
TIBCO iWay® Service Manager

Copyright © 2021. TIBCO Software Inc. All Rights Reserved.

Troubleshooting and Debugging Best Practices

Version 8.0 and Higher
March 2021
DN3502297.0321

Contents

1. Defining Troubleshooting and Debugging Strategies . 5

Troubleshooting and Debugging Overview . 5

2. Using iWay Service Manager Diagnostics, Tracing, and Logging Facilities 7

Running in a Command Shell . 7

Diagnostic Commands . 9

Troubleshooting on Windows . 11

Performing Diagnostic Functions . 12

Log Settings. 12

Trace Settings. .15

Measurements and Statistics . 20

Memory. 20

Deadlocks. 22

Statistics. 22

Emitted Statistics Information. 24

Tips. .26

Using the Log Viewer .27

Creating a Diagnostic Zip . 28

3. Identifying Available Services for Troubleshooting and Debugging 31

Activity Log Entry Service (com.ibi.agents.XDXALogEvent) .31

Catch Service (com.bi.agents.XDCatchAgent) . 33

Fail Service (com.ibi.agents.XDFailAgent) . 35

QA Service (com.ibi.agents.XDQAAgent) .36

Trace Message Writer Service (com.ibi.agents.XDTraceAgent) .38

4. Identifying Available Commands and Functions for Troubleshooting and

Debugging . 41

Using the Testfuncs Tool . 41

Using the Testxpath Tool . 42

Using the Flow Command .43

Using the Line Command . 45

Using the _eval() Function . 46

5. Creating and Using a Remote Command Console . 47

Troubleshooting and Debugging Best Practices 3

Remote Command Console Overview .47

Creating a Remote Command Console .48

Connecting to a Remote Command Console .55

Using a Telnet Client. 56

Remote Only Commands. .58

Telnet Scripting Example. 58

6. Using Event and Startup Process Flows .61

Event Process Flows . 61

Server Startup. .62

iWay Business Activity Monitor Database Loss of Access. 63

Channel Startup Failure. 63

Retry Expired. 65

Failed ReplyTo. .66

Send to Dead Letter. .68

Parse Failure. 70

Startup Process Flow .71

7. Recommended Third-Party Tools for Troubleshooting and Debugging 73

JConsole . 73

JVM Startup Options . 74

SoapUI .75

KeyTool IUI . 75

Operating System Commands . 76

Wireshark . 76

Tcpdump . 76

Legal and Third-Party Notices .77

Contents

4

Chapter1 Defining Troubleshooting and Debugging
Strategies

This section provides an introduction to iWay Service Manager (iSM) troubleshooting and
debugging facilities, and outlines key strategies that can be used.

In this chapter:

Troubleshooting and Debugging Overview

Troubleshooting and Debugging Overview

iWay Service Manager (iSM) provides a collection of tools and facilities that are designed for
troubleshooting and debugging purposes. One of the key challenges in any debugging scenario
is to identify the level (or area) where the error is occurring. As a starting point, asking the
following questions can help during the early stages of an investigation:

Is the application generating an error at the server level?

Is the application generating an error at the channel? Should I be debugging within a
channel?

Is there an issue with the process flow(s) being used by the application? Should I be
debugging within a specific process flow?

Should I be debugging at a thread level?

Is the error occurring during application design time or runtime?

In actual scenarios, issues may not occur at a specific level, but between levels. For example,
as a message or transaction passes between the process flow and channel levels.

Troubleshooting and Debugging Best Practices 5

Based on the answers to these questions, the appropriate troubleshooting or debugging tool
can be identified. The following diagram illustrates this logic and the various levels that a
typical application may traverse.

The primary goals of this best practices guide is to:

1. Identify the troubleshooting and debugging facilities that are provided by iSM.

2. Identify iWay-recommended third-party tools if the troubleshooting or debugging level scope
falls outside of the iWay framework.

3. Identify scenarios where the appropriate tool or facility can be best used to troubleshoot
and debug the issues as they occur.

Troubleshooting and Debugging Overview

6

Chapter2 Using iWay Service Manager Diagnostics,
Tracing, and Logging Facilities

This section describes how to use the iWay Service Manager Administration Console to
perform diagnostic functions. Information on how to run iWay Service Manager (iSM) in a
command shell to enter commands that can assist you during troubleshooting is
provided. It also describes how to use the Windows Event Viewer for troubleshooting
purposes.

The following topics include instructions on how to configure logging and debugging
properties to view the resulting log files in the console. Instructions on how to enable the
tracing features of iSM are also provided, in addition to information about the iSM test
tools that assist in debugging.

In this chapter:

Running in a Command Shell

Diagnostic Commands

Troubleshooting on Windows

Performing Diagnostic Functions

Measurements and Statistics

Using the Log Viewer

Creating a Diagnostic Zip

Running in a Command Shell

You can run iWay Service Manager (iSM) in a command shell to debug and troubleshoot any
errors that may occur.

On Windows, the iwsrv command starts iSM in a command window for debugging purposes.
For reference, the following topic includes the full syntax of the iwsrv command.

Syntax: How to Start iWay Service Manager in a Command Window (Windows)

Navigate to the iWay home bin directory. For example, on Windows, if iWay is installed in C:
\Program Files\iWay61, go to

C:\Program Files\iWay61\bin

Troubleshooting and Debugging Best Practices 7

The syntax for the iwsrv command, which starts iWay Service Manager in a command window
on Windows, is:

iwsrv [configuration] [-s service] [-l launch] [options]

where:

configuration

Is the name of the server configuration that is loaded for this instance. The default value is
base.

service

Is the name of the service that is executed. Valid values are:

start. Starts the server configuration (default).

stop. Stops the server configuration.

install. Installs the server configuration.

remove. Removes the server configuration.

query. Queries the server configuration.

launch

Specifies the launch method. Valid methods are:

java. Loads Java in a separate process and uses the JVM options, NT dependencies, and
other preferences found within the iSM configuration that are configured through the
console. For example:

iwsrv.exe base -s start -l java

script file. Specifies a script file that defines the run-time preferences. This script file must
be located in the iWay Service Manager installation directory. For example:

iwsrv.exe base -s start -l iWay61.cmd

Both of the above uses of -l will force the service to load Java in a separate process. When
the service is stopped, both iwsrv.exe and java.exe are terminated.

options

Specifies tracing or server back-up information. Valid values include:

-b. Indicates that Service Manager is a back-up server, for example:

iwsrv.exe base -s start -b

Running in a Command Shell

8

-c. Turns tracing on. In this mode, you can display useful error messages on the console.
For example, you can display a message that says the Java Runtime Environment (JRE) is
not properly installed. For example:

iwsrv.exe base -s start -c

-d. Limits tracing to debug only, for example:

iwsrv.exe base -s start -d

-f. [PATH] filters the system path when invoking JAVA. [RESTART] suppresses the JVM fault
restart capability.

-h. iWay61 home directory.

-t. The amount of time (in seconds) to process service shutdown.

Example: Starting a Server Configuration With Traces Enabled

The following command starts a server configuration named test and sends traces to the
command window as print lines:

iwsrv test -c

Diagnostic Commands

When iWay Service Manager (iSM) is running in a command shell, you can control it by typing
commands in addition to using the console. These commands are designed to assist you in
resolving issues.

Several of the key commands are listed and described in the following table. To see a full list
of available commands, type Help at the Command Prompt on Windows after using the iwsrv
command to start iSM.

Command Description

diagzip Creates a diagnostic information file for use by iWay Support. For
example, you can enter the following command:

diagzip c:\temp\Diag_from_base

errors Displays the last ten errors reported by the server.

exits Displays loaded exits, such as Activity Log and Correlation Manager.

2. Using iWay Service Manager Diagnostics, Tracing, and Logging Facilities

Troubleshooting and Debugging Best Practices 9

Command Description

func Displays the list of iWay Functional Language (iFL) functions, or the
parameters of that function.

gc Runs the Java garbage collector.

help Displays help for the diagnostic commands. Type the following to
display help for a specific diagnostic command:

help command_name

info Displays channel information.

license Displays available iWay license codes.

line Prints one or more lines on the command window or the trace log to
improve the readability.

memory Lists the amount of memory that is currently in use and the amount of
free memory that is available.

pools Lists resource pools.

providers Displays providers currently in use.

pull Load information from another configuration or installation.

quit Exits the server. All listeners must be stopped.

refresh Restarts a specified listener with an updated local configuration.

run Runs a command file.

set Sets a parameter. Usually used to set the tracing level, for example:

set trace on

shell Attempts to run an operating system command.

show Displays server information.

sregs Displays globally available special registers.

start Starts one or more channels.

Diagnostic Commands

10

Command Description

stats Run statistics on the current instance or listener.

stop Stops one or more channels.

threads Lists execution threads currently controlled by the server. Does not
necessarily include threads started by auxiliary packages, such as third-
party interfaces. Useful after a Stop command to determine what is still
running.

time Prints the GMT time on the console.

tool Runs a named tool, such as testfuncs.

type Type or display the contents of a text file.

version Displays the product version and all later versions of .JAR files.

Troubleshooting on Windows

Information, warning, and error messages are logged in the Windows Event Log system. When
a problem occurs, the Windows Event Log is the first place to look for information.

Procedure: How to Display Messages in the Windows Event Viewer

1. Access the Event Viewer from Administrative Tools, which can be found in the Windows
Control Panel.

2. From the left pane of the Event Viewer, click Application to view iWay Service Manager
entries.

2. Using iWay Service Manager Diagnostics, Tracing, and Logging Facilities

Troubleshooting and Debugging Best Practices 11

The following image shows entries in columns that indicate the type of message, the date
and time, the source (for example, iWay Service Manager), the category, the event, and
the user, when applicable.

3. To view its contents, double-click an entry.

If you are having difficulty starting a service for iWay Service Manager, which cannot be
resolved using information from the Event Viewer, start the service in console mode.

Performing Diagnostic Functions

The iWay Service Manager Administration Console enables you to configure diagnostic
properties for logging and tracing. After logging and tracing properties are enabled, you can
view the resulting log files in the console.

