
iWay .NET Technology Adapter
User's Guide
Version 7.0.x and Higher

August 16, 2018

Active Technologies, EDA, EDA/SQL, FIDEL, FOCUS, Information Builders, the Information Builders logo, iWay, iWay
Software, Parlay, PC/FOCUS, RStat, Table Talk, Web390, WebFOCUS, WebFOCUS Active Technologies, and WebFOCUS
Magnify are registered trademarks, and DataMigrator and Hyperstage are trademarks of Information Builders, Inc.

Adobe, the Adobe logo, Acrobat, Adobe Reader, Flash, Adobe Flash Builder, Flex, and PostScript are either registered
trademarks or trademarks of Adobe Systems Incorporated in the United States and/or other countries.

Due to the nature of this material, this document refers to numerous hardware and software products by their
trademarks. In most, if not all cases, these designations are claimed as trademarks or registered trademarks by their
respective companies. It is not this publisher's intent to use any of these names generically. The reader is therefore
cautioned to investigate all claimed trademark rights before using any of these names other than to refer to the product
described.

Copyright © 2018, by Information Builders, Inc. and iWay Software. All rights reserved. Patent Pending. This manual, or
parts thereof, may not be reproduced in any form without the written permission of Information Builders, Inc.

Contents

Preface . 7

Documentation Conventions .8

Related Publications . 8

Customer Support . 8

Help Us to Serve You Better .9

User Feedback . 12

Information Builders Consulting and Training . 12

1. Introducing the iWay .NET Technology Adapter . 13

iWay .NET Technology Adapter Overview . 13

Defining and Understanding User Proficiency Levels. 14

Installing the iWay .NET Technology Adapter .14

Required Installation Files. .15

Required User Provided Files. 16

Sample Files. 16

Understanding the Technology of the iWay .NET Adapter . 17

Session Support. 19

Constructor. 19

Loading Assemblies Overview. .21

Parameters and Data Types. 22

Serialization. .22

Method States. 22

Calling COM Objects. .22

Component Information for the iWay .NET Technology Adapter . 23

iWay Explorer. .23

iWay Service Manager. 23

iWay Business Services Provider. 23

2. Supported Platforms Matrix for iWay .NET Technology Adapter25

Support Overview for iWay .NET Technology Adapter . 25

Supported Versions for Microsoft .NET . 26

Operating Systems for iWay .NET Technology Adapter .26

Database Drivers for iWay .NET Technology Adapter . 27

iWay .NET Technology Adapter User's Guide 3

Java Development Kit (JDK) for iWay .NET Technology Adapter . 27

Communication Modes for iWay .NET Technology Adapter . 27

Object Types and Interfaces for iWay .NET Technology Adapter . 27

Communication Types for iWay .NET Technology Adapter . 28

Supported Operations for iWay .NET Technology Adapter . 28

Data Types Support .28

Other Functions for iWay .NET Technology Adapter . 29

Known Limitations for iWay .NET Technology Adapter . 29

Restrictions for .NET Framework . 30

Common Language Run-time Scope for .NET . 34

Related Information for Specific iWay Releases . 34

3. Design Time Concepts and Configuration Tasks . 35

Exploring Assemblies . 35

Starting iWay Explorer . 36

Adding the .NET Adapter to iWay Explorer . 40

Working With a Target . 41

Application Domain Boundary. .45

Accessing .NET Classes in iWay Explorer. 45

Calling Distributed Assemblies on Different Machines. .45

Determining if a Method can be Called. .46

Understanding the Assembly Viewer in iWay Explorer . 47

Controlling the Adapter Behavior Using a Properties File .49

Understanding the Format of the Properties File. 50

Usage Considerations and Examples. 52

Display Assemblies, Hiding Classes and Methods, and Disabling Cache.57

Sample Properties File. .62

4. Run Time Concepts and Configuration Tasks . 65

Run Time Implementation .65

Understanding Design Time and Run Time Targets . 66

Using the Persist Connection Parameter . 66

Understanding the Relationship Between Java and .NET . 67

Invoking the iWay .NET Technology Adapter .67

Contents

4 Information Builders

Understanding Run Time Types. 68

Invoking the iWay .NET Technology Adapter Through an iWay Business Service. 68

Invoking the iWay .NET Technology Adapter Through a Process Flow.73

5. Configuring the Adapter in an iWay Environment . 93

Configuring the Adapter in iWay Service Manager . 93

A. Samples and Reference Guide . 97

Using COM Interop in the iWay .NET Technology Adapter . 97

Generating XML Schema in Legacy Mode . 98

ComposeDocMethod Function. 99

ComposeRpcMethod Function. 99

Generating XML Schema in the Current Adapter Version . 100

Complex Custom Type Representation Rules. 102

Namespace and Target Namespace. 103

Formats of XML Request and Response Schemas. .107

Modifying XML Schemas . 108

Constructor Schemas. 109

Method Schemas. 110

Schema Properties Reference. 111

Expanding Nodes Based on Different Complex Types. 113

System.Collections.ArrayList Type. .113

System.Collections.Generic.Dictionary Type. 114

Array or System.Collections.Generic.List Type. 114

Pointer Type. 115

Constructor Type. 115

Complete XML Request Schema. 116

Additional Sample XML Documents . 117

Constructor Example. 117

Array Example. 117

Pointer Example. 118

Dictionary Example. .119

ArrayList Example. .120

XMLElement Example. 120

Contents

iWay .NET Technology Adapter User's Guide 5

List Example. 121

Getting SESSIONID Example. 121

Using SESSIONID Example. 122

B. Known Issues and Limitations . 123

Supported and Unsupported Areas .123

.Net Application Essentials. .123

.Net Data and Modeling. 123

.Net Framework 4.5 and 4 Scope List. 124

Configuration. .125

Common Language Runtime Scope. 128

Tested Application Scope .128

Contents

6 Information Builders

Preface

This document is written for system integrators who develop client interfaces between .NET
and other applications. It assumes that readers have a general understanding of Microsoft
Windows and UNIX systems as well as some experience using Enterprise Information System
(EIS) and integration products and an understanding of the products with which this software
integrates, general knowledge of .NET applications and the .NET framework, and knowledge of
integration processes and data models for the required application area.

Note: This Release 7.0.x content is currently being updated to support iWay Release 8.0.x
software. In the meantime, it can serve as a reference for your use of iWay Release 8. If you
have any questions, please contact Customer_Success@ibi.com.

How This Manual Is Organized

This manual includes the following chapters:

Chapter/Appendix Contents

1 Introducing the iWay .NET
Technology Adapter

Provides an overview of the iWay .NET Technology
Adapter and how it works.

2 Supported Platforms Matrix
for iWay .NET Technology
Adapter

Specifies version, platform, and database support
information for iWay .NET Technology Adapter.

3 Design Time Concepts and
Configuration Tasks

Describes design time concepts and configuration
tasks for the iWay .NET Technology Adapter.

4 Run Time Concepts and
Configuration Tasks

Describes run time concepts and configuration
tasks for the iWay Technology Adapter for .NET.

5 Configuring the Adapter in an
iWay Environment

Describes how to configure the adapter in the iWay
Service Manager Administration Console.

A Samples and Reference
Guide

Provides samples and reference information for the
iWay .NET Technology Adapter.

B Known Issues and
Limitations

Describes known issues and limitations for
iWay .NET Technology Adapter.

iWay .NET Technology Adapter User's Guide 7

mailto:Customer_Success@ibi.com

Documentation Conventions

The following table describes the documentation conventions that are used in this manual.

Convention Description

THIS TYPEFACE

or

this typeface

Denotes syntax that you must enter exactly as shown.

this typeface Represents a placeholder (or variable), a cross-reference, or an
important term. It may also indicate a button, menu item, or dialog
box option that you can click or select.

underscore Indicates a default setting.

Key + Key Indicates keys that you must press simultaneously.

{ } Indicates two or three choices. Type one of them, not the braces.

| Separates mutually exclusive choices in syntax. Type one of them,
not the symbol.

... Indicates that you can enter a parameter multiple times. Type only
the parameter, not the ellipsis (...).

.

.

.

Indicates that there are (or could be) intervening or additional
commands.

Related Publications

Visit our Technical Content Library at http://documentation.informationbuilders.com. You can
also contact the Publications Order Department at (800) 969-4636.

Customer Support

Do you have questions about this product?

Documentation Conventions

8 Information Builders

http://documentation.informationbuilders.com

Join the Focal Point community. Focal Point is our online developer center and more than a
message board. It is an interactive network of more than 3,000 developers from almost every
profession and industry, collaborating on solutions and sharing tips and techniques. Access
Focal Point at http://forums.informationbuilders.com/eve/forums.

You can also access support services electronically, 24 hours a day, with InfoResponse
Online. InfoResponse Online is accessible through our website, http://
www.informationbuilders.com. It connects you to the tracking system and known-problem
database at the Information Builders support center. Registered users can open, update, and
view the status of cases in the tracking system and read descriptions of reported software
issues. New users can register immediately for this service. The technical support section of
http://www.informationbuilders.com also provides usage techniques, diagnostic tips, and
answers to frequently asked questions.

Call Information Builders Customer Support Services (CSS) at (800) 736-6130 or (212)
736-6130. Customer Support Consultants are available Monday through Friday between 8:00
a.m. and 8:00 p.m. EST to address all your questions. Information Builders consultants can
also give you general guidance regarding product capabilities. Please be ready to provide your
six-digit site code number (xxxx.xx) when you call.

To learn about the full range of available support services, ask your Information Builders
representative about InfoResponse Online, or call (800) 969-INFO.

Help Us to Serve You Better

To help our consultants answer your questions effectively, be prepared to provide
specifications and sample files and to answer questions about errors and problems.

The following tables list the environment information our consultants require.

Platform

Operating System

OS Version

JVM Vendor

JVM Version

The following table lists the deployment information our consultants require.

Preface

iWay .NET Technology Adapter User's Guide 9

http://forums.informationbuilders.com/eve/forums
http://www.informationbuilders.com
http://www.informationbuilders.com
http://www.informationbuilders.com

Adapter Deployment For example, iWay Business Services Provider, iWay
Service Manager

Container For example, WebSphere

Version

Enterprise Information System
(EIS) - if any

EIS Release Level

EIS Service Pack

EIS Platform

The following table lists iWay-related information needed by our consultants.

iWay Adapter

iWay Release Level

iWay Patch

The following table lists additional questions to help us serve you better.

Request/Question Error/Problem Details or Information

Did the problem arise through
a service or event?

Provide usage scenarios or
summarize the application that
produces the problem.

When did the problem start?

Can you reproduce this
problem consistently?

Describe the problem.

Help Us to Serve You Better

10 Information Builders

Request/Question Error/Problem Details or Information

Describe the steps to
reproduce the problem.

Specify the error message(s).

Any change in the application
environment: software
configuration, EIS/database
configuration, application, and
so forth?

Under what circumstance does
the problem not occur?

The following is a list of error or problem files that might be applicable.

Input documents (XML instance, XML schema, non-XML documents)

Transformation files

Error screen shots

Error output files

Trace files

Service Manager package or archive to reproduce problem

Custom functions and agents in use

Diagnostic Zip

Transaction log

Archive File

IIA

For information on tracing, see the iWay Service Manager User's Guide.

Preface

iWay .NET Technology Adapter User's Guide 11

User Feedback

In an effort to produce effective documentation, the Technical Content Management staff
welcomes your opinions regarding this document. You can contact us through our website,
http://documentation.informationbuilders.com/connections.asp.

Thank you, in advance, for your comments.

Information Builders Consulting and Training

Interested in training? Information Builders Education Department offers a wide variety of
training courses for this and other Information Builders products.

For information on course descriptions, locations, and dates, or to register for classes, visit
our website (http://education.informationbuilders.com) or call (800) 969-INFO to speak to an
Education Representative.

User Feedback

12 Information Builders

http://documentation.informationbuilders.com/connections.asp
http://education.informationbuilders.com

Chapter1 Introducing the iWay
.NET Technology Adapter

The following topics provide an overview of the iWay .NET Technology Adapter and how it
works, including descriptions of key features and functionality.

In this chapter:

iWay .NET Technology Adapter Overview

Installing the iWay .NET Technology Adapter

Understanding the Technology of the iWay .NET Adapter

Component Information for the iWay .NET Technology Adapter

iWay .NET Technology Adapter Overview

The iWay .NET Technology Adapter enables .NET developers to create integration endpoints
using their familiar design language or to reuse existing endpoints. Code written in a source
language, such as Visual C# or Visual Basic .NET, that complies into Common Language
Infrastructure (CLI) code can be interpreted and the methods invoked from Java executables.
The CLI code runs in an instance of the Common Language Runtime (CLR) and data can be
passed through the adapter in either direction (inbound or outbound.

This version of the adapter introduces support for constructors, sessions, and database
connections. In addition, enhanced metadata capabilities are provided.

iWay .NET Technology Adapter is designed to work with method calls contained in .NET
assemblies. The source code input is not used only the Common Intermediate Language (CIL).

The adapter has been tested with .NET framework runtime 3.5, 4.0 and 4.5 on Windows client
and server machines. No other platforms are currently supported.

