial Connect
Timeout

Sets the interval, in seconds, of how long to wait before attempting
to connect to the broker, or to another broker on the list, if
connection fails when the listener is first started.

Whitespace
Normalization

Specifies how the parser treats whitespace in Element content.
Choose preserve to turn off all normalization as prescribed by the
XML Specification. Choose condense to remove extra whitespace in
pretty printed documents and for compatibility with earlier versions.

Accepts non-XML
(flat) only

If set to true, non-XML input is expected. If enabled, XML input still
can be passed to the listener. Preparsers do not run.

Optimize Favoring Use this option to customize listener performance. For smaller
transactions, select performance. For large payloads that could
monopolize the amount of memory used by Service Manager, select
memory.

2. Configuring HTTP Components

HTTP Solutions Development Guide 67

Property Name Property Description

Multithreading The number of worker threads. (Equivalent to the number of requests
that Service Manager can handle in parallel.) Setting this to a value
of greater than 1 enables the listener to handle a second request
while an earlier request is being processed. The total throughput of a
system is affected by the number of threads operating.

Default: 1 Max value: 99

Execution Time
Limit

The maximum time a request can take to complete. A request that
takes longer to complete terminates. Prevents runaway requests.

Note: The kill interval property checks for runaway requests that
exceed their maximum life. Default is 60 (seconds). Duration is
xxhxxmxxs, for example, 1h2m3s = one hour, two minutes, and
three seconds.

Polling Interval Indicates frequency in seconds that the listener returns control to
Service Manager to determine if a stop listener was requested. The
listener is constantly connected to the queue to retrieve incoming
messages. The default value is 2.0.

Default Java File
Encoding

The default encoding if incoming message is not self-declaring (that
is, XML).

Agent Precedence Sets the order by which Service Manager selects agents. Service
Manager usually looks for a document entry in the configuration
dictionary and when a match is found, the agent specified in that
document entry is selected. If a matching document entry is not
found or no agent is specified, the engine looks in the input protocol
configuration (listener). To have the processing agent taken directly
from the listener (thus ignoring the document entry), use <listener>
overrides <document>.

<document> overrides <listener> is the default value.

Always reply to
listener default

If set to true, the default reply definition is used in addition to
defined destinations.

Error Documents
treated normally

If set to true, error documents are processed by configured
preemitters.

Sonic Message Queuing

68

Property Name Property Description

Listener is
Transaction
Manager

If set to true, agents run in a local transaction. Agents can roll back
uncompleted transactions.

Record in Activity
Log(s)

If set to true, activity on this channel will be recorded in the activity
logs, else the activity will not be recorded.

Note: The Sonic listener supports streaming. Streaming is used for large documents or
documents for which the application needs to split the input into sections under the same
transaction. For more information on streaming and configuring streaming preparsers, see the
iWay Service Manager Component and Functional Language Reference Guide.

Reference: Sonic Listener Special Registers

The following table lists and describes the special registers (SREGs) available on the Sonic
listener.

Name Level Type Description

correlid Document String The correlation ID.

destination Document String The default destination for reply (from message).

iwayconfig System String The current active configuration name.

msgid Document String The message ID.

msgsize Document Integer The physical length of the message payload.

name System String The assigned name of the master (listener).

priority Document String The priority of this message.

protocol System String The protocol on which this message was received.

source Document String The queue or topic on which message was received.

tid Document String Unique transaction ID.

2. Configuring HTTP Components

HTTP Solutions Development Guide 69

Configuring a Sonic Listener Using SSL Client Certificate

When you configure the Sonic broker with the SSL property
SSL_CLIENT_AUTHENTICATION=TRUE, you can achieve authentication by exchanging digital
certificates between Service Manager and the Sonic broker. In addition to this mutual
authentication, Service Manager can present a user name and password to the broker at run
time (optional).

The following diagram shows Step 1, in which the broker sends the certificate to the client to
authenticate itself; Step 2, in which the client presents its certificate information to
authenticate the connection; and Step 3, in which an SSL connection is established.

JAR files supplied by Sonic are required to emit messages to a Sonic message queue using
the SSL protocol. For more information, see Registering Sonic Client JAR Files on page 49.

Reference: JVM Options for SSL With Certificates

The following table lists and describes the properties required to configure the appropriate
environment for communication to Sonic using SSL with certificates.

For instructions on setting Java system properties, see the iWay Service Manager Protocol
Guide. Complete the Property and Value fields as described here.

Sonic Message Queuing

70

Property Description

SSL_CA_CERTIFICATES_DIR
SSL_CA_CERTIFICATES_DIR={certs/ca|path}
SSL_CA_CERTIFICATES_DIR_n={certs/ca|path}

Specifies the location of the
Certificate Authority (CA) certificate.
The path must be fully qualified or
relative to the Service Manager
installation directory.

The default directory is certs/ca.

SSL_CERTIFICATE_CHAIN
SSL_CERTIFICATE_CHAIN={certs/server.p7c|
path}
SSL_CERTIFICATE_CHAIN_n={certs/
server.p7c|path}

Specifies the location of the file
containing the client keystore
certificate chain for SSL. The path
must be fully qualified or relative to
the Service Manager installation
directory.

The default directory is certs/
server.p7c.

SSL_CERTIFICATE_CHAIN_FORM
SSL_CERTIFICATE_CHAIN_FORM={LIST|PKCS12|
PKCS7}
SSL_CERTIFICATE_CHAIN_FORM_n={LIST|
PKCS12|PKCS7}

Specifies the format of the file
containing the certificate chain.

PKCS7 is the default value, a
comma-delimited list of path names
that point to files containing each
individual certificate in the chain.

SSL_PRIVATE_KEY
SSL_PRIVATE_KEY={serverKey.pkcs8|path}
SSL_PRIVATE_KEY_n={serverKey.pkcs8|path}

Provides the location of the file
containing the client encrypted
private key for SSL. This path must
be fully qualified or relative to the
Service Manager installation
directory.

The default value is
serverKey.pkcs8.

2. Configuring HTTP Components

HTTP Solutions Development Guide 71

Property Description

SSL_PRIVATE_KEY_PASSWORD
SSL_PRIVATE_KEY_PASSWORD={password|
password}
SSL_PRIVATE_KEY_PASSWORD_n={password|
password}

Provides the password that encrypts
the private key for SSL.

The default value is password.

Sonic Listener Properties for SSL With Client Certificate

The following table lists and describes the Sonic listener properties for SSL with client
certificate. For instructions on creating a listener, see Configuring Listeners on page 153.

Property Name Property Description

Form of Input TOPIC

Is for a TopicSession in the Publish and Subscribe domain.

QUEUE

Is for a QueueSession in the PTP domain.

Receiver Name
(required)

The name of the queue on which input documents will be received
for processing by Service Manager.

Default Output Form The topic or queue target.

Standard Reply To The queue or topic to which the system writes response messages.
The property may be overwritten by the configuration properties.

Sonic Message Queuing

72

Property Name Property Description

Broker URL
(required)

The URL (address) used by the listener to connect to the Sonic
broker. The format of the URL is Protocol://host:port. If Service
Manager is listening on a Sonic broker configured to listen on TCP,
the format of the URL is tcp://host:port. The default TCP port on
which Sonic listens is 2506. This value is configured in the Sonic
broker.ini file. When iWay Service Manager listens to Sonic, the URL
is in the form of http://host:port where the HTTP port is defined in
the Sonic broker.ini file.

The Sonic listener supports failover if unable to reach a particular
broker. You must provide a comma-separated list of broker URLs.
The client attempts to connect to brokers in this list, for example,
tcp://host:port, tcp://host:port.

Pending Queue If the system resources are down or temporarily unavailable,
requests that cannot be completed can be placed into the pending
system for later execution. When listening on a TOPIC, the iWay
adapter uses a Sonic queue for pending.

Form of
Acknowledgment

Acknowledgment mode support: The session acknowledgment mode
is either Transacted (to send and receive a series of messages and
then explicitly commit or roll back the group) or in one of the
available acknowledgment modes.

Client Acknowledge - An explicit acknowledge on a message
acknowledges the receipt of all messages that are produced and
consumed by the session that gives the acknowledgment. When a
session is forced to recover, it restarts with its first
unacknowledged message.

Duplicates OK Acknowledge - The session lazily acknowledges the
delivery of messages to consumers, possibly allowing some
duplicate messages after a system outage.

Auto Acknowledge - The session automatically acknowledges the
client receipt of a message by successfully returning from a call to
receive (synchronous mode) or when the session message listener
successfully returns (asynchronous mode). The last message can
be delivered again.

2. Configuring HTTP Components

HTTP Solutions Development Guide 73

Property Name Property Description

Send Persistently The support for persistent and non-persistent messages. The
persistent option prevents messages from being lost in the event of
a network or system failure.

In the event of a broker or Service Manager failure, non-persistent
messages are volatile. Persistent messages are saved to disk.

Durable Topic
Subscriber

Support for durable topic subscribers.

In Publish and Subscribe messaging, messages are not stored for
later delivery unless the client establishes a subscription name that
is associated with its user identity on the message broker.

False (Non-Durable Subscribers). A client uses a topic subscriber to
receive messages that are published to a topic. A regular topic
subscription is not durable. Messages are delivered when active but
never retained.

True (Durable Subscribers). If a client must receive all the
messages published on a topic including those published while the
subscriber is inactive, it uses a durable TopicSubscriber.

The message broker retains a record of this durable subscription
and ensures that all messages from the topic publishers are
retained until they are either acknowledged by this durable
subscriber or expire. Sessions with durable subscribers must
always provide the same client identifier. In addition, each client
must specify a name that uniquely identifies (within the client
identifier) each durable subscription it creates. Within a session,
durable topic subscribers must be uniquely named.

Message Priority The Sonic broker attempts to deliver messages with a higher priority
ahead of messages with lower values. Priority is suggested to the
JMSQ provider and can only order the delivery of undelivered
messages. JMSQ defines ten levels of message priority with values
0 through 9, where 0 is the lowest and 9 is the highest. Zero
through four are considered normal settings and five through nine,
expedited. The Message Priority field is the default priority value set
in the JMSQ header.

Sonic Message Queuing

74

Property Name Property Description

Set Reply
Correlation Id

If set to a value, that value is used as the correlation ID of the
response.

Load Balance Select the load balancing option on the Service Manager listener for
load balancing. With load balancing enabled, a connect request can
be redirected to another broker within a Sonic cluster, if load
balancing was not disabled on the broker side.

Duplicates Detect You can configure the broker to commit transactions to index a
universally unique, 64-character identifier (UUID) supplied by the
sender. The sender then uses a commit method that commits the
transacted messages, unless a previously sent transaction
identifier is still unexpired. Otherwise, the method forces a rollback
of the transaction.

For more information, see the INDEXED_TXN_ server properties in
the installation section of the Sonic MQ V5 Configuration and
Administration Guide.

User A valid user ID defined to Sonic. You can use the Sonic Explorer
Users option (under message broker) to display users defined to
Sonic. User ID only required if Sonic security is enabled.

Password A valid user ID and password combination defined to Sonic. Use the
Sonic Explorer Users option (under message broker) to display
users defined to Sonic.

Client ID The broker retains messages for durable subscriber, using the
userName and clientID of the connection plus the subscriptionName
to index the subscription. The Client ID is a unique identifier that
can prevent conflicts for durable subscriptions when many clients
are using the same user name and the same subscription name.

Connection ID Identifies the connection. When combined with Client ID, must be
unique at the broker.

2. Configuring HTTP Components

HTTP Solutions Development Guide 75

Property Name Property Description

Subscription Name A subscription name always includes the name of the topic. To
distinguish between different message selectors used in
subscriptions, you can include a string that helps identify the
message selector. For example, you can use a subscription named
Atlas_priority4 for a subscription to the Atlas topic with selector
JMSPriority=4. This construct lets you create many durable
subscriptions that are easily understood and nonconflicting.

Message Selector In PTP domains, all message selection takes place on the server.
However, in Pub/Sub domains, all messages for a subscribed topic
are delivered by default to the subscriber, and then, the filter is
applied to decide what is consumed. Message selectors can
consist of:

Literals and indefinites

Operators and expressions

Comparison tests

Parentheses

White space

Output Message
Type

Select Bytes, Text Message, or Dynamic.

Sonic Message Queuing

76

Property Name Property Description

Prefetch Count Only applies to queue messages; does not apply to topic
messages. Prefetch count is the number of messages buffered
locally. Any worker (thread) prefetches messages to this limit.
Injudicious use of this configuration can result in unbalanced thread
use and appear to cause worker starvation. For example, if a
prefetch count is set to 3 and two workers are defined and three
messages are in the queue, the first worker prefetches all three
messages. The second worker finds the queue empty and awaits
the arrival of yet another message. Thus, it appears that the first
worker processes three messages while the second does no work.
To achieve balance, set the prefetch count to 1 and the prefetch
threshold to 0. Use of prefetch count and threshold can result in
improved performance through overall reduction in network traffic to
the broker.

Prefetch Threshold Fewer messages cause prefetch to be initiated. For additional
information, see the Prefetch Count property.

Duration The maximum time that a document can remain in the retry pending
queue.

Retry The interval between retrying pending requests.

Preserve
Undelivered

Preserves messages that are not retrieved to a dead letter queue.

Notify Undelivered Notifies the broker administrator if undelivered are preserved.

Sequential Determines the order in which the connection to the brokers is
made when multiple brokers are listed. If this property is enabled,
connection occurs sequentially. If disabled, connection occurs in a
random manner.

Fault Tolerant Determines whether the listener is connecting to the Sonic Broker
as a fault tolerant client or not. The default value is false, that is,
the listener is not connecting as a fault tolerant client.

This feature is supported only when the Sonic Broker is installed
with a Sonic Fault Tolerance license code.

2. Configuring HTTP Components

HTTP Solutions Development Guide 77

Property Name Property Description

Reconnect Fault
Timeout

Sets the interval, in seconds, of how long to wait before attempting
to reconnect to the broker if the session is lost.

Initial Connect
Timeout

Sets the interval, in seconds, of how long to wait before attempting
to connect to the broker, or to another broker on the list, if
connection fails when the listener is first started.

Accepts non-XML
(flat) only

The select if non-XML input is expected. If enabled, XML input still
can be passed to the listener. Preparsers do not run.

Optimize Favoring Use this option to customize listener performance. For smaller
transactions, select performance. For large payloads that could
monopolize the amount of memory used by Service Manager, select
memory.

Multithreading The number of worker threads. (Equivalent to the number of
requests that Service Manager can handle in parallel.) Setting this
to a value of greater than 1 enables the listener to handle a second
request while an earlier request is being processed. The total
throughput of a system can depend on the number of threads
operating. Default: 1 Max value: 99

Execution Time Limit The maximum time a request can take to complete. A request that
takes longer to complete terminates. Prevents runaway requests.

Note: The kill interval property checks for runaway requests that
exceed their maximum life. Default is 60 (seconds). Duration is
xxhxxmxxs, for example, 1h2m3s = one hour, two minutes, and
three seconds.

Polling Interval Indicates frequency in seconds that the listener returns control to
Service Manager to determine if a stop listener was requested. The
listener is constantly connected to the queue to retrieve incoming
messages. The default value is 2.0.

Default Java File
Encoding

The default encoding if incoming message is not self-declaring (that
is, XML).

Sonic Message Queuing

78

Property Name Property Description

Agent Precedence Sets the order by which Service Manager selects agents. Service
Manager selects the agent or agents to process the document by
searching through the configuration dictionary. Usually, it looks for a
document entry in the configuration and when a match is found, the
agent specified in that document entry is selected. If a matching
document entry is not found or no agent is specified, the engine
looks in the input protocol configuration (listener). To have the
processing agent taken directly from the listener (thus ignoring the
document entry), use <listener> overrides <document>.