Log Settings

The Trace Log is used to record the diagnostic information that is generated by the run-time
components of iWay Service Manager. The Transaction Log is used to maintain a record of
every document received and processed by iWay Service Manager. The following procedure
describes how to configure log settings that are defined in the base configuration of iWay
Service Manager.

Performing Diagnostic Functions

12

Procedure: How to Configure Log Settings

1. In the left console pane of the Server menu, select Log Settings.

2. Using iWay Service Manager Diagnostics, Tracing, and Logging Facilities

Troubleshooting and Debugging Best Practices 13

The Log Settings pane displays, as shown in the following image.

2. Change the default values.

For more information, see Log Setting Properties on page 14.

3. Click Update.

4. For your changes to take effect, restart iWay Service Manager.

Reference: Log Setting Properties

The following table lists and describes the log setting properties.

Property Description

Trace Log Settings

Performing Diagnostic Functions

14

Property Description

Logging Turns logging on or off. Required if you want to log to a file, use a
diagnostic activity log, or view the log online.

Logfiles Location
(Directory field)

Directory where the trace log root resides. To create the directory if it
does not exist, select the check box.

Logfile Size Limit
(Number field)

Maximum allowed for each file size in kilobytes (used for log
rotation). iWay recommends a minimum of one megabyte.

Logfiles in Rotation
(Number field)

Maximum number of files to keep (used for log rotation).

Message Size Limit
(Number field)

Maximum size of the data message in a log file measured in
kilobytes. Large trace messages affect system performance.

Trace Settings

Tracing is key to diagnosing problems and thus to application reliability. iWay Service Manager
provides a full complement of tracing services, oriented to diagnostic analysis of the running
system. Tracing provides a step-by-step explanation of the internal activity of the server.

It is important to note that tracing can affect system performance. The iWay Service Manager
Administration Console enables you to select the levels of traces that you want to generate.
Unless you are diagnosing a problem, you should limit tracing to error-level only.

A separate category called JLINK debug masks trace messages originating in the iWay JDBC
driver that is used to access the main data server. You can specify actual tracing levels for all
instances of the driver in the driver settings of the Data Server Properties configuration
window. For more information, see How to Activate JLINK Tracing on page 19.

The following procedure describes how to control the amount of detail that is produced by the
diagnostic components embedded within iSM. Traces produced during run time are displayed
or logged based on settings in the run-time environment.

2. Using iWay Service Manager Diagnostics, Tracing, and Logging Facilities

Troubleshooting and Debugging Best Practices 15

Procedure: How to Select Trace Levels

1. In the left console pane of the Server menu, select Trace Settings.

The Trace Settings pane displays, as shown in the following image.

2. If other than the default trace levels (Info and Error) are required, select the desired trace
level check box.

For more information, see Trace Setting Properties on page 17.

3. Click Update.

Performing Diagnostic Functions

16

Reference: Trace Setting Properties

The following table lists and describes the trace setting properties.

Trace Level Description

Error Displays error messages. This trace level is set by default.

Warning Displays warning messages. This trace level is set by default.

Info Displays informational messages. This trace level is set by default.

Debug Reports data that is helpful for debugging situations. Shows logic that
tracks the path of a document.

Deep Used for detailed logic tracing. Stack traces are reported by the
system in deep debug level. Use only if instructed to do so by iWay
Support.

Caution: Tracing at this level can impact system performance.

Tree Displays the document as it enters and leaves the system in XML
form. This is a level at which intermediate processing as a document
evolves is done.

Caution: Tracing at this level can impact system performance.

Data Displays the incoming and outgoing documents as they pass to and
from the protocol channel.

Caution: Tracing at this level can impact system performance.

Validation Rules Displays trace messages about validation rules.

Caution: Tracing at this level can impact system performance.

External Displays trace messages about external components.

Caution: Tracing at this level can impact system performance.

Procedure: How to Log Traces to a File

If tracing is turned on without logging, the tracing information appears only in the debug
window and is not saved to a file.

2. Using iWay Service Manager Diagnostics, Tracing, and Logging Facilities

Troubleshooting and Debugging Best Practices 17

To log traces to a file:

1. In the left console pane of the Server menu, select Log Settings.

The Log Settings pane opens.

2. In the Logfiles Location section, specify the path to the directory used to save log files.

3. Click Update.

4. For your changes to take effect, restart iWay Service Manager.

Traces are available in several levels and controlled independently. For more information, see
Trace Setting Properties on page 17.

Note: Trace settings for managed configurations must be set for each configuration
independently.

All levels can be masked, so that the log contains only brief informational and error messages.

Unlike most design time settings, changing trace levels takes immediate effect in the run-time
system. Changing the log file location does not take effect until iWay Service Manager is
restarted.

Performing Diagnostic Functions

18

Procedure: How to Activate JLINK Tracing

1. In the left console pane of the Server menu, select Data Settings.

The Data Settings pane opens, as shown in the following image.

a. Select the Diagnostics check box.

b. Specify trace levels for specific instances of the driver.

The trace levels are:

api. Provides entry and exit tracing as the application steps through JDBC calls.

2. Using iWay Service Manager Diagnostics, Tracing, and Logging Facilities

Troubleshooting and Debugging Best Practices 19

io. Traces data in and out of the system.

logic. Traces the internal activity of the driver. This is equivalent to the Debug trace
level of the server.

debug. Traces internal operations of the driver. This is equivalent to the Deep Debug
trace level of the server.

c. Type the name of the trace file in the Trace File field.

The trace file specification enables you to route traces from the iWay JDBC driver to a
specific file. If you do not specify a trace file, the traces (in most cases) appear in the
standard server trace. Certain generalized services that use the iWay JDBC driver do
not pass traces through the server. In these cases, specification of the external trace
file enables the traces to be captured. You may be prompted to send this file to iWay
Support as part of the problem resolution process.

2. Click Update.

Measurements and Statistics

The Measurements package allows you to analyze the behavior of iWay Service Manager.

The Statistics package provides the following functionality:

Reports heap memory usage as an extension to the existing memory command.

Searches for and detects deadlocked workers as part of the extended threads command.

Reports CPU and user time expended by masters as part of the extended stats command.
Usage statistics can also be sent to an external monitoring facility for more detailed
analysis.

In some situations, the Measurements package can add significant overhead to the operation
of iWay Service Manager. Therefore, do not use the Measurements package in a production
environment unless that environment is undergoing analysis.

The information and formats described in this topic are release-dependent, and subject to
change.

Memory

The memory command displays the amount of memory in use at the time that the command is
issued. When the Statistics package is in use, the standard display is augmented by an
additional line that starts with the word Heap.

Measurements and Statistics

20

The Java Virtual Machine has a heap, which is the run-time data area from which all required
memory is allocated. The heap is created at the startup of the Java Virtual Machine. Heap
memory for objects is reclaimed by an automatic memory management system, which is known
as a garbage collector. Although the garbage collector runs automatically, you can issue the gc
command to force it to run for analytic purposes.

The heap memory display has four fields.

Field Description

init Represents the initial amount of memory (in bytes) that the Java Virtual
Machine requests from the operating system for memory management
during startup. The Java Virtual Machine may request additional memory
from the operating system, and may also release memory to the system
over time.

The value of init may be undefined (0) on some platforms.

committed Represents the amount of memory (in bytes) that is guaranteed to be
available for use by the Java Virtual Machine. The amount of committed
memory may change over time (it may increase or decrease).

The Java Virtual Machine may release memory to the system, and the
value of committed could be less than the value of init. The value of
committed is always greater than or equal to the value of used.

max Represents the maximum amount of memory (in bytes) that can be used
for memory management. Its value may be undefined. If its value is
defined, the maximum amount of memory may change over time.

If max is defined, the amount of used and committed memory is always
less than or equal to the value ofmax. A memory allocation may fail if it
attempts to increase the used memory, such that the value of used is
greater than the value of committed, even if the value of used is less than
or equal to the value of max (for example, when the system is low on
virtual memory).

used Represents the amount of memory currently used.

The heap display is more accurate than the memory display issued without the Measurements
package installed. The original (standard) information is displayed, in addition to the new heap
information.

2. Using iWay Service Manager Diagnostics, Tracing, and Logging Facilities

Troubleshooting and Debugging Best Practices 21

Enter command:>memory
STR00X35: memory used 8244K, free 591K,
 nodes: cache 1001 allocated 8607, reclaimed 116, destroyed 116
 namespace 0 namespace reclaim 0
 Heap: init=0K committed=8244K max=65088K used=7662K

Enter command:>

The key value is used, which indicates how much memory is currently allocated. As the value of
used approaches the value of max, the garbage collector may start, and performance may be
eroded.

Deadlocks

The deadlock detector finds cycles of threads that are in deadlock, waiting to acquire locks.
Deadlocked threads are blocked, waiting to enter a synchronization block, or waiting to reenter
a synchronization block after a wait call, in which each thread owns one lock while trying to
obtain another lock already held by another thread.

A thread is deadlocked if it is part of a cycle in the relation is waiting for lock owned by. In the
simplest case, thread A is blocked, waiting for a lock owned by thread B, and thread B is
blocked, waiting for a lock owned by thread A.

This is an expensive operation. Use it only in cases in which you suspect that messages are
locked up in the system.

To enable monitoring, use the command thread monitor on. To disable monitoring, use the
command thread monitor off. While the monitor is enabled, entering the threads command
displays information regarding deadlocks, such as the thread name or names, and the lock
name or names. The thread names indicate the components that are deadlocked.

Statistics

When iWay Service Manager is running without the Measurements package, some statistics
are generated with wall clock times. With the Measurements package, the CPU and user state
times are also generated. On the summary page, all values for time are reported in seconds,
with a precision of four places. It is possible to develop a report with a greater precision for
time.

In some cases, wall clock times show useful information. These times provide a measure of
performance for a single message as experienced by the sender. They do not provide any
information regarding the throughput capacity of iWay Service Manager.

Measurements and Statistics

22

CPU and user times describe the actual execution time expended on messages.
Implementation of these measurements depends on the platform and the Java Virtual Machine
(JVM). In many cases, the CPU and user times are the same, as the JVM may not discriminate
between the two. For those platforms on which the JVM does discriminate, expect the CPU
time to be greater than the user time.