While the new enhancements open new areas of the .NET framework to use with the adapter,
some parts of the framework remain out of scope and are explicitly not supported:

Screen or presentation elements or Windows Presentation Foundation

.NET remoting, .NET web services, or Windows Communication Foundation

Windows services or Windows Workflow

ASP .NET

iWay .NET Technology Adapter User's Guide 13

Executable files

Do not use any class types that attempt to use Application environment variables. They will
return the iway_home directory and not the expected assembly. All Assembly environment
variables function as documented.

Known Issues and Limitations

For more information on supported functionality, usage considerations, known issues and
limitations, see Known Issues and Limitations on page 123.

Defining and Understanding User Proficiency Levels

There are three different user levels that should be considered when using the iWay .NET
Technology Adapter:

Basic User. Performs beginner-level tasks and runs (explores) only specific Assemblies.
Basic user tasks include locating Assemblies through iWay Explorer, creating XML
schemas, retrieving data, creating XML instances, and executing XML request documents.
The types of tasks that can be expected from a basic user are described in Design Time
Concepts and Configuration Tasks on page 35.

Development User. Creates integration based on existing Assemblies. Explores multiple
Assemblies, understands parameters, return types, connections, and is comfortable using
these objects without a guide. This user has a more detailed understanding of parameter
types and how they appear in iWay Explorer, what objects can be exposed through XML,
and what can be exposed only by a program (writing an agent). The types of tasks that can
be expected from a basic user are described in Design Time Concepts and Configuration
Tasks on page 35 and Run Time Concepts and Configuration Tasks on page 65.

Professional Developer. Creates new code and develops integration. Develops .NET
programs or Java programs and understands more about how to design for the adapter.
Usage and knowledge of terms such as protected, private, public, declarations, and other
terms are mandatory for this type of user. All of the topics and tasks in this documentation
would be applicable to a professional developer.

Understanding these types of users and their specific roles can help define the expected
usage scope for the iWay .NET Technology Adapter and its implementation in your organization.

Installing the iWay .NET Technology Adapter

Microsoft .NET Framework Version 3.5 and higher is the minimum requirement for running this
release of the iWay .NET Technology Adapter.

Installing the iWay .NET Technology Adapter

14 Information Builders

In iWay Service Manager (iSM) Version 7.0, the iWay .NET Technology Adapter supports 32-
and 64-bit JVM environments. The required components for both environments are
automatically installed. During the iSM installation process, ensure that Microsoft .NET is
selected under the Technology Adapters category in the Adapter Selection pane, as shown in
the following image.

Required Installation Files

The iSM installation process installs the following adapter components in the <ism_home>\lib
directory:

iwdotnet.jar. Exposes design time and runtime interfaces for the iWay .NET Technology
Adapter.

iwdotnet32.dll or iwdotnet64.dll. Export the JNI methods that are required by the Java
classes, which implement the adapter and act as a common language runtime host.

Note: Both versions of the iwdotnet DLL file are shipped with the adapter. Depending on
the JVM, the adapter will select the appropriate DLL file to load. A 64-bit JVM can load 32 -
and 64-bit Assemblies. A 32-bit JVM can only load 32-bit Assemblies no matter the
platform type (32 - or 64-bit).

iwclr.dll. Contains the functionality to explore Assemblies during design time, load and
invoke classes and methods at runtime, and implement the optional custom attributes
used for Assembly annotation.

Note: The installation will also install in the Windows Global Assembly Cache an iwclr
module with a strongly named Assembly with key and version. This GAC resident copy of
iwclr enables the adapter to reload Assemblies and to introspect GAC resident Assemblies
when requested.

The following diagram illustrates the runtime architecture of the iWay .NET Technology Adapter
when performing services that interact directly with a .NET application.

1. Introducing the iWay .NET Technology Adapter

iWay .NET Technology Adapter User's Guide 15

The iWay .NET Technology Adapter allows you to expose Microsoft .NET Assemblies in a J2EE
environment. Unmanaged COM components may be invoked through a .NET Run Time Callable
Wrapper (RCW).

Required User Provided Files

An instance of J2EE.jar, which is dated from 2009 or later is required.

The iWay .NET Technology Adapter has been tested with Microsoft .NET Framework Version 4.5
and 4.0, on both client and server machines. The CLI depends on class libraries that cannot
be checked at runtime. Ensure the features of the framework that the deployed code will
execute are present and installed on the current system before proceeding.

Sample Files

The iWay .NET Technology Adapter installs the following sample .NET Assemblies in the
<ism_home>\etc\samples\dotnet\bin directory:

Complex.dll. Nested classes sample.

Math.dll. Using mathematical functions.

Misc.dll. Parameter decoration sample.

scriptor.dll. Sample text functions.

SubComplex.dll. A subclass of the Complex sample.

These precompiled Microsoft .NET Assemblies can be used for adapter testing and verification
purposes.

Installing the iWay .NET Technology Adapter

16 Information Builders

Understanding the Technology of the iWay .NET Adapter

The iWay .NET Technology Adapter uses the classes in the Reflection namespace of the.NET
class libraries. These classes enable loading an Assembly, and obtaining information from the
loaded Assembly about the classes, methods, interfaces, and data types of the Assembly.
This information from Reflection will be used to create XML schemas. At runtime, an instance
of the .NET Common Language Runtime (CLR) will be instantiated to execute the selected
method or methods in the Assembly.

Unlike static compiled code, dynamic code does not have access to all the field values stored
in the Assembly, only the types and methods obtained from the Reflection API.

The Reflection API requires that the classes or methods be Serializable and that the member
to be introspected be public. Private methods are always skipped and returned as private with
no body.

Terminology Used With the iWay .NET Technology Adapter

The terms in this section are used with reference to the ECMA international and Microsoft
documentation on the C# and Visual Basic languages, and to the Common language
infrastructure. For more information on the languages and runtime of .NET, refer to these
sources.

Accessibility Domain. A defined text placed before each class, member or variable,
defining the visibility and usage. Public methods can be inspected, Private are hidden, and
so on. Refer to the language specific documentation for the proper syntax to use for the
method to be invoked.

Application Domain. A container for the types and class libraries used in a particular
application. For the use of the .NET adapter, libraries can be loaded from different
application domains but the adapter itself does not use an application domain.

Assembly. A configuration of code and resources created by a complier to implement
functionality.

Class. A class is a container object that logically organizes data, functions, or
combinations. A class physically is a location in memory, it is a pass by reference object,
containing fields, methods, properties, and so on. A class can be instantiated by a
constructor.

Class Library. An Assembly that contains code that can be used by other Assemblies, often
contained in an Assembly.

Common Type System. The underlying type system that unifies the representation and
storage of objects and data across languages within .NET.

1. Introducing the iWay .NET Technology Adapter

iWay .NET Technology Adapter User's Guide 17

Constant. Text values embedded in a class or member.

Constructor. A class member that can be used to create a new instance of the class.

Field. A data holding member of a class or structure.

Method. A member of a class that performs an operation on an object type.

Object. A location in memory that has been created by a template, either class or structure
or other.

Program. Defined here a stand alone, portable execution format executable for the .NET
framework.

Property. A data holding member of a class or structure that can queried or set.

For a complete list of development sections of .NET, see the Microsoft .NET Framework 4.5
Development Guide and the Framework Design Guides for best practices.

For the adapter, it is a recommended practice that multiple application domains referencing
the same types should not be loaded at the same time. The application domain boundary is at
the Assembly level.

Do not use any class types that attempt to use Application environment variables. They will
return the iway_home directory and not the expected Assembly. All Assembly environment
variables function as documented.

The following objects are introspected dynamically:

Assembly. Retrieves the information on the Assembly and the classes in the Assembly. The
Assembly scope is the highest level of adapter application support.

Classes. Retrieves the public methods of each public class.

Method. Retrieves the name, parameters and the return type.

Field. Retrieves the information on fields defined in methods and classes.

Parameter. Retrieves the information on parameters such as type, in, out, or required.

The iWay .NET Technology Adapter supports only .NET Assemblies or .NET class libraries as
target destination types. PE format executables are not acceptable as input and will return an
error message.

Only classes and methods with accessibility domain of public will be available through the
adapter. The adapter will accept default and overloaded constructors, provided the .NET
runtime libraries are available.

Understanding the Technology of the iWay .NET Adapter

18 Information Builders

Constant or other text defined in classes is usually not returned after introspection, so explicit
variables that accept input must be defined. The .NET using clause, combined with a type
variable, is often not returned, declare an explicit type instead.

Session Support

Without Session behavior, the adapter operates only in stateless mode, where all parameters
and variable values persist only for the duration for a XML document open tag and close tag on
the document level.

During a cached session, the adapter will attempt to generate a state for a given Assembly,
and the class instance properties will be persisted, so the ability to perform routines with
counters, saved variables, and other work items is enabled.

Cache and session behavior can be controlled on the Assembly or method level. Hiding
Assemblies or methods is available locally or globally as well.

For more information on how caching works, see Constructor on page 19. Only classes with
constructors are eligible to run within sessions. The constructor can be non-stated (default) or
explicit (overloaded).

Constructor

A constructor is a special section of a non static class that creates an instance of the class.
There are two types of constructors that can be used with the adapter: default and overloaded.

A default constructor has no parameters, and overloaded constructor has one or more
parameters. Default:

class foo
{
foo(){
}
}
Overloaded
class foo
{
foo(string s){
s = new string(' ',5);
}
}

A static class must be declared explicitly as static:

1. Introducing the iWay .NET Technology Adapter

iWay .NET Technology Adapter User's Guide 19

static class sfoo
{
string getfooName() {
string s = "thefoo";
return s;
}
}

If a class has a constructor, then when calling a constructor from an XML request document
(and for an overloaded constructor with the required variables), the adapter will attempt to
construct and cache the object. If the constructor operation on the class is successful, then an
Instance of the class is created and the adapter will return a Session ID in the XML response
document.

When using the Assembly object with a method operation, using the Session ID reuses the
same Assembly instance object. Using the Assembly object to call a method without a Session
ID or with an invalid Session ID, causes the adapter to call the constructor on the object as
new, without a session. The Session ID is the only reference to the cached Assembly instance.
A session will end when the adapter is removed from the iWay runtime environment.

Ensure that the Persist Connection check box is selected during the configuration of adapter
target properties in iWay Integration Tools (iIT) or the iWay Web Registry Console to use the
session capability.

Understanding the Technology of the iWay .NET Adapter

20 Information Builders

Loading Assemblies Overview

In order to generate request and response schemas for a method of a target .NET assembly,
you have to know what methods the .NET assembly can support and what kind of input and
output data types are used for a method. Moreover, you also need to know related data types
for custom data types. To implement the purpose, the working application domain has to load
the target .NET assembly and its related assemblies (for example, base class assembly,
derived class assemblies, and so on).

The following logic process is used to handle the AssemblyResolve event.

A target assembly may define multiple classes, a class may have multiple public methods, and
two schemas are used to one method. In order to hold all schemas for a target assembly, you
use an XML document.

1. Introducing the iWay .NET Technology Adapter

iWay .NET Technology Adapter User's Guide 21

Parameters and Data Types

The iWay .NET Technology Adapter will return compatible data types for integration processing
as best as possible. Some methods cannot be refactored for Java usage. If a parameter has a
type of System.Object, then there is no good way of passing a .NET object from Java to .NET for
invoking this method.

The adapter supports all Common Language Runtime (CLR) built in types and custom types,
but not all types can be serialized.

When building a response schema, the adapter determines the response type from the .NET
data type. If the .NET return type is a complex type that cannot be inferred, then the result will
be anyType in the schema.

Serialization

It is not possible to use the .NET XML serializers in an integration context. If a Datatable or
DataSet object is used in a method, then it is the responsibility of the caller to serialize the
results into a returnable type for Java (either as a structure, an array of strings, or an array).
Microsoft has published an article describing a technique for writing a data table to a multi-
dimensional array list that can serve as an example. For more information, see the Microsoft
Developer Network (MSDN) topic Binary Serialization of ADO.NET Objects.

http://msdn.microsoft.com

Method States

The state of all methods through the iWay .NET Technology Adapter is non-persistent. The
scope is method scope. It is possible to use a constructor and call a method in a repeated
persistent state. If multiple methods are needed to be called in sequence, with each result
passed to subsequent method calls, then consider using an iWay process flow or writing
a .NET wrapper object, which will make all the method calls in one .NET method body.

If you are using a session or one or more objects to enable object persistence, ensure that the
Session ID is present and valid on all documents, and that the methods that are invoked do
not cause the Assembly to be unloaded or garbage collected, as the result of invalid inputs
could be unpredictable.

Calling COM Objects

The iWay .NET Technology Adapter works with .NET managed code only. If COM objects must
be invoked from the adapter, then the technique of a Runtime Callable Wrapper (RCW) must be
used to invoke a COM object and manage the lifecycle of the object. For more information on
how to use it for a .NET to COM bridge, see the Microsoft Developer Network (MSDN) topic
Runtime Callable Wrapper.

Understanding the Technology of the iWay .NET Adapter

22 Information Builders

http://msdn.microsoft.com

http://msdn.microsoft.com

Component Information for the iWay .NET Technology Adapter

The iWay .NET Technology Adapter works in conjunction with one of the following components:

iWay Explorer

iWay Service Manager

iWay Business Services Provider (iBSP)

When hosted in an iWay environment, the adapter is configured through iWay Service Manager
and iWay Explorer. iWay Explorer is used to configure .NET connections, create web services,
and configure event capabilities.