<document> overrides <listener> is the default value.

Always reply to
listener default

If set to true, the default reply definition is used in addition to
defined destinations.

Error Documents
treated normally

If set to true, error documents are processed by configured
preemitters.

Listener is
Transaction
Manager

If set to true, agents run in a local transaction. Agents can roll back
uncompleted transactions.

Initialization Agent The name (parameters) of the processing module called at listener
start up.

Note: The Sonic listener supports streaming. Streaming is used for large documents or
documents for which the application needs to split the input into sections under the same
transaction. For more information on streaming and configuring streaming preparsers, see the
iWay Service Manager Component and Functional Language Reference Guide.

Configuring a Sonic Listener Using HTTPS

To configure the Sonic listener for SSL (the user ID or certificate depending on how the broker
is configured), modify the destination address to specify an HTTPS URL.

The format of the destination property is queue@url. When emitting to Sonic queues over
HTTPS, the format is queue@https://host:port. The HTTP port is configured in the Sonic
broker.ini file. To send a message to iWay.Reply hosted on a Sonic broker on your localhost,
the URL is iWay.Reply@https://localhost:2507.

2. Configuring HTTP Components

HTTP Solutions Development Guide 79

For instructions on creating a listener, see Configuring Listeners on page 153.

iWay Adapter for Sonic Emitter Functionality

To route an output document or error message to a protocol other than that of the listener, you
must configure an emitter. An emitter sends documents outbound either on the same protocol
that the document arrived on or across protocols. You can return a processed document to
one or more alternate destinations. By default, an output document is returned using the same
protocol on which it was received. For example, an application may send input over TCP but
want to route the output to a Sonic queue. In this case, you would configure an emitter.

Note: Configuring a Sonic emitter is not required if the emitter protocol used in the outlet of
the channel is the same as the listener protocol used in the inlet of the channel. For more
information on inlets and outlets, see the iWay Service Manager User’s Guide.

Sonic supports standard Internet protocols including Secure Socket Layer (SSL), HTTP,
encryption, TCP, and security. Service Manager can send responses to Sonic queues through
TCP, SSL, HTTP, and HTTPS protocols. Each protocol requires specific set up. This topic
describes configuration information for each protocol.

Configuring a Sonic Emitter Using TCP or HTTP

The Transport Control Protocol (TCP) is a connection-oriented protocol that establishes a
connection with another host before it sends its data. Before a connection is started between
two hosts, control messages called a handshake are sent to initiate the connection. TCP is the
default protocol of a Sonic broker installation. Client applications that are Internet-enabled
generally use TCP/IP protocols.

Hypertext Transfer Protocol (HTTP), the underlying protocol used by the World Wide Web,
defines how messages are formatted and transmitted, and the actions web servers and
browsers must take in response to various commands.

HTTP operates over TCP connections. After a successful connection, the client transmits a
request message to the server, which sends a reply message back.

By server design or by company security policy, proxy servers and firewalls frequently allow only
HTTP-based traffic to pass through. You can establish a direct connection to a Sonic broker
using HTTP tunneling as the protocol. However, because the HTTP tunneling protocol is
significantly slower than TCP or SSL, this option is only recommended when TCP and SSL
protocols are not available.

To emit messages to Sonic, JAR files supplied by Sonic are required. For more information,
see Registering Sonic Client JAR Files on page 49.

Sonic Message Queuing

80

Sonic Emitter Properties for TCP or HTTP

The following table lists and describes the Sonic emitter properties.

A Sonic message consists of a JMSQ header, body, and user-defined properties.

Property Name Property Description

Destination
(required)

The destination to which the message is delivered. The format of the
destination property is queue@url. When emitting to a Sonic broker
configured to listen over TCP, the format is queue@tcp://host:port.
The default TCP port on which Sonic listens is 2506. This value is
configured in the Sonic broker.ini file. To send a message to
iWay.Reply hosted on a Sonic broker on your localhost, the URL is
iWay.Reply@tcp://localhost:2506.

For HTTP, the URL is in the format queue@http://host:port. The default
HTTP port on which Sonic listens is 2580.

To send a message to iWay.Reply hosted on a Sonic broker on your
localhost, the URL is iWay.Reply@http://localhost:2580

Form of Output TOPIC

Is for a TopicSession in the Publish and Subscribe domain.

QUEUE

Is for a QueueSession in the PTP domain.

User A valid user ID defined to Sonic. You can use the Sonic Explorer Users
option (under the message broker) to display users defined to Sonic.
User ID is only required if Sonic security is enabled.

Password A valid user ID and password combination defined to Sonic. You can
use the Sonic Explorer Users option (under message broker) to display
users defined to Sonic.

Send Persistently Support for persistent and non-persistent messages. In the event of a
network or system failure, the persistent option prevents messages
from being lost.

In the event of a broker or Service Manager failure, non-persistent
messages are volatile. Persistent messages are saved to disk.

2. Configuring HTTP Components

HTTP Solutions Development Guide 81

Property Name Property Description

Load Balance Select true to enable the load balancing option on the Service Manager
listener. With load balancing enabled, a connect request can be
redirected to another broker within a Sonic cluster, if load balancing
was not disabled on the broker side.

Duplicates Detect You can configure the broker to commit transactions that index a
universally unique, 64-character identifier (UUID) supplied by the
sender. The sender then uses a commit method that commits the
transacted messages, unless a previously sent transaction identifier is
still unexpired. Otherwise, the method forces a rollback of the
transaction.

For more information, see the INDEXED_TXN_ server properties in the
Installation section of the Sonic MQ V5 Configuration and Administration
Guide.

Set Reply
Correlation Id

If set to a value, that value is used as the correlation ID of the
response.

Duration The maximum time that a document can remain in the retry pending
queue.

Message Priority The Sonic broker attempts to deliver messages with a higher priority
ahead of messages with lower values. Priority is suggested to the
JMSQ provider and can only order delivery of undelivered messages.
JMSQ defines ten levels of message priority with values 0 through 9,
where 0 is the lowest and 9 is the highest. Zero through four are
considered normal settings and five through nine, expedited. The
Message Priority field is the default priority value set in the JMSQ
header.

Output Message
Type

Select Bytes, Text, or Dynamic.

Preserve
Undelivered

Preserves messages that are not retrieved to a dead letter queue.

Notify
Undelivered

Notifies the broker administrator if undelivered are preserved.

Sonic Message Queuing

82

Property Name Property Description

Sequential Determines the order in which the connection to the brokers is made
when multiple brokers are listed. If this property is enabled, connection
occurs sequentially. If disabled, connection occurs in a random
manner.

Fault Tolerant Determines whether the listener is connecting to the Sonic Broker as a
fault tolerant client or not. The default value is false, that is, the
listener is not connecting as a fault tolerant client.

This feature is supported only when the Sonic Broker is installed with a
Sonic Fault Tolerance license code.

Reconnect Fault
Timeout

Sets the interval, in seconds, of how long to wait before attempting to
reconnect to the broker if the session is lost.

Initial Connect
Timeout

Sets the interval, in seconds, of how long to wait before attempting to
connect to the broker, or to another broker on the list, if connection
fails when the listener is first started.

Sonic Emitter Configuration Example

You would like to read a file from its local file system and place it as a message on iWay.Reply
queue defined at the Sonic broker, which listens on default Sonic MQ port on a machine
named iwxfoc. The broker does not have security enabled.

To configure the components needed to support this scenario, you would need to do the
following in Service Manager:

Note: For information on the steps required to accomplish these tasks, see the iWay Service
Manager User’s Guide.

Copy the default file1 channel that is provided with the iSM installation and rename it to
sonic_emit_channel.

Create an emitter, named sonic_emit, that will place a message obtained from a file
listener on iWay.Reply queue defined at the Sonic broker on iwxfoc.

The sonic_emit_channel will use the default file1 inlet, which is actually a file listener also
named file1. In addition, it will use an outlet that contains the sonic_emit emitter.

Assign the emitter as an outlet of the channel.

2. Configuring HTTP Components

HTTP Solutions Development Guide 83

After building and deploying channel you can see the file dropped into file1 pickup folder being
placed on iWay.Reply queue on iwxfoc Sonic MQ broker.

Specify the emitter properties as follows:

Destination: iWay.Reply@tcp://iwxfoc:2506

Form of Output: Queue

Leave default values for the remaining properties.

The following image shows the Sonic emitter configuration pane.

Sonic Message Queuing

84

Configuring a Sonic Emitter Using SSL

SSL provides authentication and encryption techniques that require that the broker configure
appropriate properties and certificates on a security-enabled database. Also, the client must
have the appropriate libraries and properties to call its side of an SSL connection. A complete
implementation sample is provided in the protocol section of the Sonic MQ V5 Configuration
and Administration Guide. You must have SSL libraries installed from RSA, with the appropriate
Sonic license or from supported third-parties, such as the Institute for Applied Information
Processing and Communications (IAIK) or Java Secure Socket Extension (JSSE).

The manner in which you configure SSL for your application depends on whether you
implement client authentication with a user name and password or with a client certificate.
When the Sonic broker is configured with the SSL property
SSL_CLIENT_AUTHENTICATION=FALSE in the broker.ini configuration file, no client certificate is
required, and the client is authenticated with a user name and password. The client reads the
user name and password, then passes them to the broker.

When the Sonic broker is configured with the SSL property
SSL_CLIENT_AUTHENTICATION=TRUE, authentication is achieved through the exchange of
Digital Certificates between Service Manager and the Sonic broker. In addition to this mutual
authentication, Service Manager can present a user name and password to the broker at run
time (optional).

JAR files supplied by Sonic are required to emit messages to a Sonic message queue using
the SSL protocol. For more information, see Registering Sonic Client JAR Files on page 49.

Reference: JVM Options for SSL With Certificates

The following table lists and describes the properties required to configure the appropriate
environment for communication to Sonic using SSL with certificates. For instructions on
configuring JVM options, see Setting Java System Properties for Sonic SSL on page 61.

Property Description

SSL_CA_CERTIFICATES_DIR
SSL_CA_CERTIFICATES_DIR={certs/ca|path}
SSL_CA_CERTIFICATES_DIR_n={certs/ca|path}

Specifies the location of the
Certificate Authority (CA) certificate.
Path must be fully qualified or
relative to the Service Manager
installation directory.

The default directory is certs/ca.

2. Configuring HTTP Components

HTTP Solutions Development Guide 85

Property Description

SSL_CERTIFICATE_CHAIN
SSL_CERTIFICATE_CHAIN={certs/server.p7c|
path}
SSL_CERTIFICATE_CHAIN_n={certs/server.p7c|
path}

Specifies the location of the file
containing the client keystore
certificate chain for SSL. Path must
be fully qualified or relative to the
Service Manager installation
directory.

The default directory is certs/
server.p7c.

SSL_CERTIFICATE_CHAIN_FORM
SSL_CERTIFICATE_CHAIN_FORM={LIST|PKCS12|
PKCS7}
SSL_CERTIFICATE_CHAIN_FORM_n={LIST|PKCS12|
PKCS7}

Specifies the format of the file
containing the certificate chain.

PKCS7 is the default value, a
comma-delimited list of path names
that point to files containing each
individual certificate in the chain.

SSL_PRIVATE_KEY
SSL_PRIVATE_KEY={serverKey.pkcs8|path}
SSL_PRIVATE_KEY_n={serverKey.pkcs8|path}

Provides the location of the file
containing the client encrypted
private key for SSL. Path must be
fully qualified or relative to the
Service Manager installation
directory.

The default value is
serverKey.pkcs8.

SSL_PRIVATE_KEY_PASSWORD
SSL_PRIVATE_KEY_PASSWORD={password|
password}
SSL_PRIVATE_KEY_PASSWORD_n={password|
password}

Provides the password that
encrypts the private key for SSL.

The default value is password.

Sonic Emitter Properties for SSL With Certificate

The following table lists and describes the Sonic emitter properties for SSL with certificate.

A Sonic message consists of a JMSQ header, body, and user-defined properties.

Sonic Message Queuing

86

HTTPS is similar to HTTP except that data is transmitted over a Secure Socket Layer (SSL)
instead of a normal socket connection. Web servers listen for HTTP requests on one port while
another listens for HTTPS requests.

Property Name Property Description

Destination
(required)

The destination to which the message is delivered. The format of the
destination property is queue@url. When emitting to Sonic queues over
SSL, the format is queue@ssl://host:port. The SSL port is configured
in the Sonic broker.ini file. To send a message to iWay.Reply hosted on
a Sonic broker on your localhost, the URL is iWay.Reply@ssl://
localhost:2507.

Form of Output TOPIC

Is for a TopicSession in the Publish and Subscribe domain.

QUEUE

Is for a QueueSession in the PTP domain.

User You must specify the common name AUTHENTICATED from the
certificate as the user name. The password is not required because
you authenticate the client using the client certificate in this example.
When Service Manager emits to a Sonic queue it can specify a user
name and password to the broker (optional). The broker authenticates
this user name and password if they are specified, but otherwise uses
the information in the client certificate to identify the user.

Password This property is optional and is only required if a user ID is specified.

Send Persistently The support for persistent and non-persistent messages. In the event
of a network or system failure, the persistent option prevents
messages from being lost.

In the event of a broker or Service Manager failure, non-persistent
messages are volatile. Persistent messages are saved to disk.

Load Balance If set to true, then this enables the load balancing option on the
Service Manager listener. With load balancing enabled, a connect
request can be redirected to another broker within a Sonic cluster, if
load balancing was not disabled on the broker side.

2. Configuring HTTP Components

HTTP Solutions Development Guide 87

Property Name Property Description

Duplicates Detect You can configure the broker to commit transactions that index a
universally unique, 64-character identifier (UUID) supplied by the
sender. The sender then uses a commit method that commits the
transacted messages, unless a previously sent transaction identifier is
still unexpired. Otherwise, the method forces a rollback of the
transaction.

For more information, see the INDEXED_TXN_ server properties in the
Installation section of the Sonic MQ V5 Configuration and
Administration Guide.

Set Reply
Correlation Id

If set to a value, that value is used as the correlation ID of the
response.

Duration The maximum time that a document can remain in the retry pending
queue.

Message Priority The Sonic broker attempts to deliver messages with a higher priority
ahead of messages with lower values. Priority is suggested to the
JMSQ provider and can only order delivery of undelivered messages.
JMSQ defines ten levels of message priority with values 0 through 9,
where 0 is the lowest and 9 is the highest. Zero through four are
considered normal settings and five through nine, expedited. The
Message Priority field is the default priority value set in the JMSQ
header.

Output Message
Type

Select Bytes, Text, or Dynamic.

Preserve
Undelivered

Preserves messages that are not retrieved to a dead letter queue.

Notify
Undelivered

Notifies the broker administrator if undelivered are preserved.

Sequential Determines the order in which the connection to the brokers is made
when multiple brokers are listed. If this property is enabled, connection
occurs sequentially. If disabled, connection occurs in a random
manner.

Sonic Message Queuing

88

Property Name Property Description

Fault Tolerant Determines whether the listener is connecting to the Sonic Broker as a
fault tolerant client or not. The default value is false, that is, the
listener is not connecting as a fault tolerant client.

This feature is supported only when the Sonic Broker is installed with a
Sonic Fault Tolerance license code.

Reconnect Fault
Timeout

Sets the interval, in seconds, of how long to wait before attempting to
reconnect to the broker if the session is lost.

Initial Connect
Timeout

Sets the interval, in seconds, of how long to wait before attempting to
connect to the broker, or to another broker on the list, if connection
fails when the listener is first started.