User time is the CPU time that the current thread has executed in user mode, that is, the time
spent executing iWay Service Manager instructions.

CPU time is the sum of user time and system time. It includes the time spent setting up for
JVM services such as locks, network operations, I/O operations, and other services.

Enter command:>stats
 In seconds
 name count low high mean variance std.dev. ehr num/sec
mq1a wall: 2 0.0470 0.1560 0.1015 0.0030 0.0545 - 9.85
 cpu : 2 0.0312 0.0625 0.0469 0.0002 0.0156 -
 user: 2 0.0312 0.0625 0.0469 0.0002 0.0156 -

The stats command displays a summary of statistics gathered up to that point. To reset the
values to zero, use the stats reset command. iWay recommends that you do not rely on
statistics until several messages have been handled to completion, as iWay Service Manager
front-loads initialization. Once the system is in a steady state, reset the statistics to zero.

The numbers displayed on the summary page are approximate and are intended for general
guidance only. Brief descriptions of the displayed fields are provided in the following table. A
fuller understanding of the message processing distribution described here requires some
knowledge of statistics and probability, as they apply to queuing.

Field Description

count The number of messages that have been handled, for which statistics
have been gathered.

low The lowest time recorded for the handling of a message.

high The highest time recorded for the handling of a message.

mean The numeric mean of the times recorded. This value is the sum of the
times divided by the number of messages handled. This value is
frequently called the average.

variance The statistical variance of the times recorded. Variance is a measure of
how numbers disburse around the mean.

2. Using iWay Service Manager Diagnostics, Tracing, and Logging Facilities

Troubleshooting and Debugging Best Practices 23

Field Description

std.dev. The statistical standard deviation of the times recorded. Standard
deviation is a measure of how numbers disburse around the mean.

ehr The Ehrlang Density Coefficient, which provides evidence of the
randomness of the time distribution. If there are too few values to
compute the coefficient, a hyphen (-) is displayed. If the coefficient is
sufficiently close to constant, the term const is displayed.

This value is an approximation. A value of 1.0 indicates a Poisson
distribution, which is the design point of iWay Service Manager. A very low
value can indicate that the individual times recorded are skewed and
therefore less usable for predicting behavior.

num/sec The reciprocal of the mean, providing the number of messages handled
per second. This value is displayed for the wall time. It is not a direct
measure of the throughput capacity of iWay Service Manager.

The iWay Service Manager Administration Console also displays a summary of statistics. The
Listener Statistics pane displays a table similar to the following.

Emitted Statistics Information

iWay Service Manager can emit statistics as each measurement is generated. Statistics
records are included in a comma-delimited file of alphanumeric characters.

Measurements and Statistics

24

The following table describes the fields in the file.

Field Format Description

type String The value 1, which is the record type. Other record types
may be added in a future release.

id String The generator (worker) ID.

tid String The transaction ID.

msglen Integer The message length (non-streaming). If the length cannot
be determined, the value -1 is specified.

complexity Integer A measure of the complexity of the message. The higher
the number, the greater the complexity. This value is
generally a measure of the number of nodes in the XML
tree. A value of -1 means unknown.

For most purposes, the number of digits that this integer
has is a good value to analyze.

timestamp Integer The current time, in milliseconds. This value is the
difference, measured in milliseconds, between the current
time and midnight, January 1, 1970 UTC (Universal Time,
Coordinated). The value is a timestamp for the record.

gregtime String The timestamp in GMT (Greenwich Mean Time). The format
is:

yyyy-mm-ddThh:mm:ss:mmmZ

walltime Float The wall clock time expended, in milliseconds.

usertime Float The user time expended, in milliseconds.

cputime Float The CPU time expended, in milliseconds.

usedmem Integer The used memory, in kilobytes (K). See Memory on page
20.

committed Integer The committed memory, in kilobytes (K). See Memory on
page 20.

2. Using iWay Service Manager Diagnostics, Tracing, and Logging Facilities

Troubleshooting and Debugging Best Practices 25

Field Format Description

$ String The end-of-record indicator.

The following is a sample record in the file:

1, W.udp1.1, udp1-UDP-W.udp1.1_20050328191546135Z, -1,1735, 1112037346213,
2005-03-28-T19:15:46:135Z, 78.0, 15.625, 15.625,1200,800 $

To enable iWay Service Manager to emit these statistics, define the following to the JVM
properties

-Dstaturl=host:port

where host and port are a UDP receiver.

You can specify the host and port of an iWay Service Manager UDP listener that has a process
that is defined to handle incoming messages. Use the iWay Service Manager Administration
Console to help define Java system properties.

The iwmeasure.jar extension provides a simple StatsGather agent that appends each record to
a named file.

Do not run the statistics gathering component on a machine that is being measured. The
process of receiving the statistics will be measured, creating a loop. You must use two
configurations, preferably on separate machines.

Tips

When you work with the complexity of a document (a number greater than -1 in the
complexity field), a good guideline is to use the number of digits in the field. For example, a
message that consists of 172 nodes would get a complexity measure of 3, while a
message that consists of 1459 nodes would get a measure of 4. For most analytic
purposes, this provides a reasonable value.

Traces use the bulk of time and memory in iWay Service Manager. For valid statistics, turn
off all traces. You can use the set trace off command to do this, or you can use the iWay
Service Manager Administration Console.

Many books are available on queuing theory, the use of available statistics, and the
interpretation of displayed fields.

Kushner, Harold J.; Heavy Traffic Analysis of Controlled Queuing and Communications Networks.
New York, Springer; (June 8, 2001).

Measurements and Statistics

26

Using the Log Viewer

The Log Viewer manages the display properties of system debugging information when the
logging and tracing functions are activated. It filters and displays debugging information as
each transaction is received and processed. The Log Viewer also displays the date/time range,
type, source, and message of every trace entry.

Note: In order to display traces of a specific level, you must have previously enabled them to
be written to the log file. For more information, see Log Settings on page 12 and Trace Settings
on page 15.

Procedure: How to Use the Log Viewer

1. Click Tools in the top pane and select Log Viewer from the Diagnostics section in the left
pane.

The Log Viewer pane opens, as shown in the following image.

2. Select a specific log file to view from the Log File drop-down list.

Note: Log file names are reused in a circular queue so that they will not proliferate and
consume too much disk space. The date and time stamp is shown in the drop-down list in
order to show the correct sequence of the files.

2. Using iWay Service Manager Diagnostics, Tracing, and Logging Facilities

Troubleshooting and Debugging Best Practices 27

The Log Viewer pane is automatically refreshed and shows the log file you selected.

3. Select the source component, level, date and time range, and number of lines to display
and click Refresh.

The contents of the log file, as filtered by your criteria, are displayed.

Tip: Multiple trace sources can be selected by pressing Ctrl and clicking the trace source.

Creating a Diagnostic Zip

The Create Diagnostic Zip option provides a quick way to collect the current configuration and
log files. An iWay Software support representative may ask you to create a diagnostic zip for
problem analysis.

You can use this function to add any relevant comments to the file. The file is labeled with a
timestamp in your configuration directory.

Note: Remove previous trace files prior to running a diagnostic zip.

Creating a Diagnostic Zip

28

Procedure: How to Create a Diagnostic Zip

1. Click Tools in the menu bar, which is located in the top pane.

2. In the left pane, select Diagnostic Zip.

The Diagnostic Zip pane opens, as shown in the following image.

3. Type your comments in the space that is provided.

4. Click Create Diagnostic Zip.

In this example, if you are using the base configuration, the file is saved to the location
shown in the following image.

2. Using iWay Service Manager Diagnostics, Tracing, and Logging Facilities

Troubleshooting and Debugging Best Practices 29

Creating a Diagnostic Zip

30

Chapter3 Identifying Available Services for
Troubleshooting and Debugging

This section identifies the services (agents) that are provided by iWay Service Manager
(iSM) for troubleshooting and debugging purposes.

In this chapter:

Activity Log Entry Service (com.ibi.agents.XDXALogEvent)

Catch Service (com.bi.agents.XDCatchAgent)

Fail Service (com.ibi.agents.XDFailAgent)

QA Service (com.ibi.agents.XDQAAgent)

Trace Message Writer Service (com.ibi.agents.XDTraceAgent)

Activity Log Entry Service (com.ibi.agents.XDXALogEvent)

Syntax:

com.ibi.agents.XDXALogEvent

Description:

This service is used to record events to the system log during a process flow. It can record
security events and arbitrary user event codes. Each message that is logged has a type, code,
and optional message.

Parameters:

Parameter Description

Transactional Determines whether this event record will be included in the log based
on the transaction. If set to true, the event is logged only if the entire
process flow is successful. For transactional recording, the channel must
be declared to control the local transaction.

Troubleshooting and Debugging Best Practices 31

Parameter Description

Event The event class to be included in the log. Select one of the following
values from the drop-down list:

emit {emit}

security {security} (default)

emit {signature}

crypto {crypto}

user {user}

You can also type an arbitrary, user-defined value in the Event field that
must be greater than 1000.

Code A code that further describes the event. Select one of the following
values from the drop-down list:

start {start} (default)

end {end}

fail {fail}

sign {sign}

encrypt {encrypt}

decrypt {decrypt}

verify {verify}

You can also type an arbitrary, user-defined value in the Code field that
must be greater than 1000.

Message An arbitrary message that you want to associate with this event record.

Available Response Edges for XDXALogEvent

When you connect the XDXALogEvent object to an End object using the OnCustom build
relation in a process flow, the available line edges are provided in the Line Configuration dialog
box.

Activity Log Entry Service (com.ibi.agents.XDXALogEvent)

32

The following table lists and describes the available line edges for the XDXALogEvent object.

Line Edge Description

OnError Error

OnSuccess Success

OnFailure Failure

Catch Service (com.bi.agents.XDCatchAgent)

Syntax:

com.bi.agents.XDCatchAgent

Description:

Error handling in iWay Service Manager process flows can be accomplished in a number of
different ways. The possible methods are:

Explicitly checking for an error, post-service execution, by conditioning the edge with onError
or onFailure.

Including an outlet conditioned with _iserror().