When the adapter is hosted in a third-party application server environment, iWay Explorer can
be configured to work in a web services environment in conjunction with iBSP.

iWay Explorer

iWay Explorer uses a tree metaphor to introspect the .NET system metadata. The explorer
enables you to create XML schemas and web services for the associated object. In addition,
you can create ports and channels to listen for events in .NET. External applications that
access .NET through the iWay .NET Technology Adapter use either XML schemas or web
services to pass data between the external application and the adapter.

iWay Service Manager

iWay Service Manager is the heart of the Universal Adapter Framework and is an open
transport service bus. Service Manager uses graphical tools to create sophisticated integration
services without writing custom integration code by:

Creating metadata from target applications.

Transforming and mapping interfaces.

Managing stateless processes.

Its capability to manage complex adapter interactions makes it ideally suited to be the
foundation of a service-oriented architecture.

iWay Business Services Provider

iWay Business Services Provider (iBSP) exposes (as web services) enterprise assets that are
accessible from adapters regardless of the programming language or the particular operating
system.

1. Introducing the iWay .NET Technology Adapter

iWay .NET Technology Adapter User's Guide 23

http://msdn.microsoft.com

iBSP simplifies the creation and execution of web services when running:

Custom and legacy applications.

Database queries and stored procedures.

Packaged applications.

Terminal emulation and screen-based systems.

Transactional systems.

Coupled with a platform and language independent messaging protocol called SOAP (Simple
Object Access Protocol), XML enables application development and integration by assembling
previously built components from multiple web services.

Component Information for the iWay .NET Technology Adapter

24 Information Builders

Chapter2 Supported Platforms
Matrix for iWay .NET Technology
Adapter

iWay Software is committed to support the diverse environments and varied systems of
our users through support for leading enterprise applications, platforms, and databases.

This section specifies version, platform, and database support information for iWay .NET
Technology Adapter. It is designed to provide a consolidated view of Microsoft .NET
releases and the various operating systems and databases, on which they are
supported.

In this chapter:

Support Overview for iWay .NET
Technology Adapter

Supported Versions for Microsoft .NET

Operating Systems for iWay .NET
Technology Adapter

Database Drivers for iWay .NET
Technology Adapter

Java Development Kit (JDK) for
iWay .NET Technology Adapter

Communication Modes for iWay .NET
Technology Adapter

Object Types and Interfaces for
iWay .NET Technology Adapter

Communication Types for iWay .NET
Technology Adapter

Supported Operations for iWay .NET
Technology Adapter

Data Types Support

Other Functions for iWay .NET
Technology Adapter

Known Limitations for iWay .NET
Technology Adapter

Restrictions for .NET Framework

Common Language Run-time Scope
for .NET

Related Information for Specific iWay
Releases

Support Overview for iWay .NET Technology Adapter

iWay .NET Technology Adapter enables .NET developers to create integration endpoints or to
reuse existing endpoints using their familiar design language. Code written in a source
language, such as Visual C# or Visual Basic .NET, that compiles into Common Language
Infrastructure (CLI) code can be interpreted and the methods invoked from Java executables.

iWay .NET Technology Adapter User's Guide 25

The CLI code runs in an instance of the Common Language Runtime (CLR) and data can be
passed through the adapter in either direction (inbound or outbound).

The adapter includes a .NET and a Java component version.

Supported Versions for Microsoft .NET

iWay .NET Technology Adapter supports the following Microsoft .NET versions:

3.0

3.5

4.0

4.5

4.5.1

4.5.2

Common Language Runtime Version:

2.0

4.0

Operating Systems for iWay .NET Technology
Adapter

iWay .NET Technology Adapter supports only the following operating systems:

Windows Client:

Windows Vista

Windows 7

Windows 8

Windows 8.1

Windows Server:

2008

2008R2

Supported Versions for Microsoft .NET

26 Information Builders

2012

2012R2

Database Drivers for iWay .NET Technology
Adapter

iWay .NET Technology Adapter supports the following database drivers:

Microsoft SQL

IBM DB2

Oracle

Standard Microsoft-distributed database drivers

Java Development Kit (JDK) for iWay .NET Technology
Adapter

iWay .NET Technology Adapter supports the Java Development Kit (JDK) versions that are listed
in the iWay Installation and Configuration Guide under Java Requirements.

Communication Modes for iWay .NET Technology
Adapter

iWay .NET Technology Adapter supports the following communication modes:

Services (Outbound). iWay .NET Technology Adapter can send messages to Microsoft .NET.

Events (Inbound). iWay .NET Technology Adapter can receive messages from
Microsoft .NET.

Object Types and Interfaces for iWay .NET Technology
Adapter

iWay .NET Technology Adapter supports the following object types and Interfaces:

Assembly. Retrieves the information on the Assembly and the classes in the Assembly. The
Assembly scope is the highest level of adapter application support.

Classes. Retrieves the public methods of each public class.

Method. Retrieves the name, parameters and the return type.

2. Supported Platforms Matrix for iWay .NET Technology Adapter

iWay .NET Technology Adapter User's Guide 27

Field. Retrieves the information on fields defined in methods and classes.

Parameter. Retrieves the information on parameters such as type, in, out, or required.

Communication Types for iWay .NET Technology
Adapter

The adapter itself uses the COM interface of .NET to start an instance of the .NET run time. All
communication between the Java and C component interfaces of the adapter are proprietary
JNDI components. Techniques such as .NET remoting are not supported because they work
only on object references. The adapter works only on object instances.

Supported Operations for iWay .NET Technology
Adapter

The iWay .NET Technology Adapter depends on the .NET code being called for the operation
type. The security level of the user and the code written, determines the permitted operations.

Using iWay Explorer in iWay Integration Tools (iIT), the iWay .NET Technology Adapter supports
the following operations:

Search Recursive/Exclusive/Assembly name

Infer complex relationships when creating schemas

Hide inherited methods from System.Object

Display classes and methods

Runtime operations

Call Constructors (optionally, establish a session)

Invoke methods of classes or COM objects

For more information, see Known Limitations for iWay .NET Technology Adapter on page 29.

Data Types Support

The following simple and value Data Types are supported by the iWay .NET Technology Adapter:

bool

byte

char

Communication Types for iWay .NET Technology Adapter

28 Information Builders

decimal

double

enum

float

int

long

sbyte

short

struct

uint

ulong

ushort

All calls through the adapter between Java and .NET must be pass by value and not pass by
reference since a .NET reference has no meaning in Java. Explicit object passing is not
available between Java and .NET. The user must create an object serializer or marshaller if an
instance of a class is to be passed between Java and .NET. Support for reference types and
delegates are available between .NET classes.

Other Functions for iWay .NET Technology
Adapter

There is no known list of other functions for the iWay .NET Technology Adapter.

Known Limitations for iWay .NET Technology
Adapter

No explicit or implicit guarantee of compatibility or performance with user application
components is given with the iWay .NET Technology Adapter. The scope of the framework is
too wide and deep to do so. If you have specific questions about supported components
of .NET or application compatibility, contact your customer support representative.

The following areas of .NET are not supported:

Windows Store, Windows Forms, XAML, and any display methods

2. Supported Platforms Matrix for iWay .NET Technology Adapter

iWay .NET Technology Adapter User's Guide 29

Dynamic assemblies

Network I/O

SOAP Serialization

Write to console

Using .NET serialization classes are not supported for integration.

The following list is arranged by features that are not supported, not supported for integration,
and not supported Entity Framework restrictions (.NET areas).

Not supported:

WCF

Not supported for integration:

Writing to a file or XML file.

Not supported Entity Framework restrictions (.NET areas):

Windows Presentation Foundation and Windows forms

Common Client technologies

Windows Service applications

Parallel and asynchronous processing

Windows Communication Foundation

Windows Identity Foundation

Windows Workflow Foundation

Platforms other than Windows client or server

Restrictions for .NET Framework

The following technology support list shows the .NET Framework that is arranged by features
that are supported, not supported, limited support, limited and legacy support, and partially
supported.

Supported

64-bit application development

Restrictions for .NET Framework

30 Information Builders

Application domains

Assemblies

Collections

Common language runtime (CLR)

Not Supported

.NET for Windows Store applications

Accessibility

Add-ins

ASP.NET

Assembly binding redirection

Asynchronous programming

Code DOM

Limited Support

.NET Framework Class Library

Common type system

Limited and Legacy Support

Attributes

Partial Support

ADO.NET

Supported

Exceptions

Generics

Files and streams

Interoperability

Side-by-Side Execution in the .NET Framework

2. Supported Platforms Matrix for iWay .NET Technology Adapter

iWay .NET Technology Adapter User's Guide 31

Not Supported

Configuring Applications

Data Service

Debugging, tracing, and profiling

Deploying applications

Designers and the design environment

Directory services

Dynamic Language Runtime (DLR)

GDI+

Compressing files

Image file handling

Working with Images, Bitmaps, Icons, and Metafiles

Images

Lazy initialization

Managed Extensibility Framework (MEF)

Media and multimedia:

Graphics and Multimedia in Window Presentation Foundation

Graphics and Multimedia Portal

Memory-mapped files

Moving user interface elements

MSBuild

Network programming

Out-of-band (NuGet) releases

Parallel programming

Portable Class Library

Restrictions for .NET Framework

32 Information Builders

Silverlight

Transaction processing

UI Automation

WCF Data Services

Windows Communication Foundation

Windows Forms

Windows Forms controls

Windows Identity Foundation

Windows Presentation Foundation (WPF)

Windows services

Windows Store applications

Windows Workflow Foundation (WF)

Zip files and archives

Limited Support

Data access

Globalization and localization

I/O

LINQ (Language-Integrated Query)

Reflection

Security in the .NET Framework

Serialization

Threading

Windows Runtime

XML documents and data

2. Supported Platforms Matrix for iWay .NET Technology Adapter

iWay .NET Technology Adapter User's Guide 33

Partial Support

Events

Implicit Only

Garbage Collection

Classes in .NET are passed by reference, and cannot be used for integration as a result.
Structures are passed by value, and the results can be passed between Java and .NET. Native
types in the common type library are supported by default. Defined types must have a
constructor if instance-based or declared as static if not.

Serialization of data between Java and .NET is possible, but direct serialization or
synchronization of objects is not currently supported. The underlying APIs of Java and .NET do
not support the level of object graph serialization required.

The Entity Framework uses a conceptual model to access an underlying data object. Because
the model may have any type of design, some model types are not useful with the adapter.
Some models are designed for update only, or access only by a data control object in a form.
The ideal framework model for the adapter returns an object or contains an object query. Then
object query can be serialized through a structure and array list for integration.

Common Language Run-time Scope for .NET

The adapter uses the .NET unmanaged COM API to instantiate the .NET Common Language
Runtime (CLR). The .NET CLR is not an emulated environment, but communication with the
instance is governed by the adapter. There are several languages that can generate Microsoft
Intermediate Language (MSIL) code. The adapter has been extensively tested with C# and on a
more limited basis with source from Visual Basic and F#. For adapter usage requirements with
any other language, contact your customer support representative.

Related Information for Specific iWay Releases

For more information, see the iWay New Features Bulletin and Release Notes documentation for
a specific release (for example, iWay Version 7.0.3).

Common Language Run-time Scope for .NET

34 Information Builders

Chapter3 Design Time Concepts
and Configuration Tasks

This section describes design time concepts and configuration tasks for the iWay .NET
Technology Adapter. For example, how iWay Explorer is used to create schemas and
Business Services to provide integration between the adapter and a .NET application for
services.

Note: Before continuing with design-time configuration tasks, refer to the application
scope before using the iWay .NET Technology Adapter. For more information, see Tested
Application Scope on page 128.

In this chapter:

Exploring Assemblies

Starting iWay Explorer

Adding the .NET Adapter to iWay Explorer

Working With a Target

Understanding the Assembly Viewer in iWay Explorer

Controlling the Adapter Behavior Using a Properties File

Exploring Assemblies

In a development environment a project is the high level container.

A project contains source files and references to other projects.

In the source files are descriptions to classes and methods that are compiled to make a run
time assembly.

In the iWay .NET Technology Adapter, a target is the high level container. A target is a
reference to a location where one or more Assemblies are located directly on the machine
running iWay Integration Tools (iIT) with iWay Explorer.

Note: The .NET framework does not support prefixed device names, such as:

\\sharedrive\sharedirectory

This is the case even if the shared drive shows as a letter in the current Windows Explorer.

iWay .NET Technology Adapter User's Guide 35

Upon opening a target, one or more Assemblies are displayed. This display behavior can be
customized with individual folder profiles or one global profile. For more information, see
Controlling the Adapter Behavior Using a Properties File on page 49.

An Assembly contains classes, which are grouping containers of similar objects that allow
actions or methods to be performed on the objects. The usual term is the class exposes
methods. Each method in the iWay explorer is exposed concatenated to the class that exposes
the method. This is a different view of objects than that of a development environment, but
very useful when the method must be used for performing an action. Depending on how the
Assembly was programmed, the navigation tree of the assembly will be simple or complex.

When exploring a method, the inbound and outbound parameters that the method exposes will
be displayed by name in the tree and by type in the detail pane of iWay Explorer. The .NET
framework has a series of types called the Common Type System that defines a set of types
that are used throughout the .NET framework. It is possible to define custom types made up of
the common types or build structures from the common types.

Starting iWay Explorer

This section describes how to start iWay Explorer.