Procedure: How to Configure Sonic Emitter Properties Using HTTPS

To configure Sonic emitter properties using HTTPS:

1. Refer to the values defined in Sonic Emitter Properties for SSL With Certificate on page 86
(user ID or certificate, depending on how the broker is configured) when creating the
emitter.

2. Modify the destination address to specify an HTTPS URL.

The format of the destination property is queue@url. When emitting to Sonic queues over
HTTPS, the format is queue@https://host:port. The HTTP port is configured in the Sonic
broker.ini file. To send a message to iWay.Reply hosted on a Sonic broker on your
localhost, the URL is iWay.Reply@https://localhost:2507.

Sonic Message Queuing Troubleshooting

When using a Sonic listener, if the system cannot find the queue specified, you receive the
following message:

Cannot emit reply to .XDSonicEmit<no dead letter path>: XD[FAIL] in emit
() error create queue.

Using Sonic Explorer, verify that the queue exists, that the name is spelled correctly, and that
the name is in the correct case, as the Sonic listener is case-sensitive.

2. Configuring HTTP Components

HTTP Solutions Development Guide 89

Sonic Message Queuing

90

Chapter3
Configuring iWay HTTP Services
(Adapters)

iWay Service Manager includes many predefined services that you can use to enhance
the business logic of a message. You can add these services to simple or complex
business logic configurations using the iWay Service Manager Administration Console.

For reference purposes, this section lists and describes all the services that are supplied
with iWay Service Manager.

In this chapter:

HTTP Services Configuration Overview

HTTP Services

HTTP Services Configuration Overview

Services are executable Java procedures that are used to handle the business logic of a
message in iWay Service Manager (iSM).

A service is the business layer that incorporates the logic for encapsulating the business
process which interacts with other distributed component services to provide transactions for
business state information. This business layer incorporates the application business logic. In
an iSM environment, business logic consists of one or more services acting on an input
document. Services can be stacked, such that the output of one service is passed to the next
service, or multiple services can be executed in parallel.

Services are written in standard Java language and can make use of any available Java
libraries or services. iWay Software supplies a comprehensive set of predefined services with
iSM that you can use as part of your business logic.

HTTP Services

The following section provides a comprehensive reference for all the predefined HTTP services
that are supplied with iWay Service Manager.

HTTP Solutions Development Guide 91

Service Name

Add Attachment From File Service (com.ibi.agents.XDAddAttachmentFromFileAgent) on page
92

Add Attachment Service (com.ibi.agents.XDAddAttachmentAgent) on page 93

Attachment Operations Service (com.ibi.agents.XDAttachOps) on page 94.

Attachment to Document Service (com.ibi.agents.XDAttachmentToDocAgent) on page 95

Cross-Origin Resource Sharing Service (com.ibi.agents.XDCorsAgent) on page 96

Document to Attachment Service (com.ibi.agents.XDAttachmentFromDocAgent) on page 102

HTTP Cookie Agent Service (com.ibi.agents.XDCookieAgent) on page 103

HTTP Emit Service (com.ibi.agents.XDHTTPEmitAgent) on page 104

HTTP Nonblocking Emit Service (com.ibi.agents.XDNHttpEmitAgent) on page 110

HTTP Read Agent (com.ibi.agents.XDHTTPReadAgent) on page 114

HTTP ReST Routing Service (XDReSTRouteAgent and XDReSTRouteReviewer) on page 117

HTTP Session Invalidator Service (com.ibi.agents.XDHttpSessionInvalidator) on page 38

OAuth 1.0 Authentication Service on page 126

OAuth 2.0 Authentication Service on page 131

WS HTTP Client Agent (com.ibi.agents.XDWSHttpClientAgent) on page 139

Add Attachment From File Service (com.ibi.agents.XDAddAttachmentFromFileAgent)

Syntax:

com.ibi.agents.XDAddAttachmentFromFileAgent

Description:

This service adds a new attachment with the contents determined by the contents of a file.
This service is convenient to provide binary data without first going through a Java character
set encoding. The attachment headers are specified by the special registers of type HDR in the
MIME Header Namespace.

HTTP Services

92

There are also four parameters to specify the most common MIME headers. When used, these
parameters override special registers of the same name. Notice the value of the Content-ID
header is taken as is, so the value must contain the surrounding angle brackets. For example,
a valid value for Content-ID might be <cid>. This service follows the OnSuccess edge upon
successful execution, otherwise it follows OnError.

Parameters:

Parameter Description

Input Data * Path to the file that contains the attachment data.

Content-Type * Value of the Content-Type MIME header.

Content Description Value of the Content-Description MIME header.

Content-Disposition Value of the Content-Disposition MIME header.

Content-ID Value of the Content-ID MIME header.

MIME Header
Namespace

Special register namespace from which additional MIME headers
for the attachment are taken. If no value is specified, no MIME
headers are added beyond those generated by the header-specific
agent parameters.

Add Attachment Service (com.ibi.agents.XDAddAttachmentAgent)

Syntax:

com.ibi.agents.XDAddAttachmentAgent

Description:

This service adds a new attachment with the contents determined by the value of a string
expression. The Java Character Set parameter specifies how the Java characters in the string
are converted to bytes in the body of the attachment. The attachment headers are specified by
the special registers of type HDR in the MIME Header Namespace.

There are also four parameters available to specify the most common MIME headers. When
used, these parameters override special registers of the same name. Notice the value of the
Content-ID header is taken as is, so the value must contain the surrounding angle brackets.
For example, a valid value for Content-ID might be <cid>. This service follows the OnSuccess
edge upon successful execution, otherwise it follows OnError.

3. Configuring iWay HTTP Services (Adapters)

HTTP Solutions Development Guide 93

Parameters:

Parameter Description

Input Data * An expression that returns the contents of the attachment.

Java Character Set The character set used to convert from Java characters to an
array of bytes. If no value is specified, the default character set
will be used.

Content-Type * Value of the Content-Type MIME header.

Content Description Value of the Content-Description MIME header.

Content-Disposition Value of the Content-Disposition MIME header.

Content-ID Value of the Content-ID MIME header.

MIME Header
Namespace

Special register namespace from which additional MIME headers
for the attachment are taken. If no value is specified, no MIME
headers are added beyond those generated by the header-specific
agent parameters.

Attachment Operations Service (com.ibi.agents.XDAttachOps)

Syntax:

com.ibi.agents.XDAttachOps

Description:

This service performs operations on document attachments.

Parameters:

HTTP Services

94

Parameter Description

Operation * Determines which operation should be performed on this
document. Select one of the following options from the drop-down
list:

deleteAll (default)

deleteOne

Attachment Number For operations on a specific attachment, which one, base 0. If a
value is specified, this parameter takes precedence over the
Content-ID parameter.

Content-ID For operations on a specific attachment, the Content-ID of the
attachment. This parameter is ignored if a value for the
Attachment Number parameter is specified.

Although the specification of the Content-ID header requires the
value to be enclosed in angle brackets, you must not use the
angle brackets in this property.

Attachment to Document Service (com.ibi.agents.XDAttachmentToDocAgent)

Syntax:

com.ibi.agents.XDAttachmentToDocAgent

Description:

This service finds an attachment and makes it the body of the document. The attachment can
be selected by index or by Content-ID. If the Attachment Number is specified, it takes
precedence over the Content- ID. The attachment index is base 0. If present, the Content- ID
must NOT contain the surrounding angle brackets.

For example, the value cid for the Content-ID parameter will match an attachment with a
Content-ID header equal to <cid>. The Header Namespace is the special register namespace
where MIME headers for the selected attachment will be stored. The attachment will be stored
as bytes if the Keep Document Flat parameter is enabled. Otherwise, the attachment will be
parsed as XML. If the attachment is itself a Multipart, then the document will contain the parse
of the Main Body Part and the other parts will appear as document attachments.

3. Configuring iWay HTTP Services (Adapters)

HTTP Solutions Development Guide 95

The MIME headers of the Main Body Part will be saved as registers in the Main Body Part
Header Namespace. This is needed to keep them distinct from the Multipart headers. The
Delete Attachment parameter determines what to do with the selected attachment when it is
not a Multipart: the attachment can be preserved or deleted. This service follows OnSuccess
upon successful execution, otherwise, it follows fail_notfound if the attachment cannot be
found, or it follows fail_operation if there is another error.

Parameters:

Parameter Description

Attachment Number The number of the attachment to be retrieved. If specified, it
takes precedence over the Content-ID.

Content-ID The Content-ID of the attachment to be retrieved. This value is
ignored if the attachment number is specified.

Header Namespace Special register namespace where MIME headers for the selected
attachment will be stored.

Main Body Part
Header Namespace

If the current attachment is itself a Multipart, this is the special
register namespace where the MIME headers for the main body
part will be stored.

Keep Document Flat Determines whether to keep the body of the document as an array
of bytes. This parameter is set to false by default.

Delete Attachment Determines whether to delete the attachment after it becomes
the body of the document. This parameter is set to false by
default.

Cross-Origin Resource Sharing Service (com.ibi.agents.XDCorsAgent)

Syntax:

com.ibi.agents.XDCorsAgent

Description:

This service implements the server-side processing of Cross-Origin Resource Sharing (CORS)
as described in http://www.w3.org/TR/cors/.

HTTP Services

96

http://www.w3.org/TR/cors/

Normally, browsers forbid cross-origin requests for security reasons. CORS specifies a
mechanism that allows browsers to make cross-origin requests to resources that opt in to
provide access. CORS defines a set of HTTP headers and the rules to process them. Most
common browsers implement CORS natively. It is expected that the user agent making the
request will be a browser. The CORS service implements the server-side rules to respond to
CORS requests received by an nHTTP listener.

If the request is simple (such as GET, HEAD, or POST), then the user agent (for example, the
browser) can make the request directly. The user agent adds the Origin header to indicate
which site is asking for this resource. The syntax of an origin is:

scheme "://" host [":" port]

The same syntax is used to configure the allowed origins in the service.

If the request is not simple, then the user agent must send a pre-flight request before the
actual request to authorize it. The pre-flight request is an OPTIONS request for the same URL.
The Access-Control-Request-Method header indicates the method of the actual request (for
example, PUT). The optional Access-Control-Request-Headers header indicates which headers
will be used in the actual request. Depending on the response of the pre-flight request, the
user agent can abort or make the actual request following the same rules as a simple request.

The CORS service analyzes the request, and depending on its configuration, will report one of
the following results:

The request is allowed (allowed).

The request is not allowed (notallowed).

The request is not CORS compliant (notcompliant).

In accordance with the specification, the CORS service adds the CORS response headers only
if the request is allowed. The new headers appear as Special Registers (SREGs) in the
Response Header Namespace.

The CORS service sets the output document of an OPTIONS request to a zero-length byte array.
This will return an empty body with Content-Length equal to 0. This is the most appropriate
result, but an application can modify the output document afterwards if necessary. For other
requests, the CORS service returns the input document as the output document. Unlike the
headers, the output document will be the same irrespective of the actual outcome (allowed,
notallowed, or notcompliant).

3. Configuring iWay HTTP Services (Adapters)

HTTP Solutions Development Guide 97

The nHTTP listener must be configured carefully to make CORS processing possible. The
OPTIONS Handling property must be set to event. This instructs the listener to pass the
request to the channel instead of responding directly. The Request Header Namespace and
the Response Header Namespace must not be none, and they must be different from each
other. This makes the request headers available to the CORS service, and allows the response
headers be sent with the response. Of course, the Excluded Headers property should not list
the CORS headers. The HTTP Response Code must be 200 for a CORS pre-flight response. The
Authentication Scheme and the Authentication Realm properties should be considered
carefully. CORS is a mechanism used to relax security. It does not replace the need for user
credentials to protect sensitive data.

Parameters:

The following table describes the parameters for the Cross-Origin Resource Sharing Service.

Parameter Description

Allowed Origins List of origins that are allowed access to the resource. Leave empty or
enter * to allow all origins. The syntax of an origin is:

scheme "://" host [":" port]

This property is used to validate the Origin header in the request and
influences the value of the Access-Control-Allow-Origin header in the
response. The return value of the Access-Control-Allow-Origin header
will be * if the Allowed Origins is * and Supports Credentials is false.

Allowed Methods Comma-separated list of HTTP methods that are supported by the
resource. Leave empty to allow all methods. This is used to validate
the Access-Control-Request-Method header in the pre-flight request
and to initialize the Access-Control-Allow-Methods header in the pre-
flight response.

Supported
Headers

Comma-separated list of HTTP header field names that are supported
by the resource. Leave empty to claim support for all headers. This is
used to validate the Access-Control-Request-Headers header in the
pre-flight request and to initialize the Access-Control-Allow-Headers
header in the pre-flight response.

HTTP Services

98

Parameter Description

Exposed Headers Comma-separated list of HTTP header field names of headers (other
than the simple response headers) that the resource might use and
can be exposed. This is used to initialize the Access-Control-Expose-
Headers header in the response of the actual request.

Supports
Credentials

Indicates whether the resource supports user credentials in the
request. This is used to initialize the Access-Control-Allow-Credentials
header in the response. Notice the return value of the Access-Control-
Allow-Origin header will never be * for a resource that supports
credentials.

Max Age Specifies the amount of seconds the user agent (for example, the
browser) is allowed to cache the result of the pre-flight request. The
value 0 means unbounded. This is used to initialize the Access-
Control-Max-Age header in the response of the pre-flight request.

Edges:

The edges returned are described in the following table.

Edge Description

success The message was successfully analyzed. The cors Special Register
contains the result.

fail_parse An iFL expression could not be evaluated.

fail_operation The service is not executing a request received by an nHTTP listener.

Special Registers:

3. Configuring iWay HTTP Services (Adapters)

HTTP Solutions Development Guide 99

The following table describes the Special Register (SREG) that is assigned upon a successful
execution.

Special
Register

Description

cors The outcome of analyzing the request. This will be one of the following
values:

allowed

notallowed

notcompliant

Note: These values are lowercase and do not contain any spaces.

Examples

The following examples show the result of executing the Cross-Origin Resource Sharing Service
on various HTTP requests. The following table lists the parameter values for the Cross-Origin
Resource Sharing Service that are used by the examples.

Parameter Value

Allowed Origins http://host1.com http://host2.com:8080

Allowed Methods GET,POST

Supported Headers ReqHdr1,ReqHdr2,ReqHdr3

Exposed Headers RespHdr1,RespHdr2

Supports Credentials true

Max Age 30

Example 1

This HTTP request is missing the Origin header. When analyzing this request, the service would
set the cors Special Register to notcompliant and return success. No response headers would
be added. The output document is the input document.

HTTP Services

100

GET /app/page1 HTTP/1.1
Host: example.com

Example 2

Since the Allowed Origins is not empty or *, the origin must match exactly one of the listed
origins. When analyzing this request, the service would set the cors Special Register to
notallowed and return success. No response headers would be added. The output document is
the input document.

GET /app/page1 HTTP/1.1
Host: example.com
Origin: http://host.com

Example 3

When analyzing this request, the service would set the cors Special Register to allowed and
return success. The output document is the input document.

GET /app/page1 HTTP/1.1
Host: example.com
Origin: http://host1.com

The following response headers will be added:

Access-Control-Allow-Origin: http://host1.com
Access-Control-Expose-Headers: RespHdr1,RespHdr2
Access-Control-Allow-Credentials: true

Example 4

This pre-flight request is missing the Access-Control-Request-Method header. When analyzing
this pre-flight request, the service would set the cors Special Register to notcompliant and
return success. No response headers would be added. The output document is a zero-length
byte array.

OPTIONS /app/page1 HTTP/1.1
Host: example.com
Origin: http://host1.com

Example 5

The actual request method HEAD is not allowed. When analyzing this pre-flight request, the
service would set the cors Special Register to notallowed and return success. No response
headers would be added. The output document is a zero-length byte array.