Including XDCatchAgent at the beginning of the channel. This channel has two edges on the
output side that are used for processing. The first is the onCompletion edge. The second is
the onCustom edge, with the onError and onFailure cases selected.

The concept of the XDCatchAgent is similar to a try-catch block in other programming
languages.

In other programming languages, a block of code is enclosed between the braces of a try
statement. Following the try block is a catch block of code that is enclosed in braces. The code
in the catch block has statements that handle any errors that might occur in the try block.

When the thread of execution starts, each line in the try block of code is executed. If each
statement is successful, execution continues at the statement following the closing brace of
the catch block (assuming that there is not a finally block). If an error occurs within the try
block, the thread of execution jumps to the code inside the catch block.

3. Identifying Available Services for Troubleshooting and Debugging

Troubleshooting and Debugging Best Practices 33

In an iWay Service Manager flow, you can add an XDCatchAgent in front of the services in
which an error might occur. There are two edges off this service:

onCompletion (blue)

onCustom (brown)

The completion edge is the thread of execution in which everything works in a perfect scenario.
All the edges after the service connected by the onCompletion edge are then connected to the
onSuccess edge.

The onCustom edge has three selected cases (onError, onFailure, and error_retry). Any errors
or failures that occur within the path of the process flow are directed down the onError and
onFailure edge. The logic in this branch contains any services necessary to handle errors. The
error_retry edge is followed when there is a retry exception. For example, when a SQL Object
contains an invalid URL in the process flow, the onCustom/error_retry edge will be followed.

Think of the onCompletion path as the try block and the onCustom edge as the catch block.

You can add multiple XDCatchAgents into a process flow. The error branch is taken off the
closest XDCatchAgent previous to where the error occurred. In this manner, you can add
multiple error conditions for a given process flow if needed.

Example:

In this example, a file is put into a directory after its creation from a previous channel. The
sample process flow is responsible for transmitting the file to the customer FTP site.

Since this is an FTP site, it is subject to network and site availability and other possible
outside issues. An error handling strategy is required so that none of the documents being
processed are lost because of an outside issue.

Catch Service (com.bi.agents.XDCatchAgent)

34

In process flow, the XDCatchAgent immediately follows the Start block. An onCompletion edge
connects the Catch Errors block to the FTP Write block. The FTP Write block is an FTP emitter
that is set up to write the file to an FTP site. The service directly following the XDCatchAgent
(Catch Errors) must have an onCompletion edge for this to work correctly.

Following the FTP Write block is the End block. The edge connecting these two services is an
onSuccess edge. If a different edge were used and an error occurred, the error edge off of
Catch Errors may not be executed.

The onCustom edge of Catch Errors has the onError and onFailure cases selected for the
properties. This edge leads to a file write service, Write Error, that puts the file into a hold
directory for later reprocessing. Following Write Error, there is an End with a Terminate since no
further processing is required at this point. In a real world scenario, a requirement might be
that an email is sent if the site is down.

When the target FTP site is up and available, the files are written to the FTP site. If the FTP site
is down or you cannot connect to it, the FTP write service will generate an error. This error
causes the next execution point to be the File Write to save the file for further processing.

Fail Service (com.ibi.agents.XDFailAgent)

Syntax:

com.ibi.agents.XDFailAgent

Description:

The failure business service always returns an XDException. If the retry option is selected for
the Type of failure parameter, the exception calls for a retry of the input, if possible. This
service is useful when debugging rollback logic in a customer business service.

Parameters:

Parameter Description

Type of failure The type of failure to be thrown. Select one of the following options from
the drop-down list:

fail

retry

Message Message to be issued to the user.

3. Identifying Available Services for Troubleshooting and Debugging

Troubleshooting and Debugging Best Practices 35

Parameter Description

Bypass Error
Message

Indicates not to trace at the error level when this service terminates the
process. This is useful for cases where the trace log is being monitored by
an external program for errors. The termination will be traced at the debug
level.

Call at EOS? In a streaming environment, EOS (End of Stream) is the short message
that is sent after the last document, which signifies the EOS. This
parameter determines whether this service should be called for the EOS
message. The default value is false.

Example:

This service can be used in situations where a failure must be reported or simulated (for
example, if a certain fatal condition is reported). If you run this service in a process flow using
<test/> as the incoming message and the retry option is selected for the Type of failure
parameter, the following document is returned:

<?xml version="1.0" encoding="UTF-8" ?>
<eda>
 <error code="6" timestamp="2009-06-05T19:56:59Z"
 source="com.ibi.agents.XDFailAgent" stage="AGENT">XD[RETRY] cause: 0
 subcause: 0 message: Retry requested from XDFailAgent</error>
</eda>

Otherwise, a retry is silent and the incoming message is retried later.

If the fail option is selected for the Type of failure parameter, the process flow handles the
termination as an error condition by searching upward on the execution edge to locate a catch
node. If none is found, then the process flow is terminated. If a catch node is found, then
standard catch logic is performed.

It is not recommended to design process flows in which failure indications are used to control
execution logic (for example, simulating a long jump). Failure indications should only be used in
the event of actual failures.

QA Service (com.ibi.agents.XDQAAgent)

Syntax:

com.ibi.agents.XDQAAgent

Description:

QA Service (com.ibi.agents.XDQAAgent)

36

This service emits a flattened copy of the input document to a file named in the init()
parameters. The service outputs the document (XML or flat) in QA, ondebug, or always modes,
depending on the configuration setting of the When parameter. If the QA mode is not enabled
(in the Diagnostic System Properties Console Configuration page or by using the set command)
and the always option is not set, then this service functions as a move service. This service is
designed to work as a chained service for debugging purposes. The document and all special
registers are included in the output.

The QA mode for iSM can be set by executing the following command to enable the QA mode
for the configuration:

set qa on [-save]

To deactivate the QA mode, execute the following command:

set qa off [-save]

The QA mode must be enabled for the iSM configuration you are using in order for the QA
service to output documents when set to QA mode.

To enable the QA service to output documents on debug, set the iSM debug special register to
true. To deactivate the debug mode, set the debug special register to false.

Parameters:

Parameter Description

Where * File pattern to receive trace file.

When Determines when to emit the information. Select one of the following
options from the drop-down list:

qa (default)

always

ondebug

Name Identifier name to mark emitted trace document.

Emit input Location (file pattern} to which to emit actual input document. If omitted
or empty, the incoming document is not emitted.

Base64 Decode If set to true, the value is assumed to be in base64 notation. Only
applicable when a specific write value is specified.

3. Identifying Available Services for Troubleshooting and Debugging

Troubleshooting and Debugging Best Practices 37

Parameter Description

Starting Offset If set, this value represents the starting offset within the data block to
start the dump.

Maximum Length If set, this value represents the total number of bytes to dump. If not
set, the dump starts from the value specified for the Starting Offset
parameter to the end of the buffer.

Trace Message Writer Service (com.ibi.agents.XDTraceAgent)

Syntax:

com.ibi.agents.XDTraceAgent

Description:

This service writes a message to the trace log of the system. The trace log accumulates
messages to record the progress of activity within the server. Usually the trace log is used for
debugging purposes.

Parameters:

Parameter Description

Trace Level The trace level at which the message is written to the trace log.
Select one of the following trace levels from the drop-down list:

Error

Warn

Debug

Message The message to be written to the trace log.

Call at EOS? In a streaming environment, EOS (End of Stream) is the short
message that is sent after the last document, which signifies the
EOS. This parameter determines whether this service should be
called for the EOS message.

The edges returned are listed in the following table.

Trace Message Writer Service (com.ibi.agents.XDTraceAgent)

38

Edge Description

success The line was successfully sent to the trace system.

fail_parse iFL used in the parameters was invalid.

The trace message is written to the trace log at the error or debug level. The trace system
must be configured to accept the message on the issued level. Users must be made aware
that the use of a trace log can adversely affect server performance.

Caution: The trace log is not the transaction log, which can hold messages regarding
operations within the server. Messages can be written to the transaction log using the Activity
Log Entry service (XDXALogEvent) and the Activity Log Business Error Message service
(XDXALogBizErr). While trace messages are usually free format and designed to help debug a
problem, the XALog (transaction log) is more structured and often has externally imposed
security, event code, and format constraints.

3. Identifying Available Services for Troubleshooting and Debugging

Troubleshooting and Debugging Best Practices 39

Trace Message Writer Service (com.ibi.agents.XDTraceAgent)

40

Chapter4 Identifying Available Commands and
Functions for Troubleshooting and
Debugging

This section identifies the commands and functions that are provided by iWay Service
Manager (iSM) for troubleshooting and debugging purposes.

In this chapter:

Using the Testfuncs Tool

Using the Testxpath Tool

Using the Flow Command

Using the Line Command

Using the _eval() Function

Using the Testfuncs Tool

The testfuncs tool enables you to test an expression in the iWay Functional Language (iFL). It
evaluates the expression and returns a result. The testfuncs tool is intended for technical
users. To use the testfuncs tool, type the following command:

Tool testfuncs <path to
an xml document>

This tool supports the set subcommand to set a Special Register (SREG) value. The following
example shows how to test a SREG with arithmetic:

funcs->set aa 1
stored
funcs->sreg(aa)+2
<superroot [baseNode]>
 <arith [funcNodeMath]>+
 <sreg [funcNodeFunctionSreg]>sreg(aa)
 <p-literal [funcNodeLit]>aa</p-literal>
 </sreg>
 <x-literal [funcNodeLit]>2</x-literal>
 </arith>
</superroot>
3
funcs->

The following example may be more easier to follow:

Troubleshooting and Debugging Best Practices 41

funcs->_substr('abcde',2,4)
<superroot [baseNode]>
 <substr [funcNodeFunctionStr.substr]>_substr('abcde',2,4)
 <p-literal [funcNodeLit]>abcde</p-literal>
 <p-literal [funcNodeLit]>2</p-literal>
 <p-literal [funcNodeLit]>4</p-literal>
 </substr>
</superroot>
cd
funcs->