Procedure: How to Open iWay Integration Tools

1. Navigate to your local drive where you have iIT installed, and open the eclipse folder.

2. Double-click iit.exe.

Starting iWay Explorer

36 Information Builders

iWay Integration Tools suite opens.

Procedure: How to Create an iWay Explorer Connection to an iSM Server

This procedure assumes that you have opened iWay Integration Tools (iIT) and are in the
Workbench.

1. Click the iWay Explorer tab to make it active.

2. Click the Launch iWay Resource Creator Wizard button on the tool bar.
In the following image, the iWay Explorer tab is active, and the cursor is pointing to the
Launch iWay Resource Creator Wizard button.

3. Design Time Concepts and Configuration Tasks

iWay .NET Technology Adapter User's Guide 37

When you click the button, the Resource Selection Dialog opens and displays the New
iWay Connection pane, as shown in the following image.

3. Under the Type heading, click iWay Configuration, which is the type of resource that you
are going to create.

4. Click Next.

The Add iWay Configuration dialog box opens and displays the Select Connection Types
pane.

5. In the Configuration Alias field, type a name for the new configuration (for example,
SampleConfig).

Note: The name that you supply is used only for display purposes in the tree. It is not a
server connection property.

6. For Connection Type, ensure that HTTP Connection is selected.

7. Optionally, select the Connect to Host upon Wizard Completion check box if you want iWay
Explorer to automatically connect to this instance of iSM after you have created it. If you
select this option, all the explorer environments under the new iSM connection are
automatically connected to iSM when this procedure is finished.

If you do not select this option, the explorer environments are not automatically connected
to iSM. You can connect to an individual explorer environment when you want to access it.

Starting iWay Explorer

38 Information Builders

8. Click Next to continue the procedure.

9. If you selected an HTTP Connection, the Enter Connection Information pane opens, as
shown in the following image.

Verify the values in the three fields, or type the valid value or values.

The Connection String field contains the URL that connects to the iSM.

The SOAP Port/Endpoint field contains the SOAP port number.

The Console Port/Endpoint field contains the port number that the iSM
Administration Console is listening on.

Optionally, under Presets, click Local Connection to insert values for a local default iSM
connection in the fields, or click Servlet to insert values for a sample servlet
connection.

3. Design Time Concepts and Configuration Tasks

iWay .NET Technology Adapter User's Guide 39

Click Finish.

In the File Path field, browse to the full path for your iWay installation directory and
insert the path in the field. This path is used to locate the iWay adapters and store the
XML schemas. For example:

C:\Program Files\iWay7

In the Configuration Name field, verify the name of your iWay server configuration. The
base configuration is specified by default. Alternatively, you can type the name of the
server configuration.

Click Finish.

The new iSM connection is added to the tree on the iWay Explorer tab.

In the following image, an iSM connection named SampleConfig was added to iWay Explorer.
The tree is expanded to show the five explorer environments that are available.

Adding the .NET Adapter to iWay Explorer

iWay Explorer supports access to many different application systems. When you connect to
and expand the Adapters node, the iWay adapters for the supported application systems are
displayed. They are the iWay adapters that you have installed and are licensed to use.

Procedure: How to Add the .NET Adapter to iWay Explorer

In this procedure, you are going to add the iWay .NET Technology Adapter to the list of
adapters displayed in the Adapters node.

1. Right-click the Adapters node, and click Edit from the menu.

The Edit Adapters dialog opens, prompting you to select the iWay adapter or adapters to
add to iWay Explorer.

Adding the .NET Adapter to iWay Explorer

40 Information Builders

2. Select the check box for DOTNET, as shown in the following image.

3. Click Finish.

The tree is automatically refreshed and displays the new adapter.

In the following image, the DOTNET node is displayed in the Adapters node of iWay
Explorer, as shown in the following image.

Working With a Target

To browse the metadata and objects of an application system, you must create a target for
that system. The target is the means by which you connect to the system. It contains the logon
properties used to access the system.

3. Design Time Concepts and Configuration Tasks

iWay .NET Technology Adapter User's Guide 41

Using the target, you must establish a connection to an application system every time you
want to browse the system in iWay Explorer.

Procedure: How to Create a Target

1. Right-click the Adapters node, and click Connect from the menu, as shown in the following
image.

2. Once you are connected, expand the Adapters node.

3. Right-click DOTNET, and click Add Target from the menu.

The Add Target dialog opens and displays the Generic Target Properties pane.

4. Supply the values for the fields on the dialog box as follows.

a. In the Name field, type a descriptive name for the target (for example,
DOTNET_Target).

b. In the Description field, optionally type a brief description of the target.

5. Select the Connect to target upon wizard completion check box if you want iWay Explorer to
automatically connect to this target after it has been created.

If you deselect this option, iWay Explorer will not automatically connect to the target. From
the tree, you can connect to an individual target when you want to access the associated
application system.

Working With a Target

42 Information Builders

6. Click Next.

The Add Target dialog opens and displays the Target Properties pane, as shown in the
following image.

7. Supply the connection information for the .NET application to which you are connecting.

3. Design Time Concepts and Configuration Tasks

iWay .NET Technology Adapter User's Guide 43

The following table lists and describes the .NET connection parameters.

Parameter Description

Assemblies Directory Enter the starting folder to look for the .NET assembly to
introspect.

Note: The drive for the Assembly must reside on the same
machine where iWay Service Manager (iSM) is installed.
Mapped and network drives do not qualify for inspection. This
is a limitation of .NET, not the adapter.

Search Recursively Select true or false from the drop-down list.

Search only the current folder entered in the directory box, or
explore down the hierarchy. The adapter will generate an
explorer type interface for all of the folders from the entered
folder down. If a drive letter is entered, then all top level folders
are displayed, and you can navigate down to locate the
assembly.

Look for Select one of the following options from the drop-down list:

iWay Decorated Assemblies. Enables legacy mode.

All Native Assemblies. Enables browse mode if Search
Recursively is set to true.

Assembly List Enter a comma-delimited list of .NET assemblies to introspect.

Infer Complex
Schemas

Select one of the following options from the drop-down list:

true. Infer complex relationships between assembly
elements (recommended).

false. Present only assembly elements.

Working With a Target

44 Information Builders

Parameter Description

Hide System.Object
Methods

Select one of the following options from the drop-down list:

true. Hide all methods inherited from object (ToString,
GetHashCode, and so on) for each object.

false. Display all methods including inherited method, for
each object.

Note: Hiding inherited methods is useful when you know the
method(s) you wish to access and want to retrieve them quickly
without viewing a long list.

8. Click Finish when you are done.

The new .NET target is added to the Adapters node of iWay Explorer.

Application Domain Boundary

Only native drives on the current machine where iWay Service Manager is running are eligible
for introspection. Mapped drives will generate errors. The adapter does not support the
Microsoft deprecated technique called .NET remoting. For more information, see the Microsoft
Developer Network (MSDN) topic on this subject for .NET Framework Version 4 or 4.5:

http://msdn.microsoft.com

Accessing .NET Classes in iWay Explorer

The default accessibility of a .NET class is not public. Classes and methods that are to be
exposed using the iWay .NET Technology Adapter must use the public keyword in the
declaration to be visible in iWay Explorer.

Calling Distributed Assemblies on Different Machines

The iWay .NET Technology Adapter does not support the .NET remoting protocol as either a
client or server. In addition, the adapter does not support the Windows Communication
Foundation as either client or server. If the user application requires calling distributed
Assemblies on different machines, then instances of iWay Service Manager (iSM) and the
iWay .NET Technology Adapter must be installed on the machines and use supported iSM
methods of integration (TCP, FTP, web services, and so on).

3. Design Time Concepts and Configuration Tasks

iWay .NET Technology Adapter User's Guide 45

http://msdn.microsoft.com

Determining if a Method can be Called

Using the Parameters tab in iWay Integration Tools, click on the parameter in the method and
find the type of the parameter. Verify that the type is an XML serializable type. If the type is not
an XML serializable type, then special actions will be required to invoke the method, or it may
not be possible to invoke the method through the adapter.

For example, the getItemNumber method has type parameter value of type System.Int32,
integer. This can be used by the adapter.

The DynamicInvoke method has a parameter args represented as an array of System.Object.
This type is not directly XML serializable, as object is an abstract root without a distinctly
defined type.

Procedure: How to Connect to a Target

1. Expand the DOTNET node to locate the name of the target that you want to connect to, for
example, DOTNET_Target.

2. Right-click the target, and click Connect from the menu.

The DOTNET_Target node icon changes to green, which indicates a successful connection.
You can click a folder and then expand it to display its contents.

Procedure: How to Disconnect From a Target

Although you can maintain multiple open connections to different application systems, it is a
good practice to close a connection when you are not using it.

1. In the tree, expand the DOTNET node to locate the name of the target from which you want
to disconnect, for example, DOTNET_Target.

2. Right-click the target, and click Disconnect from Target from the menu.

The connection to the .NET application is closed.

Procedure: How to Edit a Target

After you create a target, you can edit the information that you provided during the creation
procedure.

1. In the tree, expand the DOTNET node to locate the name of the target that you want to
edit, for example, DOTNET_Target.

2. Right-click the target, and click Edit Target from the menu.

The Edit Target dialog opens and displays the DOTNET adapter target properties.

3. Modify the connection properties as required.

Working With a Target

46 Information Builders

4. Optionally select the Reconnect to target upon wizard completion check box if you want
iWay Explorer to automatically connect to this target after it has been edited. iWay Explorer
will use the modified properties to connect.

5. Click Finish when you have made your edits.

Procedure: How to Delete a Target

You can delete a target that is no longer needed. You can delete it whether or not it is closed.
If open, the target automatically closes before it is deleted.

1. In the tree, expand the DOTNET node to locate the name of the target that you want to
delete, for example, DOTNET_Target.

2. Right-click the target, and click Delete Target from the menu.

iWay Explorer displays a prompt, asking you to confirm the deletion of the selected target.

3. Click OK to proceed with the deletion.

Understanding the Assembly Viewer in iWay Explorer

iWay Explorer will first display the .NET assemblies found in a particular directory, in this
example, the samples directory.

Expand an assembly, and the list of classes for the assembly are displayed.

3. Design Time Concepts and Configuration Tasks

iWay .NET Technology Adapter User's Guide 47

In the Detail pane, the Assembly Information window will display relevant information on the
selected assembly, as shown in the following image.

The Detail pane will display information on the class, as shown in the following image.

Expand a class and the methods of the class appear, as shown in the following image.

Expand a method, and the method information displays, as shown in the following image.

Understanding the Assembly Viewer in iWay Explorer

48 Information Builders

The Detail pane displays information on the selected method, as shown in the following image.

To create XML schema for a method, right-click the method and select Open Schemas from the
context menu.

To create an iWay Business Service (web service) for a method, right-click the method and
select Create iWay Business Service from the context menu.

Controlling the Adapter Behavior Using a Properties File

To hide or show specific classes, methods, or folders, and enable or disable the cache
function, create a property in XML format called iway.xml. This properties file must be copied
to the path that is specified in the Assemblies’ Directory field during the creation of the target.

However, if you want to use default system settings, then you are not required to create the
iway.xml properties file. By default, the cache is disabled and all assemblies or folder and
public subclasses, methods can be displayed.

The caching behavior of iWay .NET Technology Adapter is configured by iWay Service Manager
(iSM) in cooperation with the adapter during iSM initialization. When the caching settings are
changed in the iway.xml properties file configuration files are changed, iSM must be restarted
to read the updated properties file.

Note: A separate iway.xml properties file can be created for each adapter target. As a result,
specific cache behaviors can be applied to different Assemblies.

To review a sample iway.xml properties file, see Sample Properties File on page 62.

3. Design Time Concepts and Configuration Tasks

iWay .NET Technology Adapter User's Guide 49

Understanding the Format of the Properties File

The following image illustrates the settings and format of the iway.xml properties file.

where:

[BOOLEAN]

Is a boolean value (true or false).

[AF_PATH]

Is the full path of an assembly or folder.

Controlling the Adapter Behavior Using a Properties File

50 Information Builders

[METHOD_SIGNATURE]

Is the signature of a method, which is the combination of the name of the method along
with the number and types of the parameters (and their order).

[CLASS_NAME]

Is a full class name which is equal to:

[namespacename] +'.'+[classname]

In this case [namespacename] is the name of a namespace and [classname] is the
name of a class.

The following is a list of rules and guidelines for the creation and usage of the iway.xml
properties file:

1. You can set the cache attribute value to true to enable caching or false to disable caching.
The default cache value is the value of the cache attribute of the root element
iwaydotnetadapter. This is used for all assemblies under the path that is specified in the
Assemblies’ Directory field during the creation of the target. The only exception is that
subassemblies have their own cache values. If a subassembly has a cache value, then the
iWay .NET Technology Adapter will base the cache value to enable or disable cache for the
assembly. Otherwise, the iWay .NET Technology Adapter will use the default cache value
setting.

2. To hide or show a folder, assembly, class, method (for example, item), you can set the
value of the display attribute value of the corresponding item to true or false. By default, all
assemblies, folders, public subclasses, and methods can be displayed. Therefore, if you do
not want to hide an item and its sub-items, do not list this item in the iway.xml properties
file.

3. If a method is inherited from the System.Object, then the value of the display attribute of
the method can overwrite the value of the Hide System.Object methods property for the
method. Therefore, you can show or hide inherited System.Object methods under a
particular class based on their own status.