3. Configuring iWay HTTP Services (Adapters)

HTTP Solutions Development Guide 101

OPTIONS /app/page1 HTTP/1.1
Host: example.com
Origin: http://host1.com
Access-Control-Request-Method: HEAD

Example 6

The header names in Access-Control-Request-Headers are all supported headers. When
analyzing this pre-flight request, the service would set the cors Special Register to allowed and
return success. The output document is a zero-length byte array.

OPTIONS /app/page1 HTTP/1.1
Host: example.com
Origin: http://host1.com
Access-Control-Request-Method: GET
Access-Control-Request-Headers: ReqHdr1,ReqHdr2

The following response headers will be added:

Access-Control-Allow-Origin: http://host1.com
Access-Control-Allow-Methods: GET,POST
Access-Control-Allow-Headers: ReqHdr1,ReqHdr2,ReqHdr3
Access-Control-Allow-Credentials: true
Access-Control-Max-Age: 30

Document to Attachment Service (com.ibi.agents.XDAttachmentFromDocAgent)

Syntax:

com.ibi.agents.XDAttachmentFromDocAgent

Description:

This service adds a new attachment with the contents determined by the input document. The
attachment headers are specified with user parameters. The name and value of the user
parameter become the name and value of the header. Notice the value of the Content-ID
header is taken as is, so the value must contain the surrounding angle brackets.

For example, a valid value for Content-ID might be <cid>. The Attachment Type parameter
specifies the attachment Content-Type. If the Attachment Type is omitted, a Content-Type is
chosen based on the document data:

application/binary if the document contains bytes

text/plain if the document is flat

application/xml otherwise

HTTP Services

102

The optional Attachment Name parameter controls the name sub-parameter of the Content-
Type header. The Content-Type name can also be given directly in the Content-Type header
value if desired.

The Body Result parameter specifies what to return in the output document: keep copies the
input document to the output document, empty returns an empty document instead. This
service follows OnSuccess upon successful execution, otherwise it follows the fail_attach
edge.

Parameters:

Parameter Description

Attachment Name The name of this attachment, for example, file name.

Attachment Type The MIME type. If no value is specified, the attachment type is
generated based on the data format.

Body Result Specify how to handle the body of this document by selecting one
of the following values from the drop-down list:

keep (default)

empty

HTTP Cookie Agent Service (com.ibi.agents.XDCookieAgent)

Syntax:

com.ibi.agents.XDCookieAgent

Description:

This service adds a cookie to the HTTP responses, enabling them to retain stateful
information.

Parameters:

Parameter Description

Cookie Name
(required)

The name of the cookie.

3. Configuring iWay HTTP Services (Adapters)

HTTP Solutions Development Guide 103

Parameter Description

Cookie Value The value of the cookie, which must comply with RFC 6265.

Path Attribute Value of the Path attribute in the generated cookie. The value /
matches any path.

Domain Attribute Value of the domain attribute in the generated cookie. Leave
empty to match the originating server.

Max-Age Attribute Value of the Max-Age attribute in the generated cookie. This
indicates the maximum lifetime of the cookie, represented as a
number of seconds. Leave blank to omit the attribute which lets
the user agent determine when the cookie expires.

Secure Attribute Whether to add the Secure attribute in the generated cookie.
Automatically adds the attribute if the listener is secure. Select
one of the following options from the drop-down list:

automatic (default)

false

true

HTTPOnly Attribute Whether to add the HttpOnly attribute in the generated cookie.

true

false (default)

HTTP Emit Service (com.ibi.agents.XDHTTPEmitAgent)

Syntax:

com.ibi.agents.XDHTTPEmitAgent

Description:

This service is a general HTTP emitter for use within the service stack. The document is posted
using HTTP to a designated server.

Parameters:

HTTP Services

104

Parameter Description

Configuration Parameters for HTTP Emit Agent Service

Target URL (required) Specify a URL to post this information.

Action Method Select one of the following methods from the drop-down list:

GET - Data on the URL and URL encoded.

POST - (default) Content-Length header.

Request content type This overrides content type of a request. Select one of the
following options from the drop-down list:

application/EDI-X12

application/EDIFACT

application/XML

text/html

text/plain

User ID User ID for Basic Authentication challenges.

Password Password for Basic Authentication challenges.

Response timeout
value in seconds

Seconds to wait for response before signaling error.

IP Interface Host Local IP Interface from which the outgoing IP socket originates.

IP Interface Port Local IP Port from which the outgoing IP socket originates.

Relay Inbound Content
Type

If set to true, relay headers as received (content type). False is
the default.

Set TCP No Delay If set to true, disables Nagle's Algorithm on the client socket. This
will result in faster line turnaround at the expense of an increased
number of packets.

Proxy

3. Configuring iWay HTTP Services (Adapters)

HTTP Solutions Development Guide 105

Parameter Description

Proxy If set to true, emit through proxy server. False is the default.

Proxy URL URL of the proxy server.

Proxy User ID User ID for proxy challenges.

Proxy Password Password to access the proxy server.

HTTPS

Secure Connection True to use a secure connection. You may need to configure the
Keystore under HTTPS section of the system properties if client
authentication is required. Note, if keystore is configured in
system properties make sure it has the CA certificate or the client
certificate of the server you're connecting to. If keystore is not
configured in system properties default truststore located under
JRE_HOME/lib/security/cacerts will be used.

False is the default.

Use 128-bit Encryption True to use 128-bit encryption. False is the default.

Security Protocol Select one of the following security protocols from the drop-down
list:

SSL - Supports some version of SSL; may support other
versions.

SSLv2 - Supports SSL version 2 or higher.

SSLv3 - Supports SSL version 3; may support other versions.

TLS - (default) Supports some version of TLS; may support
other versions.

TLSv1 - Supports TLS version 1; may support other versions.

Agent Specific Parameters

HTTP Services

106

Parameter Description

Return (required) Return from this agent. Select one of the following options from
the drop-down list:

input

response (default)

status

Use Preemitters If set to true, preemitters will be used for this emit. True is the
default.

Response Wrapper
Tag

The tag name with which to wrap the response if the response is
non-XML and must be XML

Response Base64
Encoded

If set to true, the response will be Base64 encoded. Falseis the
default.

Response Data
Format

Format of the response, default is XML

XML

flat (default)

The result of the post appears in the <native> section of the <emitstatus> result. If the Return
parameter value is STATUS, the status message is always generated. If it is RESPONSE (the
default) the actual information returned from the POST is emitted, except in the cases of an
error in which case the status information is emitted. The POST is considered successful if the
POST can reach its destination and a 200 status is received. A successful return response is
considered to be XML if the first character is a <. Otherwise, a flat document is created.

3. Configuring iWay HTTP Services (Adapters)

HTTP Solutions Development Guide 107

Example:

The following is an example of configuration settings for an HTTP Emit service object in iIT
Designer:

HTTP Services

108

A simple way to test your HTTP Read service is to first configure a channel that uses an HTTP
listener as the inlet and a File emitter as the outlet to examine the messages that are received
by the listener. Your HTTP listener configuration settings would look similar to the following
example, where an HTTP port and a document root are specified.

After you deploy and start the channel with the HTTP listener and File emitter, you can test run
your process flow, which contains an HTTP Emit service object. You must supply an incoming
document with the appropriate content (for example, HTML):

<html>
 <head>
 <title>my iWay http</title>
 </head>
 <body> Testing HTTP Emit Service! </body>
</html>

If the service runs successfully, you will receive this HTML document in the output folder that
is specified by your File emitter. The HTTP listener channel picks up the document that is
emitted by the HTTP Emit service.

3. Configuring iWay HTTP Services (Adapters)

HTTP Solutions Development Guide 109

HTTP Nonblocking Emit Service (com.ibi.agents.XDNHttpEmitAgent)

Syntax:

com.ibi.agents.XDNHttpEmitAgent

Description:

Emits nHTTP messages to a client without interrupting a configured business process. For
more information, see the iWay Service Manager Protocol Guide.

Parameters:

Parameter Description

Configuration Parameters

Target URL (required) URL that is used to post this information.

HTTP Client Provider
(required)

HTTP client Provider that is used to manage connections for
this emitter.

Cookie Store Name Allows thread-specific management of cookies. If not
specified, a cookie store global to the HTTP Client provider will
be used.

Action Method Select one of the following supported methods from the drop-
down list:

DELETE

GET - will send a data-encoded request to the configured
URL.

HEAD - will send a request to the configured URL and
return a status document.

POST - sends the current document as a request entity.

PUT

HTTP Services

110

Parameter Description

Request Content Type Overrides content type of response. Select one of the
following options from the drop-down list:

application/EDI-X12

application/EDIFACT

application/XML

text/html

text/plain

User ID User ID for Basic Authentication challenges.

Password Password for Basic Authentication challenges.

Domain Domain for NTLM authentication challenges. Note that to use
NTLM, you must enable connection persistence.

Request Header
Namespace

Special register namespace from which HTTP headers for the
outgoing request will be taken. Choose Default Namespace to
send HDR type registers with no namespace prefix, or supply
a namespace prefix here. None means that no special
registers will be sent as HTTP headers.

Supply a namespace prefix here to indicate which headers
to send.

Default Namespace - Sends HDR type registers with no
namespace prefix.

none - Means that no special registers will be sent as
HTTP headers.

Request Main Part Header
Namespace

Special register namespace from which MIME headers for the
outgoing request will be taken. Provide a prefix to control the
request Main BodyPart headers in the presence of
attachments. Selecting none means that no special registers
will be sent as MIME headers.

3. Configuring iWay HTTP Services (Adapters)

HTTP Solutions Development Guide 111

Parameter Description

Response Header
Namespace

Special register namespace into which HTTP headers from the
incoming response will be saved. Choose Default Namespace
to create special registers with no namespace prefix, or
supply a namespace prefix here. None means that no special
registers will be created.

Default Namespace - Creates special registers with no
namespace prefix.

Pick one - Supply a namespace prefix here to indicate
header namespace.

Excluded Headers A comma delimited list (case insensitive) of headers that
should not be sent with the request, even if they are found in
the request header namespace.

Ask for Compressed
Response

If set, requests will set the Accept-Encoding header to indicate
that that the client can accept a compressed response, as
described in RFC-2616. If the response has a compressed
content encoding, the client will automatically inflate.

deflate

either

gzip

none

Compress Request If set, the request entities will be compressed using the
selected encoding and the content-encoding header will be set
accordingly.

deflate

gzip

none

HTTP Services

112

Parameter Description

Release Connection
Immediately

If set to true, then the connection will be released to the
connection pool immediately. This is the default.

If set to false, then the connection identifier is stored in the
httpclient-key special register and the HTTP Client Manager
agent must be called later to release the connection explicitly.

The main reason to retain the connection is to reuse it for
streaming of other services.

Maximum HTTP Client
Manager Delay

Maximum time the HTTP Client Manager can take to handle a
particular connection before it is automatically aborted. The
format is [xxh][xxm]xx[s]. The default is 60 seconds.

Try Expect/Continue
Handshake?

If set to true, the client will send the HTTP Expect: 100-
continue header and await HTTP 100 response before
sending the request body. The default is false.

Chunk Encoded Request? If set to true, request entity will be sent with chunk encoding.
The default is false.

Maximum Request Size Maximum size, after compression, of a request entity that can
be sent with this emitter. A value of 0 means no maximum
and if no value is specified, the parameter defaults to 256KB.

Maximum Response Size Maximum size of a response entity that can be received by
this emitter. 0 means no maximum and blank will default to
256KB.

TCP Properties

Persistence If set to true, ask the server to maintain the connection. The
default is false.

Response Timeout value
in Seconds (required)

The value in seconds to wait for a response before generating
an error.

Agent Specific Parameters

3. Configuring iWay HTTP Services (Adapters)

HTTP Solutions Development Guide 113

Parameter Description

Return (required) URL to post this information to, for example, http://thehost:
9876. Choose:

input - to return input document

status - or an XML document with transaction parameters
and status

response - to capture output from the server

Preemitter If set to true, (default) the preemitters will not run.

Response Wrapper Tag The tag name with which to wrap the response if the response
is non-XML and must be XML.

Response Base64
Encoded

If set to true, the response will use Base64 encoding. False is
the default.

HTTP Read Agent (com.ibi.agents.XDHTTPReadAgent)

Syntax:

com.ibi.agents.XDHTTPReadAgent

Description:

This service reads an HTTP source using HTTP GET and returns a result. The GET facility input
accepts a URL in the incoming document and issues an HTTP GET through that URL. The
transform business service and standard output can accept and operate upon this output. It is
presumed that some output is returned, otherwise an error is generated.

In a use case scenario, the HTTP Read service can be part of an architecture for a web search
engine, similar to the Google search engine. The service could be used to traverse or spider
the contents of webpages for indexing purposes.

Parameters:

Parameter Description

URL Tag Name TTag (element) name in input document containing the URL. Do
not use if URL parm is used.

HTTP Services

114

Parameter Description

URL URL for the read. Used if the tag (element) name is omitted

Access Timeout Timeout in milliseconds for the access; applies if greater than 0.

The input document might be the following assuming that the tagname parameter is set to
inurl:

<?xml version="1.0"?>
<inurl>http://localhost:1234/xmlone.xml</inurl>

Example:

The following is an example of configuration settings for an HTTP Read service object in iIT
Designer:

3. Configuring iWay HTTP Services (Adapters)

HTTP Solutions Development Guide 115

A simple way to test your HTTP Read service is to first configure a channel that uses an HTTP
listener. Your HTTP listener configuration settings would look similar to the following example,
where an HTTP port and a document root are specified.

After you deploy and start the channel with the HTTP listener, you can test run your process
flow, which contains an HTTP Read service object. You must ensure that the file name you
supply within the <Test> tag of your incoming document is valid and is also contained within
the document root folder specified for your HTTP listener configuration settings. A sample HTTP
read incoming document can have the following format:

<Test>http://localhost:1234/index1.htm</Test>

HTTP Services

116

If the service ran successfully, you will receive the contents of index1.hml as the output from
the service. For example:

HTTP ReST Routing Service (XDReSTRouteAgent and XDReSTRouteReviewer)

Syntax:

com.ibi.agents.XDReSTRouteAgent

com.ibi.agents.XDReSTRouteReviewer

iIT Service Object:

http: HTTP ReST Routing Service

Description:

This service routes a Representational State Transfer (ReST) request to a process flow based
on the request method and path. An HTTP ReST Routing Reviewer
(com.ibi.reviewer.XDReSTRouteReviewer) is also provided, which shares the same parameters
as the service.

The main purpose of these components is to identify a process flow to execute, given a URI
path and the type of the HTTP request. The name of the process flow will be stored in a special
register (SREG). In addition to this routing function, some elements in the URI path, and all
keys and values in the URI query string, will be stored as SREGs. This functionality will be
made available as a service for use within a process flow, but also as a reviewer. This allows
for earlier execution in the processing stage to allow conditional routing to handle the
execution of the identified process flow.

The service uses an XML document whose structure corresponds to the elements in the path.
This XML document has the following structure:

3. Configuring iWay HTTP Services (Adapters)

HTTP Solutions Development Guide 117

<route>
 <verb type="GET">
 <step type="literal" value="master">
 <step type="literal" value="vendor">
 <step type="regex" value="[0-9]+" flow="vendorRequest" sreg="true">
 <step type="literal" value="item" flow="vendorAllItemsRequest">
 <step type="regex" value="[0-9]+" flow="vendorItemRequest" sreg="true">
 <sreg name="extrareg1" value="something"/>
 <sreg name="extrareg2" value="somethingelse"/>
 <step type="literal" value="allproperties"
 flow="vendorItemAllProperties"/>
 </step>
 <step type="default" flow="VendorItemUnknownRequest"/>
 </step>
 </step>
 </step>
 <step type="default" flow="UnknownMasterRequest"/>
 </step>
 </verb>
</route>

A schema will follow for this XML document.