Each test shows the abstract syntax tree that results from when the function is compiled.
Problems with the compilation can usually be understood by analysis of the tree. Some
function testing requires use of SREGs. The following command sets the specified SREG to the
designated value:

set regname value

The value operand is evaluated, so that a value can, for example, reside in a file. If the value
after evaluation begins with a left bracket, the test tool assumes that the value is to be parsed
as XML and an XML tree is to be loaded into the named register. Otherwise, the register is set
to a string of the input value. To set register one to the value valone, use:

funcs->set one valone
stored

A file in the root named sregdoc.xml contains an XML document. To load it into a SREG named
xmldoc, use the following command:

funcs->set xmldoc file('/sregdoc.xml')
stored xml

Using the Testxpath Tool

The testxpath tool enables you to test XPath expressions against a standard document. The
XPath expression will be evaluated against the provided document and the result returned. To
use the testxpath tool, type the following command:

Tool testxpath <sampledocument>

Assume that the standard document is the same one as shown in the testfuncs tool example:

Using the Testxpath Tool

42

Enter command:>tool testxpath \smalldoc.xml
<?xml version="1.0" encoding="ISO-8859-1" ?>
<a>
 <top>
 one
 two
 <x>sreg(iwayhome)</x>
 </top>

Now enter an XPath expression against the sample document:

xpath->/a/top/b[1]
<superRoot [baseNode]>
 <a [baseNode]/>
 <top [baseNode]/>
 <b [baseNode]>
 <functionPredicate [filterInt]>1</functionPredicate>

</superRoot>
values->'one'
tree-><?xml version="1.0" encoding="ISO-8859-1" ?>
<xpathresult>
 one
</xpathresult>
list->one [parent=top]
xpath->

Using the Flow Command

Runs a previously published process flow. The process flow is run under control of the server
configuration, rather than under control of a channel. Channel services may not be available
within the process flow. The flow command can be used to test process flows, including
verifying that the process flow produces the expected result.

To issue a flow command, enter the following:

flow <flowname> [<input> [-x | -f]] [-c] [-o [@outfile]] [-map pairs…]

where:

flowname

Is the name of the flow. The flow must have been published to the system area of the
configuration under which it is to be run.

4. Identifying Available Commands and Functions for Troubleshooting and Debugging

Troubleshooting and Debugging Best Practices 43

input

Is the input to be supplied to the flow. The input can be in flat form (not parsed into XML)
or in XML. The -x (default) or -f switches set the type. If the input is flat it will be passed as
a string in Unicode, and not in byte form. Input specification is subject to iFL operation. If
the input is omitted, a standard signal message will be passed to the flow. You can use
the _file() iFL function to load the contents of a file to be passed to the flow.

outfile

Is the path to a file into which the output document contents are flattened. Use of this
feature requires that the -o switch is used.

-c

Runs the flow transactionally. If this switch is omitted, the flow is not run under
transactional control.

-o

Is the output of the flow is displayed in the log. If this is omitted, the output is not
displayed. The output is the contents of the documents that are sent to the end nodes of
the flow.

-map pairs

Adds token=value pairs to the standard signal document if used, as the parameter map.
The pairs will also be set as DOC level special registers in the execution environment. This
must be the last switch on the line, and all tokens that follow it are considered as
token=value pairs. The equal sign (=) and commas are optional.

Example: Run a published flow named status.mail. Pass in the name of the channel to
monitor. The flow must look in the standard signal document to get the channel name to
monitor. The details of the flow are not shown here.

flow status.mail -map channel chan1

Because no input was specified in the command, a standard signal document will be passed
to the flow. It will look like:

<signal type='flow' timestamp='time' version='2' protocol='command'>
 <parms count='1'>
 <parm name='channel>chan1</parm>
 </parms>
</signal>

If the optional -expects switch is used, the flow result is compared on a character-by-character
basis with the contents of a named file. If the result of the flow matches the expected result,
the following command is emitted to the output trace:

Using the Flow Command

44

match

If the two do not match, the flow emits the following command:

nomatch

In this case, information showing the location of the mismatch and what was found is traced.
For example, consider a regression test of the flow “passthru”.

Enter command:>flow passthru _file(c:/docs/flowin.xml) -expect c:/docs/
expect.xml
Flow 'passthru' OK, not committed
Unequal compare:
-- Lengths are not equal
Length expected=54, actual=53
Difference starts at char 46, expected=c'b'/d'98', actual=c'<'/d'60'
Partial Expected: >aaaab</Test>
Partial Actual: >aaaa</Test>
Expected: <?xmlversion='1.0'encoding='UTF-8'?><Test>aaaab</Test>
Actual : <?xmlversion='1.0'encoding='UTF-8'?><Test>aaaa</Test>
nomatch
Enter command:>

Using the Line Command

Prints one or more lines on the command window or the trace log to improve the readability.
This is useful as an eye catcher when you are reading a long trace file or command log file.

The line command uses the following format:

line [<count>] [-log]

where:

<count>

Specifies the number of lines to print. The default is one.

-log

Writes the specified number of lines to the trace log instead of the command window.

For example:

Enter command:>line 2

--

--

4. Identifying Available Commands and Functions for Troubleshooting and Debugging

Troubleshooting and Debugging Best Practices 45

Using the _eval() Function

The _eval() function evaluates a string as an expression of the function. This function uses the
following format:

_eval(expression [,tracemsg [,level]])

Property Type Description

expression string The string to be evaluated.

tracemsg string A trace message to be issued when the
expression is evaluated.

level keyword The trace level specified for the tracemsg
attribute. The following trace levels are
supported:

none. Does not return any traces.

error. This setting provides error level
traces.

debug. This setting provides debug level
traces (default).

deep. This setting provides deep level
traces.

A common use of the _eval() function is to store a complex expression in a file. The expression
can be used by _eval(_file(<path>)). Assume that the file /myfilescfg.txt contains the simple
expression _sreg('iway.config','none'). If the _file('/myfilescfg.txt') function is used alone, then
the value will be _sreg('iway.config','none'), the value in the file. However, by using the _eval()
function, the _sreg() is evaluated and the result is the name of the configuration in which the
server is running.

An optional tracing service adds a message at the specified trace level (if enabled) to the
current trace log. This is useful for debugging the value to be output by this function. By
including the special token (%v) in the trace message, the expression value can be included in
the message. For example:

_eval('file(/holdifl.txt)','eval got %v','deep')

Using the _eval() Function

46

Chapter5 Creating and Using a Remote Command
Console

This section describes how to create and use a remote command console in iWay
Service Manager (iSM).

In this chapter:

Remote Command Console Overview

Creating a Remote Command Console

Connecting to a Remote Command Console

Remote Command
Console Overview

iWay Service Manager (iSM) commands such as start or flow can be entered at the original
command window if iSM (the server) is started as a task with a visible window (for example,
starting from a command line such as iway7.cmd).

Additionally, commands can be entered using a remote command facility using Telnet (with or
without Secure Sockets Layer (SSL)) or Secure Shell (SSH). In either case, the full set of iSM
commands is available to the user, depending on the security level at which the logged in user
has been granted.

Troubleshooting and Debugging Best Practices 47

A remote command channel is configured by a configuration console user, and need not be
part of a deployed iWay Integration Application (iIA) or configuration until it is required.

Usually the remote command channel runs off of the base configuration, and the remote
command is used to address other running configurations either on the same or another host.
A remote command console can be configured to any configuration that is currently running on
a host.

Creating a Remote Command Console

The remote command console is created and managed as a facility in the standard iSM
Administration Console. To create a new remote command console, click Command Consoles
in the Facilities group on the left pane, as shown in the following image.

The Command Consoles pane opens, as shown in the following image.

If no remote command consoles have been configured, then the screen will be empty, as
currently shown.

Creating a Remote Command Console

48

If a remote command console has been configured, then it will be listed in the Command
Consoles pane (for example, Remote1), as shown in the following image.

Note: You can only have a single remote command console configured in any given
configuration.

Click New in the Command Consoles pane to configure a remote command console.

5. Creating and Using a Remote Command Console

Troubleshooting and Debugging Best Practices 49

The Command Consoles configuration pane opens, as shown in the following image.

Creating a Remote Command Console

50

The Command Consoles configuration pane contains a table with the following groups of
parameters:

Component Properties. Name and description of the listener. This name appears in some
logs.

Configuration Parameters for Command Console. Basic parameters including port,
sessions, and so on.

Security. Security definitions for the remote command console.

Events. Event-handling parameters that can be configured to run specific process flows
when the channel fails, starts, or is shut down.

The first groups (Component Properties and Configuration Parameters for Command Console)
define the remote command console and how it will be reached. If no other parameters are
configured, then the remote command console will be a standard Telnet command console
using the console realm for security.

5. Creating and Using a Remote Command Console

Troubleshooting and Debugging Best Practices 51

The Security group can be configured as needed. In this case the remote command console
will operate using SSH, with a configured realm (for example, LDAP) and an underlying SSH
provider. For more information, see the iWay Service Manager Security Guide.

Parameter Applies to
Telnet?

Applies to Telnet
SSL?

Applies to SSH?

Allowable Clients Yes Yes Yes

Security Type N/A N/A N/A

Client Authentication No Yes No

Authentication Realm Yes Yes No

Security Provider No Yes (SSL provider) Yes (SSH provider)

Creating a Remote Command Console

52

Events are supported in the Events group, as shown in the following image.

The following table lists and describes each of the available configuration parameters for a
remote command console.

Note: An asterisk indicates a required parameter.

Parameter Definition

Component Properties

Name* A unique name that will be used to identify the remote command
console.

Description A brief description for the remote command console, which will
also be displayed in the Command Consoles pane.

Configuration Parameters for Command Console

Port* TCP port for receipt of Command Console requests.

Local Bind Address Local bind address for multi-homed hosts: usually leave empty

Session Timeout* The maximum time between commands, in seconds. A value of
zero (0) means no timeout. The highest maximum value that can
be entered is 10000 seconds. The default value is 600 seconds.

Number of
Connections

Reject new connections after the specified number of connections
are active. A value between 1 and 20 must be entered. The
default value is 1 connection.

Security

5. Creating and Using a Remote Command Console

Troubleshooting and Debugging Best Practices 53

Parameter Definition

Allowable Clients If supplied, only messages from this list of fully qualified host
names and/or IP addresses are accepted. Enter as a comma-
separated list or use the _file() function.