4. If you enable cache for an assembly, then the constructors of the classes of the assembly
will be displayed in iWay Explorer.

3. Design Time Concepts and Configuration Tasks

iWay .NET Technology Adapter User's Guide 51

Usage Considerations and Examples

For demonstration purposes, this example has a subfolder called bin located in the C:
\Example directory. In addition, there is no iway.xml file saved in the \bin subfolder, as shown
in the following image.

Controlling the Adapter Behavior Using a Properties File

52 Information Builders

The following compiled image shows the contents of the \Release, \Properties, and \Test
Folder subdirectories.

This example will use the following directory path as the Assemblies’ Directory:

C:\Example\bin

This is the path that must be specified in the Assemblies’ Directory field during the creation of
the adapter target using iWay Explorer.

3. Design Time Concepts and Configuration Tasks

iWay .NET Technology Adapter User's Guide 53

The following image shows the New Target dialog box that opens when you create a target for
the iWay .NET Technology Adapter.

Specify Example as the name of this new adapter target and click Next.

The Configuration pane of the New Target dialog box opens, as shown in the following image.

Controlling the Adapter Behavior Using a Properties File

54 Information Builders

Specify values for the new adapter target as listed in the following table.

Parameter Value

Assemblies’ Directory C:\Example\bin

Search Recursively true

Look for All Native Assemblies

Assembly List

Infer Complex Schemas true

Hide System.Object methods false

Click Finish.

3. Design Time Concepts and Configuration Tasks

iWay .NET Technology Adapter User's Guide 55

The new adapter target node called Example is added under the Adapters node of iWay
Explorer, as shown in the following image.

In the above compiled image, the Example adapter target contains the following Assemblies:

Complex.dll

DeepConstructorObject.dll

Math.dll

SubComplex.dll

The Complex.dll Assembly supports one public class called Complex.ComplexNumber. The
Complex.ComplexNumber class has fourteen methods. Since the value of the Hide
System.Object methods parameter was set to false during the adapter target creation process,
the inherited System.Object methods are also displayed.

The Math.dll Assembly supports the following public classes:

Math.Base

Controlling the Adapter Behavior Using a Properties File

56 Information Builders

Math.BaseParent

Math.DerivedBase

Math.Math

Math.TextStyle

Math.structObj

The Math.Math class contains 21 methods (including the Equals, GetHashCode, GetType, and
ToString methods).

Display Assemblies, Hiding Classes and Methods, and Disabling Cache

Using the iway.xml properties file, this example demonstrates how to:

Display the Math.dll, DeepConstructorObject.dll, and Complex.dll Assemblies.

Hide the Math.BaseParent, Math.TextStyle, Math.structObj, Math.DerivedBase, and
Math.Base classes.

Hide the returnnull and ResetComplexNumber methods of the Complex.ComplexNumber
public class.

Disable the cache for all Assemblies except the Math.dll Assembly.

The following image shows a configured iway.xml properties file that will implement the
conditions listed.

3. Design Time Concepts and Configuration Tasks

iWay .NET Technology Adapter User's Guide 57

Create an iway.xml properties file based on the above example and save the file to the C:
\Example\bin directory, as shown in the following image.

Restart iWay Service Manager (iSM), reconnect to the Example adapter target node, and then
expand this node, as shown in the following image.

Controlling the Adapter Behavior Using a Properties File

58 Information Builders

Notice that only three Assemblies (Math.dll, DeepConstructorObject.dll, and Complex.dll) are
displayed. All other folder nodes and Assemblies. In addition, the Math.Base,
Math.BaseParent, Math.DerivedBase, Math.TextStyle, and Math.structObj classes are also
hidden.

3. Design Time Concepts and Configuration Tasks

iWay .NET Technology Adapter User's Guide 59

Expand the Complex.dll and Math.dll Assemblies, as shown in the following image.

Controlling the Adapter Behavior Using a Properties File

60 Information Builders

The left side of the image shows the hierarchy that is displayed in iWay Explorer when no
iway.xml properties file is included in the C:\Example\bin directory. The right side of the image
shows the hierarchy that is displayed in iWay Explorer when the configured iway.xml properties
file is included in the C:\Example\bin directory.

Notice that the returnnull and ResetComplexNumber methods of the Complex.ComplexNumber
public class are hidden. Since the Math.dll Assembly has its cache value set to true (enabling
cache), all public constructors of the Math class are now displayed.

Edit the Example adapter target in iWay Explorer and set the value of the Hide System.Object
methods parameter to true, as shown in the following image.

Modify the existing iway.xml properties file, as shown in the following image.

3. Design Time Concepts and Configuration Tasks

iWay .NET Technology Adapter User's Guide 61

Restart iSM, reconnect to the Example adapter target node, and then expand the node for the
Complex.dll Assembly, as shown in the following image.

The left side of the image shows the hierarchy that is displayed in iWay Explorer when no
modifications are made to the existing iway.xml properties file. The right side of the image
shows the hierarchy that is displayed in iWay Explorer when the modified iway.xml properties
file is used.

Setting the value of the Hide System.Object methods parameter to true results in the three
inherited System.Object methods (Equals, GetHashCode, and GetType) under the
Complex.ComplexNumber public class to be hidden. Only the inherited System.Object ToString
is displayed, since the value of the display attribute of the ToString method forces the system
to have it displayed.

Sample Properties File

For reference purposes, the following is a sample iway.xml properties file that can be
customized as required.

Controlling the Adapter Behavior Using a Properties File

62 Information Builders

<iwaydotnetadapter cache="true">
 <nodes>
 <node isassembly="true" path="C:/Program Files (x86)/iway7/etc/samples/
dotnet/bin/Math.dll" display="true" cache="false">
 <class name="Math.Math" display="true">
 <method name="ToString()" display="false"/>
 <method name="Equals(System.Object)" display="true"/>
 </class>
 <class name="Math.Base" display="false">
 </class>
 </node>
 <node isassembly="true" path="C:/Program Files (x86)/iway7/etc/samples/
dotnet/bin/Complex.dll" display="true" cache="false">
 <class name="Complex.ComplexNumber" display="true">
 <method name="ToString()" display="false"/>
 <method name="Equals(System.Object)" display="false"/>
 </class>
 </node>
 <node isassembly="true" path="C:/Program Files (x86)/iway7/etc/samples/
dotnet/bin/SubComplex.dll" display="true" cache="false">
 <class name="SubComplex.SubComplexData" display="true">
 <method name="ToString()" display="false"/>
 <method name="Equals(System.Object)" display="false"/>
 </class>
 </node>
 </nodes>
</iwaydotnetadapter>

3. Design Time Concepts and Configuration Tasks

iWay .NET Technology Adapter User's Guide 63

Controlling the Adapter Behavior Using a Properties File

64 Information Builders

Chapter4 Run Time Concepts
and Configuration Tasks

This section describes run time concepts and configuration tasks for the iWay
Technology Adapter for .NET.

Note: Before continuing with run time configuration tasks, refer to the application scope
before using the iWay .NET Technology Adapter. For more information, see Tested
Application Scope on page 128.

In this chapter:

Run Time Implementation

Understanding Design Time and Run Time Targets

Using the Persist Connection Parameter

Understanding the Relationship Between Java and .NET

Invoking the iWay .NET Technology Adapter

Run Time Implementation

In the run time, the iWay Technology Adapter for .NET will execute a method of an Assembly by
passing XML data based on a request schema.

In order to implement the purpose of running a method, the adapter performs the following
steps:

1. Retrieves an instance of the working class, which supports the method by calling
Assembly.CreateInstance.

2. Discovers parameter information for all parameters of the method by calling
MethodInfo.GetParameters.

3. Loads and parses the input XML data to retrieve element nodes, which represent values of
the parameters in XML format, and deserialize the XML string based on each element node
to construct objects for the parameters.

4. Calls MethodInfo.Invoke to execute the method and return an object.

5. Serializes the return object, converts the public fields and read/write properties of an
object into XML.

6. Generates XML data based on the result XML and the response schema of the method.

7. Returns the final XML data to the caller.

iWay .NET Technology Adapter User's Guide 65

Understanding Design Time and Run Time Targets

Each run time target must point to the Assembly that contains the method being invoked.

process flow adapter object

registry adapter object

web services adapter object

Persistence is required for cached objects (adapter passivated cache will be released.

While location appears in the schema and the instance, it cannot be used at runtime to
physically locate the object if the target is pointing to another path.

Using the Persist Connection Parameter

The Persist Connection parameter is available for your defined adapter component in the iSM
Administration Console, as shown in the following image.

For more information on how to access this parameter, see Configuring the Adapter in an iWay
Environment on page 93.

In a .NET developer project, an external datasource object is usually created and embedded
inside the Assembly, with an automatic initializer. This is not possible through the iWay
Technology Adapter for .NET as the sequence of calls is different. If your Assembly contains
the static method getconnectionstring, then it can be used to retrieve the connection string and
pass the string to a callable object.

If the method initializes a connection object, and the Persist Connection parameter is enabled,
calling the method again may generate an error indicating that the connection already exists. If
the object cannot be changed, then disable the Persist Connection parameter to resolve this
issue.

If you are using a connection pool, consider using a session with the Persist Connection
parameter enabled and also using a constructor and cache. The connection will stay initialized
throughout the session. If the Persist Connection parameter is disabled, then the connection
will have to be initialized for each call.

The receiver of a method call is responsible for processing the method call. If the object has
not or cannot be initialized, then calling a method without a valid receiver will result in an
exception indicating the following:

Understanding Design Time and Run Time Targets

66 Information Builders

object not set to an instance of an object

A web service object is not a persisted object. This is the reason cache is not supported on
these objects. When an adapter is passivated and retired, all connections are released, so the
cache is retired. Only valid instance targets, such as process flow adapter objects can be
cached.

Calling the Windows registry when executing from iWay in Service mode is governed by the
rules of .NET registry retrieval and Windows security settings. This usually means that only
results from HKEY_LOCAL_MACHINE can be used and the rights from the Local Administrator
role. For more information, see the topic on C# and the registry in the Microsoft Developer
Network (MSDN):

http://msdn.microsoft.com

Using .NET configuration files from .NET Assemblies is not supported by .NET. Calling the
Configuration Manager classes retrieves results from executables only. If there is a
requirement to store properties externally, then read and write the properties to an external file
from the Assembly method or pass the parameters to the method at invocation time.

Understanding the Relationship Between Java and .NET

The adapter run time has a Java Native Interface (JNI) implementation that uses the C++
language to call the Common Language Runtime (CLR) unmanaged host API, which initializes
the runtime host. The runtime host loads the .NET Common Language Runtime instance into a
process, creates an application domain within the process, and loads and executes user code
within the application domain. The Java Virtual Machine (JVM) through the adapter is the
initiator of the process but does not own it. However, when the JVM is shut down, the CLR
instance will also shutdown. The iWay Java Native Interface (JNI) layer marshals data between
Java and .NET during the life cycle of the adapter. The adapter life cycle may be shorter than
the life cycle of the JVM. If the adapter is stopped or disconnected, communication with the
hosted CLR instance is terminated. The CLR process will stay active until the JVM is
terminated, even if iWay Service Manger is restarted.

Invoking the iWay .NET Technology Adapter

This section describes how to invoke the iWay .NET Technology Adapter.

4. Run Time Concepts and Configuration Tasks

iWay .NET Technology Adapter User's Guide 67

http://msdn.microsoft.com

Understanding Run Time Types

There are three application run time types:

Static web service target. Automatic run time target, which has no cached behavior, and is
static only. This behavior is the same as an external web service or internal process flow
web service.

Defined run time target process flow. Can be static or cached. This behavior is also
controlled by the setting of the Persist Connection parameter for your defined adapter
component in the iSM Administration Console, as shown in the following image.

For more information on how to access this parameter, see Configuring the Adapter in an
iWay Environment on page 93.

Defined repository channel. Can be static or cached. This behavior is also controlled by the
setting of the Persist Connection parameter for your defined adapter component in the iSM
Administration Console.

Invoking the iWay .NET Technology Adapter Through an iWay Business Service

This section describes how to invoke the iWay .NET Technology Adapter through an iWay
Business Service, using the Hello World sample in the HelloWorld1.dll file.

Note: Before exploring a target and creating an integration scenario, check that the scenario is
listed in the application scope. For more information, see Tested Application Scope on page
128. Creating integration scenarios outside of the adapter scope does not qualify for customer
support and could destabilize the general iWay working environment.

Procedure: How to Invoke the iWay .NET Technology Adapter Through an iWay Business Service

To invoke the iWay .NET Technology Adapter:

1. Using iWay Explorer, add a new target for the adapter (for example, Hello).

Invoking the iWay .NET Technology Adapter

68 Information Builders

The Target Connection Dialog appears, as shown in the following image.

4. Run Time Concepts and Configuration Tasks

iWay .NET Technology Adapter User's Guide 69

2. Export a request schema with a method (for example, txtMain) to an integration project, as
shown in the following image.

3. Create an iWay business service (for example, Hello) for the method created in the
previous step (for example, txtMain), as shown in the following image.

Invoking the iWay .NET Technology Adapter

70 Information Builders

4. Display the newly created service (for example, Hello), by right-clicking the Services node
and selecting Connect from the menu if the Services node is not connected, or Refresh if
the Services node has already been connected.

5. Expand the newly created Hello service, expand the Methods folder, and then double-click
the method you created (for example, txtMain).