In this section, the individual components of the URI path are called path elements and the
<step> elements in the XML document are called steps.

Each step can match a path element. How a step is matched to a path element depends on its
type (as indicated by the type attribute of the step element).

1. A literal step matches if the value of the step (as indicated by the value of the value
attribute of the step element) matches the path element exactly.

2. For a regex step, the value of the step is a regular expression. A regex step matches if the
regular expression matches the path element.

3. A default step matches if no other step matches.

The search process starts at the verb node that corresponds to the type of the HTTP request.
For the first element in the path, each step child node of the verb node is checked to see if it
matches the path element. The first step that matches is taken. This is repeated for the
second path element, looking at the step children of the first step, and so on, until the final
path element is reached.

Note: The order of step nodes in the routing XML document is very important.

Consider the following example, which shows a path element "1234" and two step nodes:

<step type="regex" value="[0-9]+" flow="generalIntRequest"/>
<step type="literal" value="1234" flow="specific1234Request"/>

In this scenario, the regex step is always taken, since it is seen first and also matches 1234,
even though the literal step is an exact match.

HTTP Services

118

If a step has the sreg attribute set to true, a Special Register (SREG) will be created using the
previous path element as the SREG name and the current path element as the SREG value.

When the final path element is reached, the value of the flow attribute for the last step found
is the name of the process flow to be executed. If, for any path element, no matching step can
be found, the service will return the fail_notfound edge.

For example, using the document above, consider that the following URI is provided:

/master/vendor/1428/item/2345/allproperties

In this scenario, the target register is set to vendorItemAllProperties and the following SREGs
are set:

vendor=1428

item=2345

Additional SREGs to set for the final step can be specified by adding <sreg> nodes as children
of the step node. For example, consider the following URI:

/master/vendor/1234/item/2345

The target register would be set to vendorItemRequest, the SREGs as shown above, and the
following additional SREGs would be set:

extrareg1=something

extrareg2=somethingelse

If the incoming URI includes a query string, the service will store the key-value pairs in the
query string as SREGs. Query string parameters will not be used in the route search.

To facilitate debugging, the XML schema will include two additional attributes:

1. The <route> node can have a verbose attribute, which when set to true indicates that the
service will generate additional tracing at the iSM DEBUG level, with details of the route
search process.

2. Any <step> node can have a name attribute, the value of which, if present, will be included
in the verbose tracing to make it easier to correlate traces to the routing tree.

3. Configuring iWay HTTP Services (Adapters)

HTTP Solutions Development Guide 119

Step Attributes:

Attribute Description

type The type of attribute value:

literal. Value is a literal, exact match required.

ci_literal. Case insensitive literal.

regex. Regular expression.

default. Any other (must be last in a compare set).

value A compare value of type in the type attribute.

flow Name of a process flow if this is the final step (iFL allowed).

sreg If true, then a Special Register (SREG) will be created using the
value of the previous path element as the key and this value of
the current path element as the register value.

role The user must have this role to descend on this step.

name A node name used in tracing.

Inputs:

The service is agnostic as to the input. The service operates on the incoming URL.

Outputs:

If a process flow is found for this path, then the input will be output. In any other case, the
output will either be the input document or an iSM status/error document, as determined by
the Output Type parameter for this service.

Parameters:

Parameter Description

Route File Path
(required)

The path to the XML file describing the route. The file is loaded
when the service is first executed and remains in effect until the
listener is restarted.

HTTP Services

120

Parameter Description

ReST Verb (required) The HTTP verb (DELETE, GET, POST, or PUT).

In nHTTP this is in the SREG called reqType.

URI (required) The URI of the incoming HTTP request. In nHTTP, this is stored in
the SREG called url. This may include a path and a query string.

Note: This is slightly different from the Object parameter in the
prototype service.

Flow Name Register
(required)

An SREG of this name will be created with the name of the
process flow to run.

Route Namespace SREG namespace prefix to use when creating SREGs from path
steps, including the process flow name register.

Applies to the routing portion of the URL.

Query Namespace SREG namespace prefix to use when creating SREGs from the
query string portion of the URL.

Defaults to the same as the Route Namespace. Using a separate
namespace can allow these registers to be passed and managed
as a group.

Output Type Determines in the event of a routing error, what document should
be output from this service. Select one of the following document
types:

status. A standard iSM error document.

input. The original input document.

Edges:

Parameter Description

Success A process flow was located.

fail_notfound No process flow was located.

3. Configuring iWay HTTP Services (Adapters)

HTTP Solutions Development Guide 121

Parameter Description

fail_parse Unable to process configuration parameters, which is most likely
an iFL error.

fail_route Other failure specific to this agent (for example, unable to locate
or parse the routing file).

fail_security A role does not match, meaning that this user is not permitted to
use this URL (security trigger flow runs in iSM Version 6.1.9).

ReST Process Flow Message:

When a non-POST verb in encountered by nHTTP, a default message is generated. The schema
for this message is located in the following directory:

<iwayhome>/etc/manager/extensions/iwxnhttp/misc/doc

From time to time, iWay Software may add additional, non-conflicting elements to this schema
in future releases.

The input document to the process flow holds the parsed information from the arriving HRRP
input, including all headers and the URL split up for use.

For example (spacing for display purposes only):

<http user="auto" type="GET">
 <parms>
 <parm name="ibse-port">9000</parm>
 <parm name="Host">clientbox:10000</parm>
 <parm name="Connection">Keep-Alive</parm>
 <parm name="pdm">0</parm>
 <parm name="version">1.1</parm>
 <parm name="Accept-Language">en-AU</parm>
 <parm
name="action">user.req?user=999999999&account=1234567890123456&tranid=tid1234</parm>
<parm name="Accept">text/html, application/xhtml+xml, */*</parm>
 <parm name="User-Agent">Mozilla/5.0 (compatible; MSIE 9.0; Windows NT 6.1; WOW64;
Trident/5.0)</parm>
 <parm name="url">/user.req?user=999999999&account=1234567890123456&tranid=tid1234</
parm>

HTTP Services

122

<parm name="ip">127.0.0.1</parm>
 <parm name="source">hostname unknown</parm>
 <parm name="Accept-Encoding">gzip, deflate</parm>
 <parm name="reqType">GET</parm>
 </parms>
 <body />
 <url secure="false">
 <host>clientbox</host>
 <port>10000</port>
 <path>/user.req</path>
 <query>user=999999999&account=1234567890123456&tranid=tid1234</query>
 <queryparms>
 <parm name="user">99999999</parm>
 <parm name="account">1234567890123456</parm>
 <parm name="tranid">tid1234</parm>
 </queryparms>
 <incomingurl> http:clientbox:1000/
user=999999999&account=1234567890123456&tranid=tid1234
 </incomingurl>
 </url>
 <version>1.1</version>
</http>

Using an XML iterator, the process flow can easily step through the <queryparms>, or using
standard XSLT, can extract a specific URI value as required. All registers set in the channel are
housed in the <http/parms> elements and can be extracted if required.

The user (source of the message) can be authenticated using standard nHTTP services,
avoiding the need to do so within the executing process flow.

iWay Functional Language (iFL) Support:

The iFL language used within iSM provides facilities to support RESTful services. Key functions
for this support are listed and described in the following table:

Function Description

_urlparse() Parses a URL into its component parts, including searching for
specific keywords in the query section of the URI.

_token() Enables extraction of specific portions of the URI as required.

The information extracted by the iFL is represented in the incoming document. The iFL simply
makes it possible to look at the URL directly.

For more information on _urlparse() and _token(), see the iWay Functional Language Reference
Guide.

Route Step XML Schema Document:

3. Configuring iWay HTTP Services (Adapters)

HTTP Solutions Development Guide 123

<?xml version="1.0" encoding="UTF-8"?>
<schema xmlns="http://www.w3.org/2001/XMLSchema" targetNamespace="http://
www.iwaysoftware.com/RouteStep" xmlns:tns="http://www.iwaysoftware.com/RouteStep"
elementFormDefault="qualified">
 <complexType name="sregType">
 <annotation>
 <documentation>
 Represents a special register to create if its parent
 step matches the last path element.
 </documentation>
 </annotation>
 <attribute name="name" type="string" use="required"></attribute>
 <attribute name="value" type="string" use="required"></attribute>
 </complexType>
 <complexType name="stepType">
 <annotation>
 <documentation>
 Represents one step in the URI path for looking up the
 route. The lookup process attempts to match elements in
 the path to steps.
 </documentation>
 </annotation>
 <choice minOccurs="0" maxOccurs="unbounded">
 <element name="sreg" type="tns:sregType"/>
 <element name="step" type="tns:stepType"/>
 </choice>
 <attribute name="type" use="required">
 <simpleType>
 <restriction base="string">
 <enumeration value="literal"></enumeration>
 <enumeration value="ci_literal"></enumeration>
 <enumeration value="regex"></enumeration>
 <enumeration value="default"></enumeration>
 </restriction>
 </simpleType>
 </attribute>
 <attribute name="value" type="string" use="optional">
 <annotation>
 <documentation>
 When type is 'literal', the value attribute holds a
 literal that must match the path element. Type "ci_literal"
 is similiar, but ignores case when matching the path element.
 When type is 'regex', this attribute holds a regular
 expression to match the path element. When type is
 'default', this attribute is not used.
 </documentation>
 </annotation>

HTTP Services

124

 </attribute>
 <attribute name="flow" type="string" use="optional">
 <annotation>
 <documentation>
 The flow to run for this URI path. Will be set into
 the target special register.
 </documentation>
 </annotation>
 </attribute>
 <attribute name="sreg" type="boolean">
 <annotation>
 <documentation>
 If true, the value of this path element will be
 saved as a special register, with key as the value
 of the previous path element.
 </documentation>
 </annotation>
 </attribute>
 <attribute name="name" type="string" use="optional">
 <annotation>
 <documentation>
 Use the name attribute to identify this step in
 debug tracing.
 </documentation>
 </annotation>
 </attribute>
 <attribute name="role" type="string" use="optional">
 <annotation>
 <documentation>
 Optionally, the role required to the flow that
 would be run if this were the final element in the URI path.
Assumes
 that the user has been authenticated by an iSM auth realm.
 </documentation>
 </annotation></attribute>
 </complexType>
 <complexType name="verbType">
 <annotation>
 <documentation>Matches the ReST verb or HTTP method for the current
request.</documentation>
 </annotation>
 <sequence>
 <element name="step" type="tns:stepType" minOccurs="1"
maxOccurs="unbounded"></element>
 </sequence>
 <attribute name="type" use="required">
 <simpleType>
 <restriction base="string">
 <enumeration value="GET"></enumeration>
 <enumeration value="POST"></enumeration>
 <enumeration value="PUT"></enumeration>
 <enumeration value="DELETE"></enumeration>
 </restriction>
 </simpleType>
 </attribute>
 </complexType>
 <complexType name="routeType">
 <sequence>
 <element name="verb" type="tns:verbType" minOccurs="1" maxOccurs="4"></
element>
 </sequence>
 <attribute name="verbose" type="boolean" use="optional"></attribute>
 </complexType>
 <element name="route" type="tns:routeType"></element>
</schema>

3. Configuring iWay HTTP Services (Adapters)

HTTP Solutions Development Guide 125

HTTP Session Invalidator Service (com.ibi.agents.XDHttpSessionInvalidator)

This service is used to terminate the session. The following table lists and describes its
parameter.

Parameter Description

Expire Cookie Determines how the termination is to be effected.

If set to false, it removes the session information from the
server. No further action is taken.

If set to true, in addition to removing the session
information, it sends an instruction to the client to delete
the JSESSIONID cookie itself.

The service returns the input document on the success edge.

As a good practice, you can use this service when the application has completed the session,
so as to reduce server resources.

OAuth 1.0 Authentication Service

Syntax:

com.ibi.agents.XDOAuth1Agent

Description:

This service creates the HTTP Authorization header for OAuth 1.0a as specified in RFC5849.
This RFC describes a 3-legged protocol where the user authorizes the client application to
access a protected resource hosted by a service provider.

The OAuth 1.0 Authentication supports a variant called the 0-legged protocol where the request
is signed without the user credentials. The signature is computed using just the consumer key
and the consumer secret. These credentials are obtained once when the application
programmer registers his client application with the service provider during development. This
service assumes the consumer secret is a private key.

Parameters:

HTTP Services

126

The following table lists and describes the parameters for the OAuth 1.0 Authentication
service.

Parameter Description

HTTPS URL Request URL used in the computation of the
Signature Base String.

HTTP Method HTTP Method used in the computation of the
Signature Base String. Selecting POST will also
cause the current document to be hashed to
produce the oauth_body_hash.

Header Namespace Special register namespace where the Authorization
HTTP header is stored. If not supplied, the default
namespace will be used.

Client ID The consumer key of the client credentials.

KeyStore Provider Provider for the keystore containing the client private
key.

Private Key Alias Alias of the private key within the keystore.

Private Key Password Password for the private key. If left blank, the
password for accessing the keystore will be used.

The OAuth Authentication service only creates the Authorization header. The HTTP request
must be sent in a separate step, usually with the NHTTP Emit service.

The HTTPS URL and HTTP Method parameters are used in the Signature Base String. They
must match the Target URL and Action Method of the NHTTP Emit service. The URL scheme
must be HTTPS because an SSL connection is needed to protect the information that is
passed in clear. Choosing the POST method also instructs the service to compute a hash of
the entity body to be part of the signature. This algorithm was specified by Google in its OAuth
Request Body Hash extension.

The Authorization header will be stored in the specified Header Namespace. This parameter
should match the Request Header Namespace in the NHTTP Emit Agent. This will ensure that
the header is sent with the request. It is possible to use different namespaces, as long as the
Authorization register is copied to the Request Header Namespace before the request is sent.

3. Configuring iWay HTTP Services (Adapters)

HTTP Solutions Development Guide 127

The Client ID is the consumer key supplied by the service provider when the developer
registered the client application with the service provider. This serves as the user name for the
client application. The service provider uses the client ID to retrieve the public key to validate
the signature.

The KeyStore Provider is the name of the provider that holds the client private key. The Private
Key Alias and Private Key Password are the Alias and Password for the private key. This key is
used as the consumer secret when signing the Authorization header.

The output document is the same as the input document.

For the POST method, the document contains the same data but it will be stored as bytes if it
was not already. This is to guarantee the document will not be altered before it is sent
because any change to the document would invalidate the signature.

Edges:

The following table lists and describes the edges that are returned by the OAuth Authentication
service.

Edge Description

success The Authorization header was successfully created.

fail_parse An iFL expression could not be evaluated.

fail_operation The operation could not be completed successfully.

Example 1

This example shows the creation of an OAuth 1.0a Authorization header for a GET method. The
following table lists the parameter values for the service.

Parameter Value

HTTPS URL https://sandbox.api.mastercard.com/atms /v1/atm?
Format=XML&PageOffset=0&PageLength=10&
PostalCode=46312&Country=USA

HTTP Method GET

Header Namespace hdrns

HTTP Services

128

https://sandbox.api.mastercard.com/atms/v1/atm?Format=XML&PageOffset=0&PageLength=10&PostalCode=46312&Country=USA
https://sandbox.api.mastercard.com/atms/v1/atm?Format=XML&PageOffset=0&PageLength=10&PostalCode=46312&Country=USA
https://sandbox.api.mastercard.com/atms/v1/atm?Format=XML&PageOffset=0&PageLength=10&PostalCode=46312&Country=USA

Parameter Value

Client ID DKB0vGSHs4r1Vv308yObMj4QhhJkIMP5G
3a14KmEa7f96b5e!414a78536b4a6f6272634a41446e
4566483851625a7a413d

KeyStore Provider keyprov

Private Key Alias key1

Private Key Password key1pass

This assumes key1 is the alias of a private key entry in the KeyStore provider keyprov. The
service will compute the following Signature Base String. The oauth_nonce and
oauth_timestamp will obviously change each time the service executes.