Security Type Select one of the following values from the drop-down list:

none. Implies that the connection and command stream are
not encrypted.

ssl. Wraps the connection and command stream in an
encrypted Secure Socket Layer (SSL).

ssh. Provides secure shell (SSH) encryption and packet
handling.

The default value selected is none.

Client Authentication If set to true and when the Security Type parameter is set to ssl,
then the client's certificate must be trusted by the Telnet server
for a connection to be created. Not used when the Security Type
parameter is set to none or ssh.

Authentication Realm When the Security Type parameter is set to none or ssl, the
specify the name of a configured authentication realm to validate
logins. For full access to management commands, the user must
be assigned the admin role. If not supplied, logins will be
delegated to the web console's user database. Not used when
the Security Type parameter is set to ssh. For SSH console,
authentication options are configured in the SSH provider.

Security Provider Required if security is enabled (Security Type parameter value of
ssl or ssh). This security provider will be used to secure the
channel. When the Security Type parameter is set to ssl, then
specify the name of an SSL Context Provider. When the Security
Type parameter is set to ssh, then specify an SSH Provider.

Events

Channel Failure Flow Name of a published process flow to run if this channel cannot
start or fails during message use. The server will attempt to call
this process flow during channel close down due to the error.

Creating a Remote Command Console

54

Parameter Definition

Channel Startup Flow Name of a published process flow to run prior to starting the
channel.

Channel Shutdown
Flow

Name of a published process flow to run when the channel is
shut down.

Connecting to a Remote Command Console

After you have configured a Telnet remote command console, you can use any command line
Telnet client. Consider the following use case scenarios where you need to test iWay
Functional Language (iFL) functions or browse help remotely for iWay Service Manager (iSM).
The specific use of your Telnet client may vary, and users are referred to their specific Telnet
client documentation. The Telnet client is not provided by iWay.

1. Connect to iSM using the command line. For example:

telnet csswxzpt3

2. Enter a user name (for example, iway) and a password (for example, iway).

3. Once you are connected and logged in, you can now issue any command to monitor or
control your iSM instance.

5. Creating and Using a Remote Command Console

Troubleshooting and Debugging Best Practices 55

Using a Telnet Client

In this section, the default Telnet client that is available on Windows is used for demonstration
purposes.

Once you start the Telnet client, the following Telnet logon screen is displayed, as shown in the
following image.

Provided that the connection meets the selected security criteria you are prompted for a user
ID and password. These must be configured in the iSM Administration Console, and may have
administrative capabilities or not. Lack of administrative capability means that commands that
reconfigure iSM, such as start, stop and reinit are not available.

Connecting to a Remote Command Console

56

Once the logon is accepted, you are presented with a standard information screen, as shown
in the following image.

At the command line, you can use any authorized command. The help command lists these
commands, as shown in the following image.

These are the same commands that can be issued from the standard shell console, plus the
showlog and hidelog commands to enable or disable tracing for this Telnet session.

5. Creating and Using a Remote Command Console

Troubleshooting and Debugging Best Practices 57

For example, if you enter the memory command, the following screen is displayed.

Remote Only Commands

The following iSM commands are available only from remote command consoles:

showlog. Causes the trace log to be sent to the remote console.

hidelog. Causes traces to not be sent to the remote console.

For more information on all of the commands that are supported for iSM, see the iWay Service
Manager Command Reference Guide.

Telnet Scripting Example

The following is an example of automation or lights out operations that you can achieve after
configuring a remote command facility using Telnet. A shell script is created containing the
following command:

Connecting to a Remote Command Console

58

#!/bin/sh
host=localhost
port=9023
cmd="info"
(echo open ${host} ${port}
sleep 1
echo "iway"
sleep 1
echo "iway"
sleep 1
echo ${cmd}
sleep 1
echo quit) | telnet > /home/jay/out.txt
echo " "
echo "* * * command output start * * *"
cat /home/jay/out.txt
echo "* * * command output end * * * *"
echo " "

There are more complex ways of running Telnet on Linux than I/O redirection. For example, the
command expect is designed to work with interactive commands.

The following example shows more of the script that can be parameterized as an information-
only command, which does not affect the behavior or configuration of the server.

5. Creating and Using a Remote Command Console

Troubleshooting and Debugging Best Practices 59

* * * command output start * * *
telnet> Trying ::1...
Connected to localhost.
Escape character is '^]'.

User: iway
Password: ****

*
* iWay Secure Message Broker
* Remote Administration Console
*
* protocol: Telnet
* engine: base
* iway.serverip: 127.0.1.1
* locale: en_us
* iwayversion: 7.0.3
* iway.serverhost: UbuntuVM
* iwayworkdir: /iway/prog/7.0.3.36971/config/base
* iwayconfig: base
* console-master-port: 9999
* iway.pid: 3392
* iway.serverfullhost: UbuntuVM
* iwayhome: /iway/prog/7.0.3.36971/
* name: Telnet1
* doclocation: config
*
* you are logged in as iway from localhost (0:0:0:0:0:0:0:1)
*

Enter command:>info
 completed failed active workers free
SOAP1
 http -- active -- 0 0 0 3 3
 file -- active -- 0 0 0 3 3
Telnet1 -- active -- 0 0 1 1 0
Enter command:>quit
goodbye!
* * * command output end * * *
*

Connecting to a Remote Command Console

60

Chapter6
Using Event and Startup Process Flows

This section describes how iWay Service Manager (iSM) Event and Startup process flows
can be used for troubleshooting and debugging purposes.

In this chapter:

Event Process Flows

Startup Process Flow

Event Process Flows

Event process flows can be executed when specific (defined) events occur in iWay Service
Manager (iSM) or during message processing. The process flows must be published to the
configuration (iWay Integration Application) and must be available for execution at the time that
they are called.

The Event process flows can run under the following constraints:

Communicate with the caller by passing a return code as the name of the End node. This is
the same rule as is required for subflows of a regular process.

Can only return a single document, which may or may not be meaningful to the caller.

Cannot use Emit nodes, although Emit services are permitted. Emit nodes schedule emits
for execution at a later time (asynchronous to the process flow), while Emit services emit
directly when they are called.

Other restrictions may apply for individual Event process flows. All Event process flows are
conditional, and must be configured for execution if their use is required.

The following Event process flows are described in this section:

Server Startup

iWay Business Activity Monitor (BAM) Database Loss of Access

Channel Startup Failure

Retry Expired

Failed ReplyTo

Troubleshooting and Debugging Best Practices 61

Send to Dead Letter

Server Startup

The Server Startup process flow is executed by the iSM initialization routines as iSM starts its
execution. This process flow can check for the availability of resources that are required by
iSM, and can prevent iSM from starting if the resources are not available. A return of success
allows iSM to continue its startup sequence. Otherwise the iSM startup is terminated.

The Server Startup process flow cannot start channels, since iSM is not ready to run channels
at this early (startup) stage.

The name of the Server Startup process flow must be entered in the Recovery area of the
General Settings page (Process Name field), as shown in the following image.

Event Process Flows

62

The following table lists and describes the possible edges that are returned by the Server
Startup process flow.

Edge Description

success Continue with iSM startup.

<other> or flow fails Do not continue to start iSM.

iWay Business Activity Monitor Database Loss of Access

This process flow is executed when the iWay Business Activity Monitor (BAM) drivers lose
connectivity to the BAM database. The process flow can notify an operation area of the
problem, and can determine how iSM should continue:

iSM continues, but BAM update is ignored.

iSM terminates.

iSM maintains a local file on disk containing BAM information and attempts to update the
database when connectivity is restored.

Channel Startup Failure

The Channel Startup Failure process flow applies only to channels that are not started by a
specific manual command. This process flow must be published to the system, and is
executed whenever the channel cannot initialize. The process flow can be used to send an
email to alert an administrator of the issue.

Enter the name of a published process flow to be executed in the Startup Failure Flow field, as
shown in the following image. This field is a common channel property that is available for all
iSM listeners.

The Channel Startup Failure process flow receives a signal message document for processing.
The signal message document uses the following structure and format:

<channelfail name='channelname' protocol='protocol' state='statecode'
statename='name of state' failures='count' version='ism version'
time='timestamp' >
 <message>text of message</message>
</channelfail>

6. Using Event and Startup Process Flows

Troubleshooting and Debugging Best Practices 63

where:

name

Is the name of the configured channel.

state

Is a specific code describing the current state of the channel. The codes have assigned
names, which are available in the statename attribute.

statename

Is the name of the current state, which will usually be one of the following:

config. Cannot start due to a configuration error. The channel is not retried.

restart. iSM will attempt restart.

stopped. iSM will not attempt restart.

protocol

Is the name of the protocol being used by the channel (for example, File).

failures

Is the count of sequential failures (for example, base 1).

version

Is the version of iSM.

time

Provides a timestamp of the failure occurrence.

This process flow can signal iSM to stop retrying the channel by sending a stop message. This
is done by naming the End node of the process flow (stop). Termination of the process flow by
any other End node will instruct iSM to continue retrying the channel using the standard
automatic retry logic.

The information in the signal message document passes information into the process flow
concerning the channel and the most likely cause of failure.

Event Process Flows

64

In the following simplified example, a failure results in an email being sent to an identified
party followed by a check to see if the number of sequential failures exceeds a designated
limit (in this example, 3).

Normally this process flow would run during iSM startup or channel restart. To have the
process flow run if the start is attempted from an iSM start command whether standalone or in
a script, use the -doflow switch on the start command. For more information on using the start
command, see the iWay Service Manager User's Guide.

Retry Expired

Messages can be queued for retry on channels that support this facility. This includes queue-
based channels, the File channel, and the Internal Queue channel. The retries are triggered by
logic in the process flow. In this circumstance, the message is re-executed on a periodic basis
until expiration has been reached.

At the expiration point, a process flow can be executed to take recovery actions including
notification, and optionally, changing the destination address or restarting with a changed
(extended) expiration time.

Enter the name of a published process flow to be executed in the Expired Retry Flow field, as
shown in the following image. This field is a common channel property that is available for all
iSM listeners.