4. Run Time Concepts and Configuration Tasks

iWay .NET Technology Adapter User's Guide 71

The iWay Business Service Operation page appears, as shown in the following image.

6. Export a request schema to generate and modify a sample XML file using an XML editor,
such as XmlSpy, as shown in the following image.

7. Copy and paste the sample XML file to the input XML folder of the iWay Business Service
Operation page, and then select the Invoke option.

Invoking the iWay .NET Technology Adapter

72 Information Builders

The result is displayed, as shown in the following image.

Invoking the iWay .NET Technology Adapter Through a Process Flow

To invoke the iWay .NET Technology Adapter through a process flow, the process flow must
either contain an adapter object which is associated with a target of the iWay .NET Technology
Adapter or a web service object which is associated with a business service of the iWay .NET
Technology Adapter. Users can directly run the process flow or use a channel to run it.

Note that the input documents that users use to run the adapter process flow in the previous
section and web service process flow may be similar but not the same.

ATXMLDATA = XMLDATA

WSXMLDATA = RTXMLDATA (if the web service object has an empty body).

WSXMLDATA = ANYXML (if the web service object has content in its body and the body is
formed by RTXMLDATA).

Based from the list above:

ANYXML represents any XML format (for example, <test></test>).

4. Run Time Concepts and Configuration Tasks

iWay .NET Technology Adapter User's Guide 73

XMLDATA represents the format of the input document which users use to invoke the
iWay .NET Technology Adapter through an iWay business service, as shown in the following
sample.

RTXMLDATA represents XMLDATA with extra added to the root element (for example,
<ROOT>XMLDATA</ROOT>).

ATXMLDATA represents the format of the input document which users use to invoke the
adapter process flow.

WSXMLDATA represents the format of the input document which users use to invoke the web
service process flow.

The following procedures will be using the Hello World sample in the HelloWorld1.dll file.

Invoking the iWay .NET Technology Adapter

74 Information Builders

Procedure: How to Run an Adapter Process Flow to Invoke the iWay .NET Adapter

To run an adapter process flow to invoke the iWay .NET Technology Adapter:

1. Create a new integration project (for example MyProject), using Integration Explorer, as
shown in the following image.

2. Add a new target (for example, Hello) for the iWay .NET Technology Adapter using iWay
Explorer, as shown in the following image.

4. Run Time Concepts and Configuration Tasks

iWay .NET Technology Adapter User's Guide 75

3. Export a request schema with a method (for example, txtMain) to an integration project, as
shown in the following image.

4. Create a registry for the target by right-clicking Hello and then selecting Create Registry
from the menu list, as shown in the following image.

Invoking the iWay .NET Technology Adapter

76 Information Builders

The newly created registry item, Hello, will be added under the Adapters node, after
expanding the Components object from the Registry node. Users can expand the Registry
node by right-clicking on Registry, and selecting the Connect or Refresh option from the
menu list to view it, as shown below.

4. Run Time Concepts and Configuration Tasks

iWay .NET Technology Adapter User's Guide 77

5. Export the newly created registry item, Hello, to the newly created integration project,
MyProject, as shown in the following image.

6. Create a new process flow by right-clicking Flows, selecting New from the menu list, and
then clicking Process Flow.

The New Process Flow Wizard appears, as shown in the following image.

Invoking the iWay .NET Technology Adapter

78 Information Builders

7. Using Integration Explorer, create a process flow that connects the Start object to the
adapter (Hello), and then the adapter to the End object, as shown in the following image.

8. Use the exported request schema from Step 3 to generate and modify a sample XML file
using an XML editor, such as XmlSpy, as shown in the following image.

4. Run Time Concepts and Configuration Tasks

iWay .NET Technology Adapter User's Guide 79

9. In the Integration Explorer tab, expand the Flows folder, and right-click AdapterFlow, select
Run As from the menu list, and click Run Configurations, as shown in the following image.

The Run Configurations window appears.

Invoking the iWay .NET Technology Adapter

80 Information Builders

10. In the Input Document field, click the Import button and import the generated sample XML
file used in Step 8.

11. Run the process flow after it has successfully compiled, as shown in the following image.

4. Run Time Concepts and Configuration Tasks

iWay .NET Technology Adapter User's Guide 81

The result will be stored in a folder under Test Results, as shown in the image below.

Procedure: How to Run a Web Service Process Flow to Invoke the iWay .NET Adapter

To run a web service process flow to invoke the iWay .NET Technology Adapter:

1. Create a new integration project (for example MyProject), using Integration Explorer, as
shown in the following image.

Invoking the iWay .NET Technology Adapter

82 Information Builders

2. Add a new target (for example, Hello) for the iWay .NET Technology Adapter using iWay
Explorer, as shown in the following image.

4. Run Time Concepts and Configuration Tasks

iWay .NET Technology Adapter User's Guide 83

3. Export a request schema with a method (for example, txtMain) to an integration project, as
shown in the following image.

4. Create an iWay business service (for example, Hello) for the method created in the
previous step (for example, txtMain), as shown in the following image.

Invoking the iWay .NET Technology Adapter

84 Information Builders

5. Display the newly created service (for example, Hello), by right-clicking the Services node
and selecting Connect from the menu list if the Services node is not connected, or Refresh
if the Services node has already been connected.

6. Export the newly created iWay business service item, Hello, to the newly created
integration project, MyProject, as shown in the following image.

4. Run Time Concepts and Configuration Tasks

iWay .NET Technology Adapter User's Guide 85

7. Use the exported request schema from Step 3 to generate and modify a sample XML file
using an XML editor, such as XmlSpy, and add extra ROOT elements to the XML file, as
shown in the following image.

8. In the Integration Explorer tab, expand the Flows folder, and right-click AdapterFlow, select
New from the menu list, and click Process Flow, as shown in the following image.

9. Provide a name and description for the new process flow and click Next.

Invoking the iWay .NET Technology Adapter

86 Information Builders

10. For the WSDL Location field, click Browse and select the iWay business service (for
example, Hello.wsdl), as shown in the following image.

11. Click OK and then Next to continue.

12. In the Service Selection pane, provide a Service name (for example, Hello), and click Next.

13. In the Port, Endpoint, Action pane, provide a port name (for example, HelloSoap1), and
click Next.

14. In the Service Header pane, select a header input from the drop-down list, as shown in the
following image.

4. Run Time Concepts and Configuration Tasks

iWay .NET Technology Adapter User's Guide 87

15. Use either the default setting (empty service body) or the sample XML to configure the
Service Body of the web service object, as shown in the following image.

16. If the web service object has an empty body, use the generated sample XML file from the
previous step. Otherwise, use any XML test data (for example, <test></test>).

Invoking the iWay .NET Technology Adapter

88 Information Builders

17. In the Integration Explorer tab, expand the Flows folder, and right-click AdapterFlow, select
Run As from the menu list, and click Run Configurations, as shown in the following image.

The Run Configurations window appears.

4. Run Time Concepts and Configuration Tasks

iWay .NET Technology Adapter User's Guide 89

18. In the Input Document field, click the Import button and import the generated sample XML
file used in Step 7.

19. Run the process flow after it is successfully compiled, as shown in the following image.

Invoking the iWay .NET Technology Adapter

90 Information Builders

The result will be stored in a folder under Test Results, as shown in the image below.

4. Run Time Concepts and Configuration Tasks

iWay .NET Technology Adapter User's Guide 91

Invoking the iWay .NET Technology Adapter

92 Information Builders

Chapter5 Configuring the
Adapter in an iWay Environment

After you successfully configure the adapter to represent a particular adapter target, the
adapter can be assigned to a Service Manager listener.

This section also includes information about processing adapter requests.

In this chapter:

Configuring the Adapter in iWay Service Manager

Configuring the Adapter in iWay Service Manager

Before configuring the adapter in iWay Service Manager, you must first create a target, which
represents a connection to a backend system, using iWay Explorer. For more information on
configuring targets and connections using iWay Explorer, see Design Time Concepts and
Configuration Tasks on page 35 or the iWay Explorer User's Guide.

You configure the adapter in the iWay Service Manager console. The configuration process
creates run-time connection and persistent data files within Service Manager. The
configuration process interrogates the Service Manager repository entries that were built when
the target and connection were created using iWay Explorer. The defined adapter process
creates the run-time repository based on the design-time repository.

Procedure: How to Define an Adapter

To define an adapter:

1. In the Service Manager console, select Registry, then Adapters.

2. Click Add.

The iBSP URL pane opens, as shown in the following image.

3. Enter your iBSP URL, which is the location of the Service Manager repository, for example,
http://localhost:9000. This field is required.

4. Click Next.

iWay .NET Technology Adapter User's Guide 93

An adapter selection pane opens, as shown in the following image.

5. From the Adapter drop-down list, select the Adapter, then click Next.

6. From the Target drop-down list, select a target you configured for the adapter in iWay
Explorer, then click Next.

The connection information associated with the target selected is displayed.

a. Select whether to return an error document when an error occurs.

b. Select whether an adapter connection will be reused between executes.

For more information on the Persist Connection parameter, see Using the Persist
Connection Parameter on page 66.

c. Review the connection information you specified in iWay Explorer. You can change or
update any information.

7. Click Next.

8. Provide a name and, optionally, a description, for the adapter, and click Finish.

Configuring the Adapter in iWay Service Manager

94 Information Builders

The adapter appears in the adapters list, as shown in the following image.

Procedure: How to Modify or Update an Adapter Connection

The following image shows the Adapter Defines pane which displays the name of the adapter
and the description (optional).

To modify or update an adapter connection:

1. From the Adapters list, click the adapter reference you defined, in this example,
DotNet_iSM.

The pane that displays the target connection information opens. You cannot change the
name of the adapter or the target, but you can edit the connection information.

2. After you modify the connection information, click Update Connection Properties.

3. After you make changes or additions to the adapter target in iWay Explorer, click Update
Adapter Data.

4. Click Finish.

5. Configuring the Adapter in an iWay Environment

iWay .NET Technology Adapter User's Guide 95

Configuring the Adapter in iWay Service Manager

96 Information Builders

AppendixA
Samples and
Reference Guide

This section provides samples and reference information for the iWay .NET Technology
Adapter.

In this appendix:

Using COM Interop in the iWay .NET Technology Adapter

Generating XML Schema in Legacy Mode

Generating XML Schema in the Current Adapter Version

Modifying XML Schemas

Additional Sample XML Documents

Using COM Interop in the iWay .NET Technology Adapter

The code that operates within the Microsoft .NET Common Language Runtime (CLR) is called
managed code. Managed code has access to all of the services provided by the CLR, such as
security, versioning support, garbage collection, and cross-language integration. The iWay .NET
Technology Adapter is implemented by managed codes. Code that does not operate within the
CLR is called unmanaged code. Managed components depend on the CLR and expect other
components with which they interact, to depend on the CLR as well.

In order for the iWay .NET Technology Adapter to use a COM object, wrapper objects, called
Runtime-Callable Wrappers (RCW), must be generated. The RCW objects cater for the
difference in lifetime management between .NET and COM. RCW objects are .NET objects that
manage the reference count of a COM object, as well as deal with the organization of
parameters and return types for the COM object methods.

RCW objects are manufactured at runtime by the CLR using information found in an Interop
Assembly, which is an assembly containing definitions of COM types that can be used from
managed code.

The simplest way to generate an Interop Assembly is to use the Type Library Importer tool
(TlbImp.exe), which is a command-line tool provided by the Microsoft .NET Framework SDK. The
Type Library Importer tool converts a COM type library into .NET Framework metadata,
effectively creating a managed wrapper that can be called from any managed language.

iWay .NET Technology Adapter User's Guide 97

You can select many options using the Type Library Importer tool. The most important option
is /out, which allows you to specify a name for the resulting .NET assembly. The following
command line converts a COM component called comp.dll to a matching .NET assembly called
interop.NETcomp.dll:

tlbimp comp.dll /out: interop.NETcomp.dll

You can also use the Microsoft Intermediate Language (MSIL) Disassembler tool (Ildasm.exe)
to examine the resulting DLL. The MSIL Disassembler tool is also a command-line tool
provided by the Microsoft .NET Framework SDK. This tool parses any .NET Framework .exe
or .dll assembly, and shows the information in a legible format. The MSIL Disassembler tool
shows more than just the MSIL code, it also displays namespaces and types, including their
interfaces.

For example, to display the contents of the interop.NETcomp.dll file, use the following
command:

Ildasm interop.NETcomp.dll

After creating an Interop Assembly for an unmanaged COM component, you can run the
assembly just like running other C# components in the iWay .NET Technology Adapter.

Generating XML Schema in Legacy Mode

In the legacy version of the iWay .NET Technology Adapter, the following primary functions are
used to handle XML schema generation for a method:

ComposeDocMethod

ComposeRpcMethod

Note: In legacy mode, there is limited support for defined complex types. It is recommended to
use the new dynamic schema methods for methods with complex types.

The earlier version of the iWay .NET Technology Adapter requires a custom .NET wrapper, or at
least recompilation, to consume assemblies. The custom .NET wrapper references iwclr.dll and
wraps a target .NET assembly to provide schemas or descriptions for methods by adding
special attributes, which will be retrieved by iwclr.dll. The following primary attributes are
provided by a wrapper for a method:

XmlInXmlOutAttribute

[XmlInXmlOutAttribute(METHODDESCRIPTION, ROOTELEMENT, RAWINPUTSCHEMA,
OUTPUTDATANAME, RAWOUTPUTSCHEMA)]
public XmlElement Add (XmlElement input)
{//codes }

Generating XML Schema in Legacy Mode

98 Information Builders

ParamsInParamsOutAttribute

[ParamsInParamsOutAttribute(METHODDESCRIPTION)] public double Sqrt
(double number)
{//code }

The following table lists and describes the key words that are allowed.