GET&https%3A%2F%2Fsandbox.api.mastercard.com%2Fatms%2Fv1%2Fat
m&Country%3DUSA%26Format%3DXML%26PageLength%3D10%26PageOffset%3D0
%26PostalCode%3D46312%26oauth_consumer_key%3DDKB0vGSHs4r1Vv308yObMj4QhhJ
kIMP5G3a14KmEa7f96b5e%2521414a78536b4a6f6272634a41446e4566483851625a7a41
3d%26oauth_nonce%3D180284899533025%26oauth_signature_method%3DRSA
SHA1%26oauth_timestamp%3D1396020436%26oauth_version%3D1.0

The service will store the following header value in the hdrns. Authorization special register.
The oauth_signature changes every time the service is executed because the oauth_nonce and
oauth_timestemp varies.

OAuth
oauth_signature="JjBI1gi5EMHwcihnCyK0RX7UzCC2SCtplutEjUgUXaI2nhGd4IR3L7b
WMtpJKkyUnR667lpkI7zqbM3oR3CHc2%2FgxPerD%2FSDGibHTAcTHCfV9%2F0xBVzv%2Fzo
1egU4CEqjZGSeIAeJKQYOflKSrfX8ken0MsXwXv5s9TLQuO8pRPwCfrqgrmVa%2FHhlzRxU7
pEv2kpJn4opG3Cvn01aKlotztxG8u476aEydFq03emqjVh8GMArtGDt8RhJqisJ0OB9SsaWU
K%2FsV%2BQtvghmX7G0pyQ6hLJUa3NSqlINU2k19cLOhUEnylDVD62sTZGrPe9%2B3zKLj%2
BX77eGLFKrDqOxk9w%3D%3D",oauth_version="1.0",oauth_nonce="18028489953302
5",oauth_signature_method="RSASHA1",oauth_consumer_key="DKB0vGSHs4r1Vv30
8yObMj4QhhJkIMP5G3a14KmEa7f96b5e%21414a78536b4a6f6272634a41446e456648385
1625a7a413d",oauth_timestamp="
1396020436"

If the Request Header Namespace is hdrns in the NHTTP Emit service, this will add the
following HTTP header to the HTTP request.

3. Configuring iWay HTTP Services (Adapters)

HTTP Solutions Development Guide 129

Authorization: OAuth
oauth_signature="JjBI1gi5EMHwcihnCyK0RX7UzCC2SCtplutEjUgUXaI2nhGd4IR3L7b
WMtpJKkyUnR667lpkI7zqbM3oR3CHc2%2FgxPerD%2FSDGibHTAcTHCfV9%2F0xBVzv%2Fzo
1egU4CEqjZGSeIAeJKQYOflKSrfX8ken0MsXwXv5s9TLQuO8pRPwCfrqgrmVa%2FHhlzRxU7
pEv2kpJn4opG3Cvn01aKlotztxG8u476aEydFq03emqjVh8GMArtGDt8RhJqisJ0OB9SsaWU
K%2FsV%2BQtvghmX7G0pyQ6hLJUa3NSqlINU2k19cLOhUEnylDVD62sTZGrPe9%2B3zKLj%2
BX77eGLFKrDqOxk9w%3D%3D",oauth_version="1.0",oauth_nonce="18028489953302
5",oauth_signature_method="RSASHA1",oauth_consumer_key="DKB0vGSHs4r1Vv30
8yObMj4QhhJkIMP5G3a14KmEa7f96b5e%21414a78536b4a6f6272634a41446e456648385
1625a7a413d",oauth_timestamp="1396020436"

Example 2

This example shows the creation of an OAuth 1.0a Authorization header for a POST method.
The following table lists the parameter values for the service.

Parameter Value

HTTPS URL https://sandbox.api.mastercard.com/fraud/merchant/v1/
termination-inquiry?
Format=XML&PageLength=10&PageOffset=0

HTTP Method POST

Header Namespace hdrns

Client ID DKB0vGSHs4r1Vv308yObMj4QhhJkIMP5G3
a14KmEa7f96b5e!414a78536b4a6f6272634a41446e4
566483851625a7a413d

KeyStore Provider keyprov

Private Key Alias key1

Private Key Password key1pass

The following input document is the parsed XML document:

HTTP Services

130

https://sandbox.api.mastercard.com/fraud/merchant/v1/termination-inquiry?Format=XML&PageLength=10&PageOffset=0
https://sandbox.api.mastercard.com/fraud/merchant/v1/termination-inquiry?Format=XML&PageLength=10&PageOffset=0
https://sandbox.api.mastercard.com/fraud/merchant/v1/termination-inquiry?Format=XML&PageLength=10&PageOffset=0

<ns2:TerminationInquiryRequest xmlns:ns2="http://mastercard.com/
termination"><AcquirerId>1996
</AcquirerId><TransactionReferenceNumber>1</TransactionReferenceNumber>
<Merchant><Name>TEST</Name><DoingBusinessAsName>TEST
</DoingBusinessAsName><PhoneNumber>5555555555</PhoneNumber>
<NationalTaxId>1234567890</NationalTaxId><Address><Line1>5555 Test Lane
</Line1><City>TEST</City><CountrySubdivision>XX</CountrySubdivision>
<PostalCode>12345</PostalCode><Country>USA</Country></Address>
<Principal><FirstName>John</FirstName><LastName>Smith</LastName>
<NationalId>1234567890</NationalId><PhoneNumber>5555555555</PhoneNumber>
<Address><Line1>5555 TestLane</Line1><City>TEST</City><CountrySubdivision>XX
</CountrySubdivision><PostalCode>12345</PostalCode><Country>USA
</Country></Address><DriversLicense><Number>1234567890</Number>
<CountrySubdivision>XX</CountrySubdivision></DriversLicense></Principal>
</Merchant></ns2:TerminationInquiryRequest>

The service will compute the following Signature Base String. Notice the extra attribute
oauth_body_hash compared to Example 1.

POST&https%3A%2F%2Fsandbox.api.mastercard.com%2Ffraud%
2Fmerchant%2Fv1%2Fterminationinquiry&Format%3DXML%26PageLength%3D10%
26PageOffset%3D0%26oauth_body_hash%3Dh3%252BhLMkT%252B3pBvRolKEc95fobEB8
%253D%26oauth_consumer_key%3DDKB0vGSHs4r1Vv308yObMj4QhhJkIMP5G3a14KmEa7f
96b5e%2521414a78536b4a6f6272634a41446e4566483851625a7a413d%26oauth_nonce
%3D180286176383600%26oauth_signature_method%3DRSA-SHA1%26oauth_timestamp
%3D1396020438%26oauth_version%3D1.0

The service will store the following header value in the hdrns Authorization special register. The
oauth_signature, oauth_nonce, and oauth_timestamp will change every time the service is
executed.

OAuth
oauth_signature="GSgJ6wUiYDznurpspn2ztn9PZeuXIBy4LZZHOSuMQrQ8OskwdWdaX0i
UXfNELxEQUniy6z5b2c06yVCut4XoYtV5XJaYnoG78bqkJ3LLVBqZ%2Brv%2F%2FTbIQmz0c
enMAinlR09QeduIHV7gPGqd%2FBi9Rkj%2BHnxI5bLNGn0nQoOie%2BSNUAPCjnn2Ydoj44l
Sufmur6N2U7paJAuEIfp3VANbLwCI%2Bts5EBr3ecCn7eEqbuQMzs8hW2c%2FdzZqoOvyEda
O86SVcTX9vT5XI8V%2FRluupobCRy8xSuxubnCJrf5USfT%2FB5rudqNkHW0%2BmtE8hxVLI
L9v2dKPSRxtqsU75GsrgA%3D%3D",oauth_body_hash="h3%2BhLMkT%2B3pBvRolKEc95f
obEB8%3D",oauth_version="1.0",oauth_nonce="180286176383600",oauth_signat
ure_method="RSASHA1",oauth_consumer_key="DKB0vGSHs4r1Vv308yObMj4QhhJkIMP
5G3a14KmEa7f96b5e%21414a78536b4a6f6272634a41446e4566483851625a7a413d",
oauth_timestamp="1396020438"

The output document is the same as the input but the data is now stored as bytes.

If the Request Header Namespace is hdrns in the NHTTP Emit service, this will add an
Authorization header to the HTTP request.

OAuth 2.0 Authentication Service

Syntax:

3. Configuring iWay HTTP Services (Adapters)

HTTP Solutions Development Guide 131

com.ibi.agents.XDOAuth2Agent

Description:

This service emits an HTTPS request authenticated by OAuth 2.0 using the credentials of a
Google service account.

OAuth 2.0 is described in RFC6749 and RFC6750. It is an authorization framework that
enables an application to obtain access to an HTTP resource. The role of the client and the
resource owner are separate. The client does not use the resource owner credentials. Instead,
it requests an access token from a trusted authorization server. The client presents the token
together with the request to the resource server which grants access if the token is valid.

The OAuth 2.0 Authentication service manages the creation and renewal of access tokens by
communicating with the authorization server. If it obtains a valid access token, it incorporates
the token with the outgoing HTTPS request to make the authenticated call.

When OAuth 2.0 is used interactively, the user is often redirected to a consent screen to enter
his credentials. Since the iSM service operates in a server-to-server scenario, there is no
consent screen involved. Instead, the client provides its credentials with the private key
associated with a Google service account. The authorization server will be accessed at the
same location as the resource server.

When obtaining a token, the client must specify the scope of the access requested. For
example, there could be a scope for read-only and another for read-write permissions. It is also
possible to request multiple scopes in a single access token.

The scopes are not standardized. The resource servers are free to define the scopes that
make sense for their application. The documentation of the resource server API will make it
clear which OAuth 2.0 scopes it supports. It remains the responsibility of the application
designer to request and use the appropriate scopes.

Parameters:

The following table lists and describes the parameters for the OAuth 2.0 Authentication
service.

Parameter Description

HTTP Client Provider HTTP Client provider that manages connections for this
emitter.

Destination URL URL where the request will be addressed. The URL should
be fully specified, including the HTTPS scheme.

HTTP Services

132

Parameter Description

HTTP Method POST sends the current document as a request entity. GET
and HEAD will send a request to the configured URL.

Content Type Content type for the HTTP request to be sent by this
emitter.

Request Header Namespace Special register namespace from which HTTP headers for
the outgoing request will be taken. Select Default
Namespace to send the HDR type registers with no
namespace prefix, or supply a namespace prefix here.
None means that no special registers will be sent as HTTP
headers.

Response Header
Namespace

Special register namespace into which HTTP headers from
the incoming response will be saved. Select Default
Namespace to create special registers with no namespace
prefix, or supply a namespace prefix here.

Scopes Determines which services the application requests
access to. Select one from the list or enter a space-
separated list of scopes.

Project ID Value of the x-goog-project-id header.

Service Account Email Email address of the service account.

KeyStore Provider Provider for the keystore containing the service account
private key.

Private Key Alias Alias of the service account private key within the keystore.

Private Key Password Password for the private key. If left blank, the password for
accessing the keystore will be used.

The HTTP Client provider can be defined on the pooling providers page in the iWay Service
Manager console. Google recommends that OAuth 2.0 should always be used with HTTPS,
therefore the HTTP Client provider should specify an SSLContext Provider.

3. Configuring iWay HTTP Services (Adapters)

HTTP Solutions Development Guide 133

The authenticated request will be sent to the Destination URL. The service will access the
authorization server at the same location to obtain access tokens. The HTTP method specifies
the type of request: GET, PUT, POST, HEAD, PATCH or DELETE. The Content Type parameter
specifies the content type of the authenticated request.

If additional headers are needed, they can be declared as HDR registers in the Request
Header Namespace. The default value is none, which means there is no Request Header
Namespace and no extra headers are added.

The headers of the HTTP response are stored as special registers in the specified Response
Header Namespace.

The Scopes parameter specifies the access scope requested from the authorization server.
The access token returned will grant those scopes. For example, if the scope in the token is
read-only-access and a write operation is attempted, the resource server will reject the call
because the scope is not sufficient. The scopes are application specific. For more information,
see the resource server API documentation to learn which scopes it supports.

The Project ID is optional. When present, it specifies the value of the x-goog-project-id header.
In the cloud platform of Google, a Project consists of a set of users, a set of APIs, and billing,
authentication, and monitoring settings for those APIs.

The Service Account Email acts like a user name for a service account. It looks like an email
address but there is no actual email involved. The credential for the service account is a
private key. The KeyStore Provider is the name of the iSM keystore provider that holds the
private key. The Private Key Alias and the Private Key Password are the alias and password of
the private key entry within the Keystore.

Edges:

The following table describes the edges that are returned by the OAuth 2.0 Authentication
Service.

Edge Description

Success The request message was successfully sent and the
response received.

fail_parse An iFL expression could not be evaluated.

fail_operation The operation could not be completed successfully.

Example:

HTTP Services

134

This example shows how to retrieve a document from the Google Cloud Storage using the
OAuth 2.0 Authentication Service.

Google Cloud Storage is a service to store data in the cloud and retrieve it later. It has a
RESTful API, authenticated with OAuth 2.0. The equivalent of a file is called an object. Objects
are stored in folders called buckets. Buckets are like directories, except they are not
hierarchical. Every bucket exists in a single namespace shared by all users of the service. The
slash (/) character is invalid in a bucket name but is accepted in an object name.

The Google Cloud platform supports multiple varieties of credentials. For server to server
applications, a service account must be used. This is a name associated with a public key.
The client proves his identity by encrypting with the private key which is kept secret. Service
accounts are tied to a specific Google project. They are created in the Google Developer
Console. Google chooses the service account name and creates the public-private key pair
automatically. The private key is downloaded at the time the service account is created.

The Google Developer Console may change without notice. Proceed with the following steps:

From the following website, https://console.developers.google.com:

1. Sign in with your Google account or create a new google account on the sign-in page if you
do not already have one. This is your regular Google account, not a service account yet.

2. Create a new Google project, specify the project name and the project ID, and then write
down the project ID.

3. In the left menu, select APIs & auth and then click on APIs. Ensure that the Google Cloud
Store is set to ON.

4. In the left menu, select APIs & auth, click Consent. and then proceed to the next step. The
consent screen is not used in this example, but it must be selected and meet the
requirements of Google.

5. Enter any Product Name and click Save.

6. In the left menu, select APIs & auth, click Credentials, and select Create new Client ID.

7. In the dialog that appears, select Service Account and click Create client ID. This will
download a PKCS12 Keystore containing the private key of this service account.

8. Save the keystore in a convenient location and write down the keystore password shown on
the screen, for example, notasecret.

9. Record the email address of the service account shown on the screen. The email address
will look similar to the following:

298643775104-81neakmsco3agrv956tl8inu8ci7oedl@developer.gserviceaccount.c
om

10.In the left menu, select Billing & settings, then enable the billing, and fill in the financial
information.