6. Using Event and Startup Process Flows

Troubleshooting and Debugging Best Practices 65

On entry, the process flow receives the document as it exists, at the point at which the
process flow is called. The following table lists and describes several special registers that are
available in the Retry Expired process flow to assist during the analysis.

Register Name Description

iway.eventflow.exitflow Identifies the purpose of the process flow (for example,
expiredRetry).

iway.eventflow.attempts Count of the number of retry attempts made before the
expiration.

iway.eventflow.expiredtime Time of the expiration.

The following table lists and describes the possible edges that are returned by the Retry
Expired process flow.

Edge Description

success The process flow overrules the expiration. iSM will attempt to
resend, this time with the output of the process flow.

<other> or flow fails An error document is sent to the error addresses.

Failed ReplyTo

A reply designation associated with a document triggers an emit operation following completion
of the process flow. If the emit operation is not successful, the Failed ReplyTo process flow is
triggered.

Enter the name of a published process flow to be executed in the Failed ReplyTo Flow field, as
shown in the following image. This field is a common channel property that is available for all
iSM listeners.

Event Process Flows

66

On entry, the process flow receives the document as it exists, at the point at which the
process flow is called. The following table lists and describes several special registers that are
available in the Failed ReplyTo process flow to assist during the analysis.

Register Name Description

iway.eventflow.exitflow Identifies the purpose of the process flow (for example,
failedReply).

iway.eventflow.replyname Configured name of the reply or error specification.

iway.eventflow.destination The address configured for the emit, as evaluated for use.

iway.eventflow.errormsg An error message, if any, describing the cause of the
failure that caused this event to be generated.

iway.eventflow.replyprotocol Protocol used for the emit attempt (for example, File, MQ,
and so on).

The following table lists and describes the possible edges that are returned by the Failed
ReplyTo process flow.

Edge Description

success The process flow took responsibility to deliver the message.

<other> or flow fails An error document is sent to the error addresses.

Each ReplyTo and ErrorTo is treated separately. If an error occurs for one, an attempt is made
to handle the error, and iSM continues with the rest of the list. Error handling, however, differs
for ReplyTo versus ErrorTo.

A failed ReplyTo causes the Failed ReplyTo process flow to execute (if present). If the process
flow is successful (by terminating at an End node called success), the error is considered to be
handled and iSM continues through the rest of the address list. If the process flow is absent,
fails, or reaches an End node with a different name, then iSM creates an error document and
attempts to send it to the ErrorTo instances recursively. All ErrorTo instances will be called for
each ReplyTo that fails.

6. Using Event and Startup Process Flows

Troubleshooting and Debugging Best Practices 67

Document siblings are treated as independent documents. The net effect should be similar to
sending the document first, and then each of its siblings one by one. iSM does not expect
error documents to contain siblings. However, if present, they too will be sent as top-level
documents (which may or may not be in error).

Send to Dead Letter

Messages queued for emitting at a later time (using the channel configuration (called ReplyTo
and ErrorTo) or the Emit object in a process flow are sent when the outlet of the channel is
executed. Messages can also have alternate addresses if required.

If all attempts to emit the message fail, then by default, the message is written to a configured
dead letter directory.

If an emit failed process flow is configured, then the process flow can examine the message,
redirect it, replace it, and potentially notify an appropriate authority. It can then send the
message to another channel for a retry attempt or continue to allow the message to be written
to the dead letter queue.

Enter the name of a published process flow to be executed in the Dead Letter Flow field, as
shown in the following image. This field is a common channel property that is available for all
iSM listeners.

On entry, the Send to Dead Letter process flow receives the document as it exists at the point
at which the process flow is called. The following table lists and describes several Special
Registers (SREGs) that are available in the process flow to assist during the analysis.

Register Name Description

iway.eventflow.exitflow Identifies the purpose of the process flow (for example,
deadLetter).

iway.eventflow.replyname Configured name of the reply or error specification.

iway.eventflow.destination The address configured for the emit, as evaluated for use.

iway.eventflow.errormsg An error message, if any, describing the cause of the
failure that caused this event to be raised.

Event Process Flows

68

Register Name Description

iway.eventflow.replyprotocol Protocol used for the emit attempt (for example, File, MQ,
and so on).

The following table lists and describes the possible edges that are returned by the Send to
Dead Letter process flow.

Edge Description

success The message was successfully handled.

<other> or flow fails The output of the process flow to be written to the dead letter
directory, if configured.

Each ReplyTo and ErrorTo is treated separately. If an error occurs for one, an attempt is made
to handle the error, and iSM continues with the rest of the list. Error handling, however, differs
for ReplyTo versus ErrorTo.

A failed ReplyTo causes the Failed ReplyTo process flow to execute (if present). If the process
flow is successful (by terminating at an End node called success), the error is considered to be
handled and iSM continues through the rest of the address list. If the process flow is absent,
fails, or reaches an End node with a different name, then iSM creates an error document and
attempts to send it to the ErrorTo instances recursively. All ErrorTo instances will be called for
each ReplyTo that fails. ErrorTo instances are used to communicate errors to administrators
who are able to resolve such situations.

A failed ErrorTo causes the Send to Dead Letter process flow to execute (if present). If the
process flow returns success, iSM considers the error to be handled and continues with the
rest of the address list. If the process flow is absent, fails, or reaches an End node with a
different name, then iSM attempts to write a file under the configured dead letter directory.

Sending an error to an empty list of ErrorTo instances is an error. It is handled the same way
as a failed ErrorTo.

Notice that only error documents are sent to the configured dead letter directory. If an error
cannot be reported (because an ErrorTo fails or there are no ErrorTo instances), then iSM
attempts to send the error document to the dead letter directory to keep a record for manual
processing. An error document contains a copy of the original document that generated the
error.

6. Using Event and Startup Process Flows

Troubleshooting and Debugging Best Practices 69

iSM attempts to avoid sending to a duplicate address within the list if iSM already knows it is
a bad address. This could happen when an ErrorTo is also a ReplyTo. A duplicate bad address
is treated the same as a regular failed ReplyTo or ErrorTo, except the IO was never attempted.

Document siblings are treated as independent documents. The net effect should be similar to
sending the document first, and then each of its siblings one by one. iSM does not expect
error documents to contain siblings. However, if present, they too will be sent as top-level
documents (which may or may not be in error).

Parse Failure

The Parse Failure flow is invoked if an incoming message fails the parse to XML operation for a
channel. This does not apply to a parse that is handled within a process flow by a service
(agent) for that purpose.

The incoming document to the flow contains the message that failed parsing. The standard
Special Registers (SREGs) for the protocol are available in the flow. For example, a bad
message on a File listener will provide the usual information on the source of the file.

The Parse Failure flow can also be used to send a notification.

The flow can replace the document that could not be parsed. This might be done to fill in an
element in a large batch managed by a splitting preparser. To replace the message, set the
document on output to the message required, and return through an End node named Replace.
The replaced message will then pass through the normal channel cycle. It may be necessary in
your application to set a SREG in order to notify subsequent processes that this is a
placeholder message. If this technique is used, then remember to set the SREG at the channel
level, so as to make it available beyond the scope of the flow.

Event Process Flows

70

On entry to the event flow, the SREG iway.parsefail will be set to the count of the number of
parse failures in this channel for this transaction. This count is useful for batch handling, in
which a splitting preparser divides the batch into a sequence of sub-messages. For example,
your flow might determine that the count of placeholder messages returned to the channel has
exceeded a threshold, and so elects to take application action to reject the batch.

Startup Process Flow

The Startup Process Flow optionally executes as iSM starts. The name of the process flow is
entered in the Recovery area of the console. If named and present, the process flow is
executed by the server just prior to the installation of system components. For example, if
SNMP did not begin, then the process flow itself will not be recorded in the activity logs.

If the process flow ends successfully, the server continues with its startup process. If the
process does not end successfully (for example, a fail service is encountered), the server does
not start.

The process flow is designed to enable the server to verify the availability of required
resources. For example, an SQL service in the process flow may perform a simple select
against the Business Activity Monitor (BAM) tables by accessing the jdbc/BAMDBProvider. If
the select fails, it can be assumed that the BAM database is not available, and the process
flow issues a fail. This would prevent processing if BAM, deemed by the application designer to
be a critical resource, is not available. Similarly, if an application required the transfer of data
from an Oracle to a DB2 database, the startup process flow could determine that both are
available before allowing the server to start. Startup criteria are at the discretion of the
application designer.

Once started, the server manages errors and recovery normally.

6. Using Event and Startup Process Flows

Troubleshooting and Debugging Best Practices 71

You cannot control the server from this process flow. For example, you cannot use the control
service to start channels because the server has not yet been sufficiently initialized for
channels to properly start. Other facilities, including the autostart script, can be used for this
purpose.

The following image shows the Recovery pane.

On entry, the input document to the process flow is shown below:

<startup version=currentversion time=timestamp/>

where:

currentversion

Is the server version number, such as 7.0.

timestamp

Is a standard RFC 3339 (ISO 8601) timestamp.

The output document is ignored.

The startup parameter -r causes iSM to start without calling the startup exit. This allows a
buggy startup exit to be bypassed so that iWay tools can be used to correct any problems.

Note: This is available under the batch (manual) startup mode. Users are advised to avoid
starting as a service until the startup exit is known to be functioning properly.

Startup Process Flow

72

Chapter7 Recommended Third-Party Tools for
Troubleshooting and Debugging

This section provides information on iWay-recommended third-party tools if the
troubleshooting or debugging level scope falls outside of the iWay framework.

In this chapter:

JConsole

JVM Startup Options

SoapUI

KeyTool IUI

Operating System Commands

Wireshark

Tcpdump

JConsole

The Java Monitoring and Management Console (JConsole) can be used to provide information
on iWay Service Manager (iSM) performance and resource consumption running on a Java
platform. The JConsole uses Java Management Extension (JMX) technology.

JConsole provides a visual (graphical) representation of the Java Virtual Machine (JVM)
environment where iSM is running.