Key Word Type Description

METHODDESCRIPTION String The description of a method.

SCHEMAROOTELEMENT String The name of a root element (normally, It is the name
of a method).

RAWINPUTSCHEMA String Raw request schema (a schema is retrieved from a
attribute of a wrapper).

OUTPUTDATANAME String The name of an output data.

RAWOUTPUTSCHEMA String Raw response schema (a schema is retrieved from a
attribute of a wrapper).

ComposeDocMethod Function

If a custom .NET wrapper for a method has XmlInXmlOutAttribute attributes, then the
ComposeDocMethod function is called. The function ComposeDocMethod only supports the
method that accepts one XmlElement type input parameter and returns XmlElement type data.

ComposeRpcMethod Function

If a custom wrapper has ParamsInParamsOutAttribute attributes, then the function
ComposeRpcMethod is called. The function ComposeRpcMethod can only support the method
that accepts some simple .NET type input parameter(s) (for example, int, String, and so on),
and returns some simple .NET type data.

A. Samples and Reference Guide

iWay .NET Technology Adapter User's Guide 99

Generating XML Schema in the Current Adapter Version

The following table lists and describes the key words that are allowed.

Key Word Type Description

[AssemblyName] String The name of an assembly. For example,
Math.dll.

[Namespace] String The namespace which is used in an assembly.

[CustomTypeName] String The name of a complex custom type.

[ClassName] String The name of a class.

[FRAMEWORKTYPE] String The name of a .NET Framework type.

To convert a C# built-in type to a .NET
Framework type, a Built-In Types Table is
available on the following webpage: http://
msdn.microsoft.com/en-us/library/
ya5y69ds.aspx.

The .Net Framework type of a complex custom
type has the following format:

[Namespace].[CustomTypeName]

[Method signature] String The part of the method declaration. It is the
combination of the method name and the
parameter type list.

In a parameter type list, the name of a .NET
Framework type to present a C# type is used.

[Method signature] sample: A complex custom
type named CUSTOM is defined in a namespace
NS.

C# function:

void setValue(CUSTOM obj, int input)

[Method signature]:
setValue(NS.CUSTOM, System.Int32)

Generating XML Schema in the Current Adapter Version

100 Information Builders

http://msdn.microsoft.com/en-us/library/ya5y69ds.aspx
http://msdn.microsoft.com/en-us/library/ya5y69ds.aspx
http://msdn.microsoft.com/en-us/library/ya5y69ds.aspx

Key Word Type Description

[iWayURI] String In a request schema:
[iWayURI]="urn:iwaysoftware: ibse:jul2003:" +
METHODNAME.

[iWayURI]="urn:iwaysoftware:
ibse:jul2003:" + METHODNAME

In a response schema:

[iWayURI]=""urn:iwaysoftware:
ibse:jul2003:" + METHODRESPONSEE

INOUTDATANAME String For a request schema, it is the name of an
input parameter.

For a response schema, it is equal to result.

NAMESPACECOMPLEXTYPE String The name of a custom type with the following
namespace:

[Namespace].[CustomTypeName]

TNSNAMESPACECOMPLEXTYPE String NAMESPACECOMPLEXTYPE with namespace
prefixes tns.

Format:

tns:[Namespace].[CustomTypeName]

For example: tns:Math.ComplexNumber

XSTYPE String The XML built-in data type with namespace
prefix xs.

For example: xs:int, xs:string and so on.

SUBELEMENTNAME String The name of a sub-element.

SUBCOMPLEXNAME String The name of a sub-element, which has a
complex custom type.

METHODNAME String The name of a method.

METHODRESPONSE String It is equal to METHODNAME+"Response".

A. Samples and Reference Guide

iWay .NET Technology Adapter User's Guide 101

Key Word Type Description

MATHODLOGICPATH String The logic path of a method.

Format: /[AssemblyName]/[Namespace].
[ClassName]
/[Method signature]

For example: /Server.dll/Server.TestServer/
GetVehicle(System.Int32)

PARAMETERNAME String The name of an input or output parameter.

In the current adapter version, XML request and response schemas can be generated.

An element is used to represent a method, and sub-elements under the sequence node of the
element are used to represent input parameters in a request schema. Similar to earlier
versions of the adapter, an element is still used to describe return data and type in a response
schema.

Whether you are using the previous version of the adapter or the current version, a .NET built-in
type data is described by one element node that contains the name and type attributes. The
value of the name attribute is the name of the data, and the value of the type attribute is the
name of XML built-in type with namespace prefix xs. Unlike the early version of the adapter, the
current version of the adapter is also able to create schema for complex custom data types.

Complex Custom Type Representation Rules

To represent a complex custom data type, two rules are defined.

Rule A

Generating XML Schema in the Current Adapter Version

102 Information Builders

For a complex custom type input or output, a type attribute to the element is applied and
referred to the name of the complex custom type to be used, as shown in the following image.

Rule B

A complex custom type data may contain complex custom type sub-data. An element can be
directly declared by naming the element for the complex custom type sub-data, as shown in
the following image.

Namespace and Target Namespace

The xmlns:xs attribute is declared with the value http://www.w3.org/2001/XMLSchema in all
XML request and response schemas. Each of the constructs that are defined by the XML
schema language will need to be qualified with the xs prefix.

A. Samples and Reference Guide

iWay .NET Technology Adapter User's Guide 103

There are no namespace issues if a method only has .NET built-in type inputs or outputs.
Namespace issues are only considered if a method has complex custom type inputs or
outputs.

Consider the following example. MYDLL.dll is a .NET assembly that contains a class called
MYCLASS that is defined in the MYNS namespace. MYCLASS has a function called FN with
prototype A.CTYPE FN (A.CTYPE c1, B.CTYPE c2). In the function, A and B are different
namespaces and both define a complex custom type named CTYPE. Even though CTYPE in A
contains a member variable called CMEMBER that has a complex custom type ETYPE, and
CTYPE in B also contains a member variable called CMEMBER that has a complex custom type
ETYPE, CTYPE in A and CTYPE in B are different. This causes the name conflict in the request
and response schemas if the data and types are not properly described.

Generating XML Schema in the Current Adapter Version

104 Information Builders

The following image shows the structure of a XML request schema.

A. Samples and Reference Guide

iWay .NET Technology Adapter User's Guide 105

The following image shows the structure of an XML response schema.

In order to solve namespace problems in the XML request and response schemas for a
method that supports complex custom type inputs or outputs, full names are used to
represent custom types for input parameters or output data. The full name of a custom type
has the following format:

[Namespace].[CustomTypeName]

Generating XML Schema in the Current Adapter Version

106 Information Builders

The targetNamespace and xmlns:tns attributes in the request and response schemas are
declared. All custom type(s) of input parameter(s) or returning data belong to the namespace
[iwayURI] as defined by the targetNamespace attribute, and the prefix is tns as defined by the
xmlns:tns attribute.

targetNamespace=[iwayURI] (reference key table)
xmlns:tns =[iwayURI]
xmlns:xs ="http://www.w3.org/2001/XMLSchema"

Following the previously mentioned solutions and the Complex Custom Type Representation
Rules, you can create elements to represent input or output data which have complex types,
and describe the complex types by generating xs:complexType nodes.

As shown in the images that depict the structure of XML request and response schemas, the
XML data are the parts of the request and response schemas of the MyDll.dll sample. The
current release of the adapter generated ENODEs based on Rule_A and generated CNODEs
based on Rule_B. An ENODE represents a parameter or return data and a CNODE describes
the custom type of a parameter or return data. The sub data CMEMBER is also described by
an xs:complexType node based on Rule_B.

Moreover, if a sub data has custom type members which can be made public, you can also
follow Rule_B to describe them, and so on. How deep the complex type sub data can be
extended depends on how the object of DataSet class infers schema from the data and loads
the data.

The request and response schemas generated by this technique can handle multiple types
with the same name from different DLLs or objects and support objects referencing variables
of complex types with same names in the request and response schemas.

Formats of XML Request and Response Schemas

Formatting of XML request schemas can be based on the following scenarios:

Situation A. A method without input parameters.

Situation B. A method with simple .NET built-in type input parameters.

Situation C. A method with complex custom or mix (simple and complex) type input
parameters.

Formatting of XML response schemas can be based on the following scenarios:

Situation A1. A method does not return a result.

Situation B1. A method returns a simple .NET built-in type data.

A. Samples and Reference Guide

iWay .NET Technology Adapter User's Guide 107

Situation C1. A method returns a complex custom type.

Situation D1. A method returns a data (simple type or complex custom type) and output
simple type or complex custom type parameter(s).

The legacy version of the iWay .NET Technology Adapter only supports functions with some
simple type inputs and outputs. The format of an XML request schema for the current adapter
version is similar to the early version under Situation A and Situation B. The format of an XML
response schema for the current adapter version has more information than the earlier version
under Situation A1 and Situation B1. Only the current version of the adapter can support
Situation C, Situation C1, and Situation D1.

Modifying XML Schemas

Every method and constructor has specific XML request and response schemas. A constructor
item will be displayed under an Assembly node within the hierarchy of iWay Explorer only if
users enable the cache for that Assembly. In order to allow users to reuse the object on which
to invoke a method, a new string data type called sessionid is defined in the schemas that are
generated in iWay Explorer. This identifies a unique object. When users want to execute a
method of an instance of a class, they can either pass the information of a constructor through
a schema to create a new instance or pass a sessionid through schema to reuse a previously
created instance for the class. For a cacheable Assembly, a sessionid is returned in a
response from a constructor request or method request.

Modifying XML Schemas

108 Information Builders

Constructor Schemas

The following image is an example of a request schema for a constructor.

The following image is an example of a response schema for a constructor.

A. Samples and Reference Guide

iWay .NET Technology Adapter User's Guide 109

Method Schemas

The following image is an example of a request schema for a method.

Modifying XML Schemas

110 Information Builders

The following image is an example of a response schema for a method.

Schema Properties Reference

In the XML request and response schemas for constructors and methods provided in this
example:

[NAMESPACE]

Is the name of a namespace.

[COMPLEXTYPENAME]

Is the name of a complex type.

[CONSTRUCTORNAME]

Is the name of a constructor of a class.

[ELEMENTNAME]

Is the name of an argument of a constructor or a name of a parameter of a method.

[COMPLEXTYPE]

Is a complex type, which is equal to:

"tns:" + [COMPLEXTYPENAME]

[BUILTINTYPENAME]

Is the name of a built-in data type.

A. Samples and Reference Guide

iWay .NET Technology Adapter User's Guide 111

[BUILTINTYPE]

Is a built-in data type, which is equal to:

"xs:" + [BUILTINTYPENAME]

[ASSEMBLYPATH]

Is the location of an Assembly.

[METHODSIGNATURE]

Is the signature of a method. This is a combination of the name of the method and the
number and types of parameters (and their order).

[CONSTRUCTORSIGNATURE]

Is the signature of a constructor. This is a combination of the name of the constructor and
the number and types of arguments (and their order).

[FULLCLASSNAME]

Is the combination of the namespace of the class along with the period character (.) and
the name of the class.

[CONSTRUCTORPATH]

Is the following:

[ASSEMBLYPATH]/[FULLCLASSNAME]/[CONSTRUCTORSIGNATURE]

[METHODPATH]

Is the following:

[ASSEMBLYPATH]/[FULLCLASSNAME]/[METHODSIGNATURE]

[CONSTRUCTORRESPONSE]

Is the combination of a name of a constructor along with the string Response.

[METHODRESPONSE]

Is the combination of a name of a method along with the string Response.

[UCONSTRUCTORNAME]

Is a unique name of an identified onstructor of a class.

If a class only contains one constructor, then:

[UCONSTRUCTORNAME]=[CONSTRUCTORNAME]

If a class contains multiple constructors, then:

Modifying XML Schemas

112 Information Builders

[UCONSTRUCTORNAME]=[CONSTRUCTORNAME]+"_"+string of a positive number

[METHODNAME]

Is the name of a method.

The following fragment represents a node of a complex type:

"+<xs:complexType name="[COMPLEXTYPENAME]">

Expanding Nodes Based on Different Complex Types

You can expand nodes based on different complex types of nodes, as shown in the schema
fragments in this section.

System.Collections.ArrayList Type

A. Samples and Reference Guide

iWay .NET Technology Adapter User's Guide 113

System.Collections.Generic.Dictionary Type

[DICTIONARYNAME]

Is the name of dictionary, which is the combination of the string ArrayOfKeyValueOf along
with [DICTIONARYKEYVALUENAME].

[DICTIONARYKEYVALUENAME]

Is the data, which is the combination of the string of key type along with the string of value
type.

Array or System.Collections.Generic.List Type

[ARRAYNAME]

Is the name of an array, which is the combination of the string ArrayOf along with the string
of a data type.

Modifying XML Schemas

114 Information Builders

Pointer Type

Constructor Type

A. Samples and Reference Guide

iWay .NET Technology Adapter User's Guide 115

Complete XML Request Schema

Modifying XML Schemas

116 Information Builders

Additional Sample XML Documents

This section provides additional sample XML documents for the iWay .NET Technology Adapter.