3. Configuring iWay HTTP Services (Adapters)

HTTP Solutions Development Guide 135

https://console.developers.google.com

11.In the left menu, click Storage, select Cloud Storage, Storage Browser and then click Create
a bucket, and enter the bucket name. This must be a unique name among all buckets in
the Google Cloud Storage. A good practice is to use your bucket name with your domain
name changing the period with a dash. For example: test99-example-com

12.Click Upload and select a file to store in the Google Cloud Storage, then write down the
name of the bucket and the file name in the bucket.

13.Go to http://pki.google.com and download the CA certificate for Google Internet Authority
G2. This will be used to create a truststore.

The following information will be available:

The project ID.

The Keystore containing the private key.

The Keystore password.

The service account email address.

The bucket name.

The object name in the bucket.

The certificate for Google Internet Authority G2.

14.Import the Google CA certificate into a Java Keystore with the following command. This
assumes the certificate is stored in a file called GIAG2.cer

keytool -import -trustcacerts -file GIAG2.cer -alias giag2 -keystore
GIAG2.jks -storepass secret -storetype JKS

15.In the left menu of the iWay Service Manager console, click Security Providers, and then
click New to create a new Keystore provider to be used as the truststore.

The following table lists the parameters and values of the Keystore provider.

Parameter Value

Name giag2

Description Google Internet Authority G2

Keystore Path to GIAG2.jks

Keystore Password secret

Keystore type JKS

HTTP Services

136

http://pki.google.com

Parameter Value

KeyStore JCE Provider SUN

16.Click New again to create another Keystore provider for the private key of the service
account.

Parameter Description

Name cloudkey

Keystore Path to the keystore containing the service account
private key.

Keystore Password The keystore password chosen by Google, for example,
notasecret.

Keystore type PKCS12-DEF

KeyStore JCE Provider BC

17.Create an SSLContext provider to be used by the HTTPS connections, and accept all default
parameters except the following:

Parameter Description

Name GoogleSSL

Keystore Provider Not used but required. You can enter giag2

Truststore Provider giag2

Security Protocol TLS

18.Create an HTTP Client provider to manage connections to the Google Cloud Storage by
clicking Pooling Providers in the left menu of the iWay Service Manager console, and then
clicking New.

19.Accept all default parameters except those found in the following table:

Parameter Description

Name GoogleClient

3. Configuring iWay HTTP Services (Adapters)

HTTP Solutions Development Guide 137

Parameter Description

SSL Context Provider GoogleSSL

20.In your process flow, create an instance of the OAuth 2.0 Authentication Service configured
as shown in the following table. Replace the values in angle brackets with the actual value
obtained in the Google Developers console.

Parameter Description

HTTP Client Provider GoogleClient

Destination URL URL of the object in the Google Cloud Storage.

HTTP Method GET

Scopes https://www.googleapis.com/auth/
devstorage.read_only

Project ID The Google Project ID.

Service Account Email The service account email address chosen by Google.

KeyStore Provider cloudkey

Private Key Alias privatekey

Private Key Password Password chosen by google, for example, notasecret.

The Destination URL can take one of the following forms:

https://<bucketname>.storage.googleapis.com/<objectname>

https://storage.googleapis.com/<bucketname>/<objectname>

For example, if the bucket name is mybucket-example-com, and the object name is root.xml,
the destination URL can be one of two equivalent URLs:

https://mybucket-example-com.storage.googleapis.com/root.xml

https://storage.googleapis.com/mybucket-example-com/root.xml

HTTP Services

138

https://www.googleapis.com/auth/devstorage.read_only
https://www.googleapis.com/auth/devstorage.read_only

This instance of the OAuth 2.0 Authentication Service accepts any input document since
the GET method does not send a request entity in the body of the message. The output
document will be the contents of the object found in the Google Cloud Storage or an error
document.

WS HTTP Client Agent (com.ibi.agents.XDWSHttpClientAgent)

Syntax:

com.ibi.agents.XDWSHttpClientAgent

Description:

This service executes a web service through an HTTP Client provider and allows a
transformation to be applied to the response document.

Parameters:

Parameter Description

End point (required) The location where the web service has been deployed.

SOAP Action Value of the SOAPAction header for HTTP.

Content-Type Value of the Content-Type MIME Header. The default value is
text/xml

User ID User ID for Basic Authentication challenges.

Password Password for Basic Authentication challenges.

Timeout The timeout value in seconds. The default value is 0

Header The header of the web service message. This value can be a file
name, transform, or actual data with SREG, XPATH, and so on.

Body The body of the web service message. Can be a file name,
transform, or actual data with SREG, XPath, and so on. The
default value is _flatof(false)

Fault Transform Transformation to apply when a web service fault occurs.

3. Configuring iWay HTTP Services (Adapters)

HTTP Solutions Development Guide 139

Parameter Description

Strip SOAP Envelope If set to true, then the SOAP envelope from the response
document is removed. By default, this parameter is set to false.

For more information on the behavior and usage of this
parameter, see the description that follows this table.

Response Transform Transformation to apply for the web service response document.

HTTP Client Provider
(required)

The HTTP Client provider that manages connections for this web
service agent.

Strip SOAP Envelope Parameter

The Strip SOAP Envelope parameter moves namespaces to the payload node when a SOAP
response is received. For example, assume that the target web service returns the following
message to the service:

<?xml version="1.0" encoding="UTF-8" ?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/
envelope/" xmlns:somens="http://somens.com">
 <SOAP-ENV:Body>
 <somens:payload>Hello</somens:payload>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

If set to true, then the Strip SOAP Envelope parameter cuts the child of the <SOAP-ENV:Body>
element, which in this example, is <somens:payload>. The result is not, by itself, a well-
formed XML document because the xmlns attribute that declares the somens namespace
prefix is lost during the cut.

Enabling the Strip SOAP Envelope parameter causes the service to ascend the XML tree
looking for namespace declarations and copies these attributes to the payload node. For
example, after the SOAP envelope is removed, the response document has the following
structure:

<somens:payload xmlns:somens="http://somens.com">Hello</somens:payload>

HTTP Services

140

Chapter4
Configuring HTTP Preparsers

iWay Service Manager includes many predefined preparsers that you can use to convert
incoming messages into processable documents. You can add these preparsers to
simple or complex business logic configurations using the iWay Service Manager
Administration Console.

For reference purposes, this section lists and describes all the predefined preparsers
that are supplied with iWay Service Manager.

In this chapter:

HTTP Preparser Configuration Overview

HTTP Preparser (com.ibi.preparsers.XDHTTPpreParser)

Multipart for nHTTP Preparser (com.ibi.preparsers.XDMultiPartForNHTTP)

HTTP Preparser Configuration Overview

A preparser is designed to convert incoming messages into processable documents. The
preparsed document then passes through the standard transformation services to reach the
designated processing service. An example of a preparser is a class that accepts an EDI-
formatted document and converts it to XML for further processing. For more information on the
methodology used in writing preparsers, see the iWay Service Manager Programmer's Guide.

Each preparser uses a class file that must be located in a directory which is in the Java
classpath. iWay Service Manager includes preparsers that have been preconfigured.

HTTP Preparser (com.ibi.preparsers.XDHTTPpreParser)

Syntax:

com.ibi.preparsers.XDHTTPpreParser

Description:

The HTTP preparser transforms a key=value query string into an XML string with the GET action
as the root. This preparser can be used to construct an XML document with the HTTP
parameters that are being passed as a query string. The HTTP preparser can only be used with
an HTTP listener.

HTTP Solutions Development Guide 141

For example, if you need to generate an XML document with the HTTP request parameters, the
HTTP preparser can be used to transform the HTTP GET request for a web application.

Example:

1. Select the HTTP (com.ibi.preparsers.XDHTTPpreParser) preparser from the Type drop-down
list and click Next.

The configuration parameters pane opens.

2. Enter a name (for example, HttpPreparser) and an optional description.

3. Click Finish.

4. Configure an HTTP listener (for example, http) that is listening on port 9984.

5. Construct a simple index.html page. For example:

<html xmlns="urn:schemas-microsoft-com:xslt">
<head>
<title>Posting a File</title>
</head>
<body>
<form id ="f" action="http://TestMachine:8080/newproject/
postfile60.html" enctype="multipart/form-data">
<input type="file" name="fdata"/>
</form>
</body>
</html>

6. In the Document Root field for the HTTP listener, specify the base directory from which the
sample index.html page is served.

7. Construct an inlet, for example, HttpPreparseInlet, which is associated with the HTTP
listener (for example, http) and the new preparser (HttpPreparser).

8. Define a simple move route and a default outlet for the channel.

9. Build, deploy, and start the channel.

10.Invoke the following URL from a web browser:

http://informat-2a8d8e:9984/index.html?value1=4&value2=two

The following output is obtained:

<?xml version="1.0" encoding="ISO-8859-1" ?>
<post>
<value1>2</value1>
<value2>two</value2>
</post>

Multipart for nHTTP Preparser (com.ibi.preparsers.XDMultiPartForNHTTP)

Syntax:

Multipart for nHTTP Preparser (com.ibi.preparsers.XDMultiPartForNHTTP)

142

com.ibi.preparsers.XDMultiPartForNHTTP

Description:

The Multipart for nHTTP preparser divides multipart documents into body and attachments.
This preparser can also be used with an nHTTP listener. This preparser must be last in the
chain. When used, the multipart message is broken up so that the body of the multipart
message is part 0 and subsequent attachments are 1 to n.

In a use case scenario, the Multipart for nHTTP preparser is useful when the incoming
message is a multipart document and the headers and attachment portions of the document
need to be extracted from the document for additional message processing.

Parameters:

Parameter Description

Keep Message Flat Determines whether to keep the body of the message as an array
of bytes. Select true or false from the drop-down list.

Message Header
Namespace

A special register namespace where message headers can be
found. If not supplied, HDR registers from the default namespace
will be used.

Payload Header
Namespace

A special register namespace into which any headers on the
extracted body part will be stored as HDR registers. If not
supplied, body part headers will be saved in the default
namespace.

Example:

1. Select the Multi Part For NHTTP (com.ibi.preparsers.XDMultiPartForNHTTP) preparser from
the Type drop-down list and click Next.

The configuration parameters pane opens.

2. Leave the Payload Header Namespace and Message Header Namespace fields blank.

3. Select false from the Keep Message Flat drop-down list and click Next.

The name and description pane opens.

4. Enter a name (for example, nhttpmultipart) and an optional description.

5. Click Finish.

4. Configuring HTTP Preparsers

HTTP Solutions Development Guide 143

6. Construct an inlet, for example, FileInlet, which is associated with a file listener and the
new preparser (nhttpmultipart).

7. Define a simple move route.

8. Define an outlet that consists of a File emitter, which emits the output document
(outmpart*.xml) to an output directory.

9. Build, deploy, and start the channel.

10.Use a multipart document for the input, which is generated from an email attachment. For
example:

content-type: multipart/mixed;
boundary="----=_Part_5_23514719.1234266657921"
content-length: 571
mime-version: 1.0
message-id: <17237217.1234266657984.JavaMail.soumya@ibi>
------=_Part_5_23514719.1234266657921
Content-Type: application/xml
Content-Transfer-Encoding: 7bit
Content-Disposition: attachment; filename=a.xml
<a>a
------=_Part_5_23514719.1234266657921
Content-Type: text/document
Content-Transfer-Encoding: 7bit
Content-Disposition: attachment; filename=b.xml
Content-Id: mydata1
b
------=_Part_5_23514719.1234266657921
Content-Type: text/document
Content-Transfer-Encoding: 7bit
Content-Disposition: attachment; filename=c.xml
Content-Id: mydata2
<c>c</c>
------=_Part_5_23514719.1234266657921-

When this input document is processed by the channel, an output document
(outmpart*.xml) is generated with the following contents:

<?xml version="1.0" encoding="ISO-8859-1" ?>

Multipart for nHTTP Preparser (com.ibi.preparsers.XDMultiPartForNHTTP)

144

Chapter5 Configuring HTTP Headers and Special
Registers

This section provides additional information regarding HTTP headers and special
registers.

In this chapter:

HTTP Header and SREG History

Issue to be Addressed

Special Registers and HTTP

HTTP Header and SREG History

In earlier versions, all HTTP receive headers were collected as special registers of type HDR.
These registers were examined by the process, which decided whether to create new HDR
registers or delete existing registers. When an HTTP emit agent was configured, the user had
the option to relay headers. If configured to relay, any registers of type HDR found in the
context, with a few specific exceptions, were made into outbound headers. If not configured to
relay, HDR registers were ignored.

If the emitted HTTP request document received a response with headers, these headers were
then converted into special registers of type HDR.

Issue to be Addressed

The existing technique makes it difficult to distinguish information when there are several HTTP
emit agents in a flow, or where it is desired to be able to selectively relay header information in
a gateway. Currently, the headers sent are filtered only by a pre-set list of registers not to be
sent.

For gateway flows, it is important to be able to group header information and to select and
operate upon these groups.

HTTP Solutions Development Guide 145

Special Registers and HTTP

Special register names can be preceded with a namespace prefix. The namespace is simply
the first part of the name before the first decimal. For example, register xyz is in the default
namespace, while register abc.xyz is in the abc namespace. This notation is compatible with
registers defined in the iWay Service Manager SP1 registry as well as existing notation. IWAF
context registers also follow this pattern, as does the iway.home register, which can be
considered as the home in the iWay namespace. Only register names that do not contain any
decimals are namespace-less, which is to say in the default namespace.

The HTTP/ASx listener is extended to place all incoming header information into a configured
namespace. If no namespace name is specified, the default namespace (none) is be used.
The HTTP/ASx emitter and the associated agents have new configuration parameters, which
are listed and described in the following table.

Parameter Role

request namespace The output headers are taken from the
configured namespace. This is a combo box,
enabling a user to select a pre-defined setting or
enter the name of a specific namespace as the
source of headers. Selections and their meaning
are:

[listener] - Select from the namespace
configured on the listener.

Note: The [listener] option is not applicable
to the listener itself.

[default] - Select from the default
namespace. The default namespace is one
with no namespace prefix.

[none] - Send no headers from special
registers, only send those generated by this
emitter.

Special Registers and HTTP

146

Parameter Role

response namespace If there is a response with headers, then the
incoming headers are placed in this namespace.
The selections and their meaning are:

[listener] - Use the namespace configured as
the response namespace on the listener.

Note: The [listener] option is not applicable
to the listener itself.

[default] - Use default namespace. The
default namespace is one with no
namespace prefix.

[none] - Create no special registers from the
input context, only send those generated
internally by this emitter.

Excluded Headers This is a comma delimited list (case-insensitive)
of headers that should not be sent with the
response, even if they are found in the response
header namespace.

A new agent called XDSREGNamespaceAgent, is available to perform the following operations
on registers in namespaces:

Copy - Duplicates registers from a source namespace to a destination namespace. After a
copy operation is performed, the registers are available in both namespaces.

Move - Moves registers from one namespace to another.

Delete - Deletes all registers in the namespace.

Exist - If any registers exist in the named namespace, pass the flow down the success
edge, else down the notfound edge.

The XDSREGNamespaceAgent offers from name and to name combo-box parameters. Each of
these parameters offers the [listener] and [default] options which are interpreted as described
above.

5. Configuring HTTP Headers and Special Registers

HTTP Solutions Development Guide 147

Special Registers and HTTP

148

Chapter6
Configuring Common Parameters

This section provides a reference for common configuration parameters used by iWay
Service Manager (iSM) components.

In this chapter:

Listener Configuration Parameters

Listener Configuration Parameters

The following table lists and describes common parameters used by the HTTP, Secure HTTP
(HTTPS), and nHTTP Server listeners.

Parameter Description

Whitespace Normalization Specifies how the parser treats whitespace in Element
content. Choose preserve to turn off all normalization as
prescribed by the XML Specification. Choose iWay 5.x
Compatibility for compatibility with earlier versions. The
compatibility mode is designed to remove newlines in
pretty-printed documents while preserving the whitespace
in text-only elements.