Specifically, JConsole provides time-range charts showing usage for the following JVM
components:

Memory Heap Usage

Threads

Classes

CPU Usage

For more information on configuring and using JConsole, see:

http://docs.oracle.com/javase/6/docs/technotes/guides/management/jconsole.html

Troubleshooting and Debugging Best Practices 73

http://docs.oracle.com/javase/6/docs/technotes/guides/management/jconsole.html

Procedure: How to Enable iWay Service Manager for Monitoring Through JConsole

1. Log in to the iWay Service Manager Administration Console.

2. Click Java Settings in the left pane.

3. Specify the following Java startup options:

-Dcom.sun.management.jmxremote.port=12356
-Dcom.sun.management.jmxremote.authenticate=false
-Dcom.sun.management.jmxremote.ssl=false

4. Click Update.

Note: Use caution when modifying the Java settings. If you make a mistake, then iSM may
not start.

5. Stop and start iSM.

6. Using JConsole, access iSM by entering the host name and port.

JVM Startup Options

The following JVM startup options can be used to control the Heap size.

Initial Heap Size:

-Xms256m

Maximum Heap Size:

-Xmx256m

The following JVM startup options can be used for JVM OOME debugging:

-XX:-HeapDumpOnOutOfMemoryError
-XX:-HeapDumpPath=./java_pid<pid>.hprof

JVM Startup Options

74

SoapUI

SoapUI is a free, open source, and cross-platform functional testing solution. In a single
testing environment, SoapUI provides complete test coverage and supports all of the standard
protocols and technologies.

SoapUI can be used:

During the development of web service clients that need to be tested on an interactive
level.

For baseline, load, and soak testing strategies.

For fixed rate testing strategies.

For variable load testing strategies.

During statistics calculation and thread count changes.

When simultaneously running multiple load tests.

For more information on configuring and using SoapUI, see:

http://www.soapui.org/

KeyTool IUI

KeyTool IUI is a cryptography GUI tool that allows you to configure keys and certificates,
including the ability to verify, sign, encrypt, and decrypt the files.

KeyTool IUI provides you with the following functionality:

Exporting and importing trusted certificates

Creating DSA and RSA keypairs

Creating a CA certificate reply to a RSA keypair

Exporting CSR from a RSA keypair

Creating empty keystore functions

KeyTool IUI displays detailed information in the GUI about private keys (keypairs) and trusted
certificates, regarding their valid date, self-signed, trusted CA, key size, certificate type,
certificate signature algorithm, or modified date.

For more information on configuring and using KeyTool IUI, see:

http://code.google.com/p/keytool-iui/

7. Recommended Third-Party Tools for Troubleshooting and Debugging

Troubleshooting and Debugging Best Practices 75

http://www.soapui.org/
http://code.google.com/p/keytool-iui/

Operating System Commands

Another recommendation is to use operating system commands (for example, Netstat and
Traceroute), which are also effective for troubleshooting and debugging purposes.

Netstat is a command-line tool that displays network connections (incoming and outgoing),
routing tables, and a number of network interface (network interface controller or software-
defined network interface) and network protocol statistics. For more information, see:

http://en.wikipedia.org/wiki/Netstat

Traceroute is a network diagnostic tool for displaying the route (path) and measuring transit
delays of packets across an Internet Protocol (IP) network. For more information, see:

http://en.wikipedia.org/wiki/Traceroute

Wireshark

Wireshark is a free and cross-platform compatible packet analyzer. It is used for network
troubleshooting and analysis. Wireshark is similar to tcpdump, but has a graphical user
interface and some integrated sorting and filtering capabilities.

For more information on configuring and using Wireshark, see:

http://www.wireshark.org/

Tcpdump

A fairly common packet analyzer, tcpdump is also free and cross-platform compatible.
Tcpdump analyzes network behavior, performance and applications that generate or receive
network traffic. It can also be used for analyzing the network infrastructure itself by determining
whether all necessary routing is occurring properly, allowing the user to further isolate the
source of a problem.

For more information on configuring and using tcpdump, see:

http://www.tcpdump.org/

Operating System Commands

76

http://en.wikipedia.org/wiki/Netstat
http://en.wikipedia.org/wiki/Traceroute
http://www.wireshark.org/
http://www.tcpdump.org/

Legal and Third-Party Notices

SOME TIBCO SOFTWARE EMBEDS OR BUNDLES OTHER TIBCO SOFTWARE. USE OF SUCH
EMBEDDED OR BUNDLED TIBCO SOFTWARE IS SOLELY TO ENABLE THE FUNCTIONALITY (OR
PROVIDE LIMITED ADD-ON FUNCTIONALITY) OF THE LICENSED TIBCO SOFTWARE. THE
EMBEDDED OR BUNDLED SOFTWARE IS NOT LICENSED TO BE USED OR ACCESSED BY ANY
OTHER TIBCO SOFTWARE OR FOR ANY OTHER PURPOSE.

USE OF TIBCO SOFTWARE AND THIS DOCUMENT IS SUBJECT TO THE TERMS AND CONDITIONS
OF A LICENSE AGREEMENT FOUND IN EITHER A SEPARATELY EXECUTED SOFTWARE LICENSE
AGREEMENT, OR, IF THERE IS NO SUCH SEPARATE AGREEMENT, THE CLICKWRAP END USER
LICENSE AGREEMENT WHICH IS DISPLAYED DURING DOWNLOAD OR INSTALLATION OF THE
SOFTWARE (AND WHICH IS DUPLICATED IN THE LICENSE FILE) OR IF THERE IS NO SUCH
SOFTWARE LICENSE AGREEMENT OR CLICKWRAP END USER LICENSE AGREEMENT, THE
LICENSE(S) LOCATED IN THE "LICENSE" FILE(S) OF THE SOFTWARE. USE OF THIS DOCUMENT
IS SUBJECT TO THOSE TERMS AND CONDITIONS, AND YOUR USE HEREOF SHALL CONSTITUTE
ACCEPTANCE OF AND AN AGREEMENT TO BE BOUND BY THE SAME.

This document is subject to U.S. and international copyright laws and treaties. No part of this
document may be reproduced in any form without the written authorization of TIBCO Software
Inc.

TIBCO, the TIBCO logo, the TIBCO O logo, FOCUS, iWay, Omni-Gen, Omni-HealthData, and
WebFOCUS are either registered trademarks or trademarks of TIBCO Software Inc. in the
United States and/or other countries.

Java and all Java based trademarks and logos are trademarks or registered trademarks of
Oracle Corporation and/or its affiliates.

All other product and company names and marks mentioned in this document are the property
of their respective owners and are mentioned for identification purposes only.

This software may be available on multiple operating systems. However, not all operating
system platforms for a specific software version are released at the same time. See the
readme file for the availability of this software version on a specific operating system platform.

THIS DOCUMENT IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

THIS DOCUMENT COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS.
CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL
BE INCORPORATED IN NEW EDITIONS OF THIS DOCUMENT. TIBCO SOFTWARE INC. MAY MAKE
IMPROVEMENTS AND/OR CHANGES IN THE PRODUCT(S) AND/OR THE PROGRAM(S)
DESCRIBED IN THIS DOCUMENT AT ANY TIME.

 77

THE CONTENTS OF THIS DOCUMENT MAY BE MODIFIED AND/OR QUALIFIED, DIRECTLY OR
INDIRECTLY, BY OTHER DOCUMENTATION WHICH ACCOMPANIES THIS SOFTWARE, INCLUDING
BUT NOT LIMITED TO ANY RELEASE NOTES AND "READ ME" FILES.

This and other products of TIBCO Software Inc. may be covered by registered patents. Please
refer to TIBCO's Virtual Patent Marking document (https://www.tibco.com/patents) for details.

Copyright © 2021. TIBCO Software Inc. All Rights Reserved.

78

	Contents
	1. Defining Troubleshooting and Debugging Strategies
	Troubleshooting and Debugging Overview

	2. Using iWay Service Manager Diagnostics, Tracing, and Logging Facilities
	Running in a Command Shell
	Syntax: How to Start iWay Service Manager in a Command Window (Windows)
	Example: Starting a Server Configuration With Traces Enabled

	Diagnostic Commands
	Troubleshooting on Windows
	Procedure: How to Display Messages in the Windows Event Viewer

	Performing Diagnostic Functions
	Log Settings
	Procedure: How to Configure Log Settings
	Reference: Log Setting Properties
	Trace Settings
	Procedure: How to Select Trace Levels
	Reference: Trace Setting Properties
	Procedure: How to Log Traces to a File
	Procedure: How to Activate JLINK Tracing

	Measurements and Statistics
	Memory
	Deadlocks
	Statistics
	Emitted Statistics Information
	Tips

	Using the Log Viewer
	Procedure: How to Use the Log Viewer

	Creating a Diagnostic Zip
	Procedure: How to Create a Diagnostic Zip

	3. Identifying Available Services for Troubleshooting and Debugging
	Activity Log Entry Service (com.ibi.agents.XDXALogEvent)
	Catch Service (com.bi.agents.XDCatchAgent)
	Fail Service (com.ibi.agents.XDFailAgent)
	QA Service (com.ibi.agents.XDQAAgent)
	Trace Message Writer Service (com.ibi.agents.XDTraceAgent)

	4. Identifying Available Commands and Functions for Troubleshooting and Debugging
	Using the Testfuncs Tool
	Using the Testxpath Tool
	Using the Flow Command
	Using the Line Command
	Using the _eval() Function

	5. Creating and Using a Remote Command Console
	Remote Command Console Overview
	Creating a Remote Command Console
	Connecting to a Remote Command Console
	Using a Telnet Client
	Remote Only Commands
	Telnet Scripting Example

	6. Using Event and Startup Process Flows
	Event Process Flows
	Server Startup
	iWay Business Activity Monitor Database Loss of Access
	Channel Startup Failure
	Retry Expired
	Failed ReplyTo
	Send to Dead Letter
	Parse Failure

	Startup Process Flow

	7. Recommended Third-Party Tools for Troubleshooting and Debugging
	JConsole
	Procedure: How to Enable iWay Service Manager for Monitoring Through JConsole

	JVM Startup Options
	SoapUI
	KeyTool IUI
	Operating System Commands
	Wireshark
	Tcpdump

	Legal and Third-Party Notices