Constructor Example

Array Example

A. Samples and Reference Guide

iWay .NET Technology Adapter User's Guide 117

Pointer Example

Additional Sample XML Documents

118 Information Builders

Dictionary Example

A. Samples and Reference Guide

iWay .NET Technology Adapter User's Guide 119

ArrayList Example

XMLElement Example

Additional Sample XML Documents

120 Information Builders

List Example

Getting SESSIONID Example

Users can get a SESSIONID by the Constructor Response, as shown in the following image.

A. Samples and Reference Guide

iWay .NET Technology Adapter User's Guide 121

Users can get a SESSIONID by the Method Response, as shown in the following image.

Using SESSIONID Example

The iWay .NET Technology Adapter will detect if the value of the SESSIONID is valid. If the
value of the SESSIONID is valid, then the section labeled as CONSTRUCTOR INFO in the above
image can be ignored. The XML schema can be simplified, as shown in the following image.

Otherwise, the value of the SESSIONID will be ignored and the section labeled as
CONSTRUCTOR INFO in the previous image will be used by the iWay .NET Technology Adapter.

Additional Sample XML Documents

122 Information Builders

AppendixB
Known Issues and
Limitations

This appendix describes known issues and limitations for iWay .NET Technology Adapter.

In this appendix:

Supported and Unsupported Areas

Tested Application Scope

Supported and Unsupported Areas

This section provides a list of features that are supported and not supported.

Note: This is not a complete list and anything not on this list is implied to be not supported.
For more information, contact your customer support representative.

.Net Application Essentials

The following is a list of areas that are not supported:

Widows Store, Widows Forms, XAML, any display methods

Dynamic assemblies

Network I/O

SOAP Serialization

Write to console

Using .NET serialization classes are not supported for integration.

.Net Data and Modeling

The following list is arranged by features that are not supported, not supported for integration,
and not supported Entity Framework restrictions (.NET areas).

Not Supported

WCF

iWay .NET Technology Adapter User's Guide 123

Not Supported for Integration

Writing to a file or XML file

Not Supported Entity Framework (.NET areas) Restrictions

Windows Presentation Foundation and Windows forms

Common Client technologies

Windows Service applications

Parallel and asynchronous processing

Windows Communication Foundation

Windows Identity Foundation

Windows Workflow Foundation

Platforms other than Windows client or server

.Net Framework 4.5 and 4 Scope List

The following is a technology support list for the .NET Framework that is arranged by features
that are supported, not supported, limited support, limited and legacy support, and partially
supported.

Supported

64-bit application development

Application domains

Assemblies

Collections

Common language runtime (CLR)

Not Supported

.NET for Windows Store applications

Accessibility

Add-ins

ASP.NET

Supported and Unsupported Areas

124 Information Builders

Assembly binding redirection

Asynchronous programming

Code DOM

Limited Support

.NET Framework Class Library

Common type system

Limited and Legacy Support

Attributes

Partial Support

ADO.NET

Configuration

This section lists configurations that are arranged by features that are supported, not
supported, limited support, partially supported, and implicit only.

Supported

Exceptions

Generics

Files and streams

Interoperability

Side-by-Side Execution in the .NET Framework

Not Supported

Configuring Applications

Data Service

Debugging, tracing, and profiling

Deploying applications

Designers and the design environment

B. Known Issues and Limitations

iWay .NET Technology Adapter User's Guide 125

Directory services

Dynamic Language Runtime (DLR)

GDI+

Compressing files

Image file handling

Working with Images, Bitmaps, Icons, and Metafiles

Images

Lazy initialization

Managed Extensibility Framework (MEF)

Media and multimedia:

Graphics and Multimedia in Window Presentation Foundation

Graphics and Multimedia Portal

Memory-mapped files

Moving user interface elements

MSBuild

Network programming

Out-of-band (NuGet) releases

Parallel programming

Portable Class Library

Silverlight

Transaction processing

UI Automation

WCF Data Services

Windows Communication Foundation

Windows Forms

Supported and Unsupported Areas

126 Information Builders

Windows Forms controls

Windows Identity Foundation

Windows Presentation Foundation (WPF)

Windows services

Windows Store applications

Windows Workflow Foundation (WF)

Zip files and archives

Limited Support

Data access

Globalization and localization

I/O

LINQ (Language-Integrated Query)

Reflection

Security in the .NET Framework

Serialization

Threading

Windows Runtime

XML documents and data

Partial Support

Events

Implicit Only

Garbage Collection

Classes in .NET are passed by reference, and cannot be used for integration as a result.
Structures are passed by value, and the results can be passed between Java and .NET.

Native types in the common type library are supported by default. Defined types must have a
constructor if instance-based or declared as static if not.

B. Known Issues and Limitations

iWay .NET Technology Adapter User's Guide 127

Serialization of data between Java and .NET is possible, but direct serialization or
synchronization of objects is not currently supported. The underlying APIs of Java and .NET do
not support the level of object graph serialization required.

The Entity Framework uses a conceptual model to access an underlying data object. Because
the model may have any type of design, some model types are not useful with the adapter.
Some models are designed for update only, or access only by a data control object in a form.
The ideal framework model for the adapter returns an object or contains an object query. Then
object query can be serialized through a structure and array list for integration.

Common Language Runtime Scope

The adapter uses the .NET unmanaged COM API to instantiate the .NET Common Language
Runtime (CLR). The .NET CLR is not an emulated environment, but communication with the
instance is governed by the adapter. There are several languages that can generate CLI code.
The adapter has been extensively tested with C# and on a more limited basis with source from
Visual Basic and F#. For adapter usage requirements with any other language, contact your
customer support representative.

No explicit or implicit guarantee of compatibility or performance with user application
components is given with the iWay .NET Technology Adapter. The scope of the framework is
too wide and deep to do so. If you have specific questions about supported components
of .NET or application compatibility, contact your contact your customer support representative.

Tested Application Scope

The following list provides a summary of the supported functionality that was tested with the
iWay .NET Technology Adapter.

Browsing Assemblies on a system.

Opening an Assembly and exploring public serializable classes.

Common type system data types.

Invoking methods of an Assembly.

Invoking methods of an Assembly by Assembly reference.

Triggering a windows process from an Assembly reference.

Calling functions in Assemblies (In and Out parameters).

Invoking methods with different return types (void, string, int, and structure).

Browsing classes and invoking methods on classes nested inside of other classes (nested
classes).

Tested Application Scope

128 Information Builders

Using collections or boxed and unboxed properties SET and GET.

Assemblies with a very large amount of classes and methods.

Accessing Microsoft SQL Server versions 2008 and 2008 R2 using the.NET SQL Server
provider.

Dynamic build of SQL Server connection strings.

Using stored SQL Server connection strings.

Validating SQL Server connection strings.

Validating SQL Server commands.

Dynamically attaching a database to a running instance of SQL Server.

Using static methods to invoke stored SQL statements on SQL Server (heap).

Using instance methods to pass SQL commands to SQL Server (stack).

Accessing database classes from a static assembly reference (heap).

Accessing database classes from a instance assembly reference (stack).

Calling database procedures retrieving up to 20,000 records.

Common Type System Data Types:

C# Type

.NET Framework Type

bool System.Boolean

byte System.Byte

sbyte System.SByte

char System.Char

decimal System.Decimal

double System.Double

float System.Single

int System.Int32

B. Known Issues and Limitations

iWay .NET Technology Adapter User's Guide 129

uint System.UInt32

long System.Int64

ulong System.UInt64

object

System.Object

short System.Int16

ushort System.UInt16

string System.String

Structures built from these types

One dimension Array

One dimension ArrayList

Dictionary

DataTable

A class is a reference to a location in memory. As a result, classes require a specific
serializer helper to write to XML. A structure is a data object and can be directly serialized
to XML.

Tested Application Scope

130 Information Builders

Feedback
Customer success is our top priority. Connect with us today!

Information Builders Technical Content Management team is comprised of many talented
individuals who work together to design and deliver quality technical documentation products.
Your feedback supports our ongoing efforts!

You can also preview new innovations to get an early look at new content products and
services. Your participation helps us create great experiences for every customer.

To send us feedback or make a connection, contact Sarah Buccellato, Technical Editor,
Technical Content Management at Sarah_Buccellato@ibi.com.

To request permission to repurpose copyrighted material, please contact Frances Gambino,
Vice President, Technical Content Management at Frances_Gambino@ibi.com.

Information Builders, Inc.
Two Penn Plaza
New York, NY 10121-2898

iWay .NET Technology Adapter User's Guide
Version 7.0.x and Higher

DN3502306.0418

	Contents
	Preface
	Documentation Conventions
	Related Publications
	Customer Support
	Help Us to Serve You Better
	User Feedback
	Information Builders Consulting and Training

	1. Introducing the iWay 	 .NET Technology Adapter
	iWay .NET Technology Adapter Overview
	Defining and Understanding User Proficiency Levels

	Installing the iWay .NET Technology Adapter
	Required Installation Files
	Required User Provided Files

	Sample Files

	Understanding the Technology of the iWay .NET Adapter
	Session Support
	Constructor
	Loading Assemblies Overview
	Parameters and Data Types
	Serialization
	Method States
	Calling COM Objects

	Component Information for the iWay .NET Technology Adapter
	iWay Explorer
	iWay Service Manager
	iWay Business Services Provider

	2. Supported Platforms 	 Matrix for iWay .NET Technology 	 Adapter
	Support Overview for iWay .NET Technology Adapter
	Supported Versions for Microsoft .NET
	Operating Systems for iWay .NET Technology 	 Adapter
	Database Drivers for iWay .NET Technology 	 Adapter
	Java Development Kit (JDK) for iWay .NET Technology 	 Adapter
	Communication Modes for iWay .NET Technology 	 Adapter
	Object Types and Interfaces for iWay .NET Technology 	 Adapter
	Communication Types for iWay .NET Technology 	 Adapter
	Supported Operations for iWay .NET Technology 	 Adapter
	Data Types Support
	Other Functions for iWay .NET Technology 	 Adapter
	Known Limitations for iWay .NET Technology 	 Adapter
	Restrictions for .NET Framework
	Common Language Run-time Scope for .NET
	Related Information for Specific iWay Releases

	3. Design Time Concepts 	 and Configuration Tasks
	Exploring Assemblies
	Starting iWay Explorer
	Procedure: How to Open iWay Integration Tools
	Procedure: How to Create an iWay Explorer Connection to an iSM Server

	Adding the .NET Adapter to iWay Explorer
	Procedure: How to Add the .NET Adapter to iWay Explorer

	Working With a Target
	Procedure: How to Create a Target
	Application Domain Boundary
	Accessing .NET Classes in iWay Explorer
	Calling Distributed Assemblies on Different Machines
	Determining if a Method can be Called
	Procedure: How to Connect to a Target
	Procedure: How to Disconnect From a Target
	Procedure: How to Edit a Target
	Procedure: How to Delete a Target

	Understanding the Assembly Viewer in iWay Explorer
	Controlling the Adapter Behavior Using a Properties File
	Understanding the Format of the Properties File
	Usage Considerations and Examples
	Display Assemblies, Hiding Classes and Methods, and Disabling Cache

	Sample Properties File

	4. Run Time Concepts 	 and Configuration Tasks
	Run Time Implementation
	Understanding Design Time and Run Time Targets
	Using the Persist Connection Parameter
	Understanding the Relationship Between Java and .NET
	Invoking the iWay .NET Technology Adapter
	Understanding Run Time Types
	Invoking the iWay .NET Technology Adapter Through an iWay Business Service
	Procedure: How to Invoke the iWay .NET Technology Adapter Through an iWay Business Service

	Invoking the iWay .NET Technology Adapter Through a Process Flow
	Procedure: How to Run an Adapter Process Flow to Invoke the iWay .NET Adapter
	Procedure: How to Run a Web Service Process Flow to Invoke the iWay .NET Adapter

	5. Configuring the 	 Adapter in an iWay Environment
	Configuring the Adapter in iWay Service Manager
	Procedure: How to Define an Adapter
	Procedure: How to Modify or Update an Adapter Connection

	A. Samples and 	 Reference Guide
	Using COM Interop in the iWay .NET Technology Adapter
	Generating XML Schema in Legacy Mode
	ComposeDocMethod Function
	ComposeRpcMethod Function

	Generating XML Schema in the Current Adapter Version
	Complex Custom Type Representation Rules
	Namespace and Target Namespace
	Formats of XML Request and Response Schemas

	Modifying XML Schemas
	Constructor Schemas
	Method Schemas
	Schema Properties Reference
	Expanding Nodes Based on Different Complex Types
	System.Collections.ArrayList Type
	System.Collections.Generic.Dictionary Type
	Array or System.Collections.Generic.List Type
	Pointer Type
	Constructor Type

	Complete XML Request Schema

	Additional Sample XML Documents
	Constructor Example
	Array Example
	Pointer Example
	Dictionary Example
	ArrayList Example
	XMLElement Example
	List Example
	Getting SESSIONID Example
	Using SESSIONID Example

	B. Known Issues and 	 Limitations
	Supported and Unsupported Areas
	.Net Application Essentials
	.Net Data and Modeling
	.Net Framework 4.5 and 4 Scope List
	Configuration
	Common Language Runtime Scope

	Tested Application Scope

	Feedback