Accepts non-XML (flat) only If true, the listener expects non-XML (flat). Automatic
parsing is not performed.

Optimize Favoring Use this option to customize how the listener performs.
For smaller transactions, select performance. For large
input documents that could monopolize the amount of
memory used by iWay Service Manager, select memory.

HTTP Solutions Development Guide 149

Parameter Description

Multithreading Indicates the number of documents that can be
processed in parallel for this listener. Setting this to a
value of greater than 1 enables the listener to handle a
second request while an earlier request is still being
processed. The total throughput of a system can be
affected by the number of threads operating. Increasing
the number of parallel operations may not necessarily
improve throughput.

The default is 1.

The max value is 99.

Maximum Threads The parallel threads can grow to this count automatically
on demand. Over time, the worker count will decrease
back to the multithreading level. Use this parameter to
respond to bursts of activity.

Execution Time Limit Time limit for document execution (in seconds) before
cancellation is attempted. (Also see system property "Kill
Interval". This applies to agent stacks and sets a lower
limit for process flows.)

Default Java File Encoding The default encoding if the incoming message is not self-
declaring (that is, XML).

Listener Configuration Parameters

150

Parameter Description

Agent Precedence Sets the order by which iWay Service Manager selects
agents. iWay Service Manager selects the agent or agents
to process the document by searching through the
configuration dictionary. Usually, it looks for a document
entry in the configuration and when a match is found, the
agent specified in that document entry is selected. If a
matching document entry is not found, or no agent is
specified, the engine looks in the input protocol
configuration (listener). To have the processing agent
taken directly from the listener (thus ignoring the
document entry), use <listener> overrides <document>.

Possible values are <document> overrides <listener> and
<listener> overrides <document>.

The default value is <document> overrides <listener>.

Always reply to listener default If set to true, the default reply definition is used in
addition to defined replies.

Error Documents treated
normally

If set to true, error documents are processed by any
configured preemitters.

Listener is Transaction
Manager

If true, agents/services run within a local transaction
managed by the listener. In this case the process flow
serves as the transaction boundary and use of the fail
service or an error can trigger a rollback. The message is
considered to be acquired and does not roll back to the
original source. Use Retry Queues or other application-
specific services to handle such a case.

Record in Activity Log(s) If set to true, activity on this channel will be recorded in
the activity logs, otherwise the activity will not be
recorded.

AES Key If the channel will receive encrypted AFTI messages, set
the AES key (maximum 16 characters) to be used for
decryption.

6. Configuring Common Parameters

HTTP Solutions Development Guide 151

Parameter Description

Failed ReplyTo Flow Name of a published process flow to run if a message
cannot be emitted on an address in its reply address list.

Dead Letter Flow Name of a published process flow to run if an error cannot
be emitted on an address in its error address list.

Channel Failure Flow Name of published process flow to run if this channel
cannot start or fails during message use. The server will
attempt to call this process flow during channel close
down due to the error.

Startup Dependencies A comma-separated list of channel names that must be
started before this one is called.

Listener Configuration Parameters

152

Chapter7 Configuring iWay Service Manager
Components

During the HTTP solutions development process, you are required to configure listeners
and services using iWay Service Manager (iSM). This section provides the steps that are
needed to access and configure these iSM components. Descriptions of the parameters
for each component are provided within the corresponding sections.

In this chapter:

Configuring Listeners

Configuring Services

Configuring Listeners

This section describes how to configure listeners using iSM.

Procedure: How to Configure a Listener

1. Ensure that iSM is running.

On Windows, you can start iSM by clicking Start, selecting Programs, iWay 7.0 Service
Manager, and then Start Service Manager for the configuration you are currently using.

For more information on starting and stopping iSM, see the iWay Service Manager User
Guide.

2. Open a browser window and point to the following URL:

http://host:port/ism

where:

host

Is the host machine on which iSM is installed.

port

Is the port on which iSM is listening. The default port is 9999.

On Windows, alternatively, you can click Start, select Programs, iWay 7.0 Service Manager,
and then click Console.

A logon dialog box opens.

3. Type a user name and password for the configuration you are using, and click OK.

HTTP Solutions Development Guide 153

The iWay Service Manager Administration Console opens.

4. Click Registry in the top pane, and then click Listeners in the left pane, as shown in the
following image.

Configuring Listeners

154

The Listeners pane opens, as shown in the following image.

The table provided lists all the previously configured listeners and a brief description for
each.

5. Click Add.

The Select listener type pane opens, as shown in the following image.

6. Select the type of listener that you want to configure (for example, HTTP 1.0 [deprecated]
from the Type drop-down list and click Next.

7. Configuring iWay Service Manager Components

HTTP Solutions Development Guide 155

A configuration parameters pane for the selected listener opens. For example, the
following image shows a portion of the HTTP 1.0 listener configuration pane.

Note: The parameters indicated with an asterisk (*) in the listener configuration pane are
required.

7. Provide the appropriate values for the listener parameters. In most cases, you will need to
scroll down the page to view all of the available parameters for the selected listener.

8. Click Next at the bottom of the page to continue.

A listener name and description pane opens, as shown in the following image.

9. Enter a name for the selected listener and a brief description (optional).

Configuring Listeners

156

10. Click Finish.

You return to the Listeners pane, where the new listener that has been configured is
added to the table of available listeners.

You can use this listener as part of your channel configuration where the business logic
will be applied to the received messages.

Configuring Services

This section describes how to configure services using iSM.

Procedure: How to Configure a Service

1. Ensure that iSM is running.

On Windows, you can start iSM by clicking Start, selecting Programs, iWay 7.0 Service
Manager, and then Start Service Manager for the configuration you are currently using.

For more information on starting and stopping iSM, see the iWay Service Manager User
Guide.

2. Open a browser window and point to the following URL:

http://host:port/ism

where:

host

Is the host machine on which iSM is installed.

port

Is the port on which iSM is listening. The default port is 9999.

On Windows, alternatively, you can click Start, select Programs, iWay 7.0 Service Manager,
and then click Console.

A logon dialog box opens.

3. Type a user name and password for the configuration you are using, and click OK.

The iWay Service Manager Administration Console opens.

7. Configuring iWay Service Manager Components

HTTP Solutions Development Guide 157

4. Click Registry in the top pane, and then click Services in the left pane, as shown in the
following image.

Configuring Services

158

The Services pane opens, as shown in the following image.

The table provided lists all the previously configured services and a brief description for
each.

5. Click Add.

A select service type pane opens, as shown in the following image.

6. Select the type of service that you want to configure (for example, HTTP Emit Agent
{com.ibi.agents.XDHTTPEmitAgent} from the Type drop-down list and click Next.

7. Configuring iWay Service Manager Components

HTTP Solutions Development Guide 159

A configuration parameters pane for the selected service opens. For example, the
following image shows a portion of the HTTP Emit Agent service configuration pane.

Note: The parameters indicated with an asterisk (*) in the service configuration pane are
required.

7. Provide the appropriate values for the service parameters. In most cases, you will need to
scroll down the page to view all of the available parameters for the selected service.

8. Click Next at the bottom of the page to continue.

A service name and description pane opens, as shown in the following image.

9. Enter a name for the selected service and a brief description (optional).

10. Click Finish.

Configuring Services

160

You return to the Services pane, where the new service that has been configured is added
to the table of available services.

7. Configuring iWay Service Manager Components

HTTP Solutions Development Guide 161

Configuring Services

162

Legal and Third-Party Notices

SOME TIBCO SOFTWARE EMBEDS OR BUNDLES OTHER TIBCO SOFTWARE. USE OF SUCH
EMBEDDED OR BUNDLED TIBCO SOFTWARE IS SOLELY TO ENABLE THE FUNCTIONALITY (OR
PROVIDE LIMITED ADD-ON FUNCTIONALITY) OF THE LICENSED TIBCO SOFTWARE. THE
EMBEDDED OR BUNDLED SOFTWARE IS NOT LICENSED TO BE USED OR ACCESSED BY ANY
OTHER TIBCO SOFTWARE OR FOR ANY OTHER PURPOSE.

USE OF TIBCO SOFTWARE AND THIS DOCUMENT IS SUBJECT TO THE TERMS AND CONDITIONS
OF A LICENSE AGREEMENT FOUND IN EITHER A SEPARATELY EXECUTED SOFTWARE LICENSE
AGREEMENT, OR, IF THERE IS NO SUCH SEPARATE AGREEMENT, THE CLICKWRAP END USER
LICENSE AGREEMENT WHICH IS DISPLAYED DURING DOWNLOAD OR INSTALLATION OF THE
SOFTWARE (AND WHICH IS DUPLICATED IN THE LICENSE FILE) OR IF THERE IS NO SUCH
SOFTWARE LICENSE AGREEMENT OR CLICKWRAP END USER LICENSE AGREEMENT, THE
LICENSE(S) LOCATED IN THE "LICENSE" FILE(S) OF THE SOFTWARE. USE OF THIS DOCUMENT
IS SUBJECT TO THOSE TERMS AND CONDITIONS, AND YOUR USE HEREOF SHALL CONSTITUTE
ACCEPTANCE OF AND AN AGREEMENT TO BE BOUND BY THE SAME.

This document is subject to U.S. and international copyright laws and treaties. No part of this
document may be reproduced in any form without the written authorization of TIBCO Software
Inc.

TIBCO, the TIBCO logo, the TIBCO O logo, FOCUS, iWay, Omni-Gen, Omni-HealthData, and
WebFOCUS are either registered trademarks or trademarks of TIBCO Software Inc. in the
United States and/or other countries.

Java and all Java based trademarks and logos are trademarks or registered trademarks of
Oracle Corporation and/or its affiliates.

All other product and company names and marks mentioned in this document are the property
of their respective owners and are mentioned for identification purposes only.

This software may be available on multiple operating systems. However, not all operating
system platforms for a specific software version are released at the same time. See the
readme file for the availability of this software version on a specific operating system platform.

THIS DOCUMENT IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

THIS DOCUMENT COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS.
CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL
BE INCORPORATED IN NEW EDITIONS OF THIS DOCUMENT. TIBCO SOFTWARE INC. MAY MAKE
IMPROVEMENTS AND/OR CHANGES IN THE PRODUCT(S) AND/OR THE PROGRAM(S)
DESCRIBED IN THIS DOCUMENT AT ANY TIME.

 163

THE CONTENTS OF THIS DOCUMENT MAY BE MODIFIED AND/OR QUALIFIED, DIRECTLY OR
INDIRECTLY, BY OTHER DOCUMENTATION WHICH ACCOMPANIES THIS SOFTWARE, INCLUDING
BUT NOT LIMITED TO ANY RELEASE NOTES AND "READ ME" FILES.

This and other products of TIBCO Software Inc. may be covered by registered patents. Please
refer to TIBCO's Virtual Patent Marking document (https://www.tibco.com/patents) for details.

Copyright © 2021. TIBCO Software Inc. All Rights Reserved.

164

	Contents
	1. Introducing iWay HTTP Solutions
	HTTP Services Overview
	What is HTTP?
	Native HTTP
	Secure HTTPS
	Non-blocking nHTTP

	iWay Service Manager Suite of HTTP Tools
	Client Suite
	Sample Applications
	Server Suite
	Sample Applications
	Common Listener Functionality

	Table of HTTP Listeners
	Table of HTTP Emitters
	Table of HTTP Services
	Table of HTTP Preparsers

	2. Configuring HTTP Components
	HTTP
	HTTP Listener Parameters
	Reference: HTTP Listener Special Registers
	HTTP Emitter Parameters

	nHTTP
	nHTTP REST Support
	iWay Providers
	Features
	Configuring nHTTP Listeners
	Procedure: How to Configure an nHTTP Listener
	Reference: nHTTP Listener Configuration Parameters
	Reference: Special Registers for the nHTTP Listener

	Associating Session Information With an HTTP Interaction
	Configuring Sessions on an nHTTP Listener
	Using Session Information in an Application
	HTTP Session Invalidator Service (com.ibi.agents.XDHttpSessionInvalidator)

	Configuring Emit Services
	Procedure: How to Configure an HTTP Nonblocking Emit Service
	Reference: HTTP Nonblocking Emitter Configuration Parameters
	Response Edges for nHTTPEmitAgent

	nHTTP Samples
	nHTTP Listener Event Schema
	Supported nHTTP Requests
	Maximum Allowed Connections
	SSL Host Verification

	Sonic Message Queuing
	Queuing Messages With Sonic
	Registering Sonic Client JAR Files
	iWay Adapter for Sonic MQ Listener Capability
	Procedure: How to Configure Reconnect Support

	Configuring a Sonic Listener Using TCP or HTTP
	Sonic Listener Properties for TCP or HTTP

	Sonic TCP Listener Configuration Example
	Configuring a Sonic Listener Using SSL
	Setting Java System Properties for Sonic SSL

	Sonic Listener Properties for SSL
	Reference: Sonic Listener Special Registers
	Configuring a Sonic Listener Using SSL Client Certificate
	Reference: JVM Options for SSL With Certificates
	Sonic Listener Properties for SSL With Client Certificate

	Configuring a Sonic Listener Using HTTPS
	iWay Adapter for Sonic Emitter Functionality
	Configuring a Sonic Emitter Using TCP or HTTP
	Sonic Emitter Properties for TCP or HTTP
	Sonic Emitter Configuration Example

	Configuring a Sonic Emitter Using SSL
	Reference: JVM Options for SSL With Certificates
	Sonic Emitter Properties for SSL With Certificate
	Procedure: How to Configure Sonic Emitter Properties Using HTTPS

	Sonic Message Queuing Troubleshooting

	3. Configuring iWay HTTP Services (Adapters)
	HTTP Services Configuration Overview
	HTTP Services
	Add Attachment From File Service (com.ibi.agents.XDAddAttachmentFromFileAgent)
	Add Attachment Service (com.ibi.agents.XDAddAttachmentAgent)
	Attachment Operations Service (com.ibi.agents.XDAttachOps)
	Attachment to Document Service (com.ibi.agents.XDAttachmentToDocAgent)
	Cross-Origin Resource Sharing Service (com.ibi.agents.XDCorsAgent)
	Examples

	Document to Attachment Service (com.ibi.agents.XDAttachmentFromDocAgent)
	HTTP Cookie Agent Service (com.ibi.agents.XDCookieAgent)
	HTTP Emit Service (com.ibi.agents.XDHTTPEmitAgent)
	HTTP Nonblocking Emit Service (com.ibi.agents.XDNHttpEmitAgent)
	HTTP Read Agent (com.ibi.agents.XDHTTPReadAgent)
	HTTP ReST Routing Service (XDReSTRouteAgent and XDReSTRouteReviewer)
	HTTP Session Invalidator Service (com.ibi.agents.XDHttpSessionInvalidator)
	OAuth 1.0 Authentication Service
	OAuth 2.0 Authentication Service
	WS HTTP Client Agent (com.ibi.agents.XDWSHttpClientAgent)

	4. Configuring HTTP Preparsers
	HTTP Preparser Configuration Overview
	HTTP Preparser (com.ibi.preparsers.XDHTTPpreParser)
	Multipart for nHTTP Preparser (com.ibi.preparsers.XDMultiPartForNHTTP)

	5. Configuring HTTP Headers and Special Registers
	HTTP Header and SREG History
	Issue to be Addressed
	Special Registers and HTTP

	6. Configuring Common Parameters
	Listener Configuration Parameters

	7. Configuring iWay Service Manager Components
	Configuring Listeners
	Procedure: How to Configure a Listener

	Configuring Services
	Procedure: How to Configure a Service

	Legal and Third-Party Notices

