
TIBCO iWay® Service Manager

Copyright © 2021. TIBCO Software Inc. All Rights Reserved.

Security Guide

Version 8.0 and Higher
March 2021
DN3502115.0321

Contents

1. Introducing Security . 9

Confidentiality .9

Integrity . 10

Authentication . 10

2. Security in iWay Service Manager . 13

Introducing Security Components . 13

Areas of Responsibility . 14

Message Acquisition and Disposition .15

Rejection of Spurious Messages .15

Secure Multi-Purpose Internet Mail Extension (S/MIME) .16

XML Digital Signature . 16

Authentication and Authorization .17

Using Policies .17

Password Masking .18

Security Related iFL Functions .18

Restricted XPath Expressions . 19

3. Security Providers .23

Keystore Provider .23

Directory CertStore Provider .25

SSL Context Provider .26

LDAP Certstore Provider . 30

OCSP Responder Provider . 32

4. Configuring Runtime Security Using Access Control . 35

Runtime Security Overview . 35

Logon Schemes . 36

Configuring Credential Requirements . 37

iSM Commands and Corresponding ACL Names. .39

Realm Based Authentication . 40

LDAP Configuration for iWay Service Manager Administration Console Authentication. 46

LDAP Setup and Configuration. 47

Troubleshooting LDAP Authentication in iSM configuration log(tracing). 55

Security Guide 3

Role Based Authentication . 56

Impersonation . 56

5. Realm-based Security in the iSM Administration Console . 59

Realm-based Security Overview .59

Creating or Editing a Role in the Management Section of the Console .60

Configuring Authentication for a Base Configuration Using a Properties File Realm 62

Managing User Accounts . 64

Changing Passwords. 64

Accessing Configured Users. 66

Password Control Parameters. 67

Non-Administrative Users. 68

Locked Accounts. .70

6. Security Services . 71

OAuth 1.0 Authentication Service . 71

OAuth 2.0 Authentication Service . 77

Insert WSSE Timestamp Service . 84

Insert WSSE Token Service . 87

Insert SAML Assertion Service .91

XML Digital Signature Create Service . 98

Examples. .110

Example 1: Enveloped Signature. .110

Example 2: Simple SOAP Message. .112

Example 3: WSSE SecurityTokenReference. .115

Example 4: Security Token Reference Transform. 118

Example 5: Signed Attachment. 123

Example 6: Signature Transform Parameters. 127

XML Digital Signature Verify Service .130

Examples. .135

Example 1: Completing the Certificate Chain. 135

Example 2: Omitting the Certificate Chain. 141

Example 3: Certificate Revocation. 143

Example 4: Signature Coverage. .143

Contents

4

Example 5: Reducing Risks. 147

XAdES Digital Signature Create Service .150

Examples. .167

Example 1: Enveloped Basic Electronic Signature. 167

Example 2: Optional Qualifying Properties. 169

Example 3: Implied Policy. .172

Example 4: Explicit Policy Identifier. .175

Example 5: Reference Specific Properties. .177

Example 6: Electronic Signature With Time. 180

Example 7: Complete Validation Data References. 182

XAdES Digital Signature Verify Service .184

Examples. .190

Example 1: Minimum XAdES Form. 190

Example 2: Explicit Signature Policy. 194

Authenticate/Impersonate Service . 196

A. Security Tools . 199

Security Tools Overview . 199

Signing Files .199

Keeping Values Secret . 200

B. nCipher Configuration . 203

Provider Initialization (Validating Signatures) . 203

Java Configuration .204

Softcard for nCipher . 205

Creating a Softcard. 205

Multiple Softcards. 205

Key Creation Using Keytool . 205

Cryptography Provider . 206

Troubleshooting (PKCS11 RSA Private Key Exception) . 206

C. Authenticating an HTTP Client Using Kerberos . 209

Kerberos Overview .209

Kerberos Authentication .210

Sample Kerberos Configuration File . 210

Contents

Security Guide 5

Sample JAAS Configuration File . 210

Kerberos Troubleshooting . 211

Resolving the Unable to Load Configuration File Error. 212

D. Configuring Kerberos With Microsoft SQL Server . 215

Hardening the Java Virtual Machine Cryptography . 215

Using the Java Authentication and Authorization Service . 216

Creating a JAAS File for the SQL Server Driver for Kerberos .216

Configuring iWay Service Manager Run Time for Kerberos . 217

E. Configuring Microsoft SQL Server JDBC Driver Version 6 with Kerberos 221

Prerequisites for Windows Active Directory . 221

Configuring Microsoft SQL Server JDBC Driver Version 6 With Kerberos Using Windows

2008/Windows 2012 . 222

Setting Up Accounts for the SQL Server . 222

Configuring User Account Attributes. 222

Configuring User Account Security Attributes. .223

Registering Manual SPN. 233

Connection Rule for NTLM and Kerberos .237

Using Kerberos Authentication With SQL Server . 237

Preparing for the Client .238

Ticket-Granting Tickets for Kerberos .239

Service Tickets. 239

Using JAAS . 239

Creating a JAAS File for SQL Server Driver for Kerberos. 240

Placing JAAS Files and Keytabs in iWay Home Root. 240

Windows JAAS File. 241

Configuring Kerberos for Windows . 241

Modifying Windows Registry for Client Machines. 241

Setting Up Environmental Variables. 242

Configuring the Kerberos Client. 242

Downloading a Keytab to a Client Machine. 243

Configuring Kerberos for Linux . 244

Joining the Samba Server to the PDC Domain . 244

Contents

6

Creating Batch Jobs for Credential Expiration and Renewal on Windows and Linux. 246

Kerberos Configuration File (krb5.conf) . 248

SQL Server Clustered Server Warning . 248

F. WSO2 Identity Server Support . 251

WSO2 Identity Server Introduction . 251

Installing and Configuring WSO2 Identity Server . 252

Configuring WSO2 Users and Roles. 254

Configuring XACML Policies. 254

Configuring iWay Service Manager . 255

Configuring an Authentication Realm for WSO2 Identity Server. 256

Configuring the XACML Provider and XACML Service. 263

Developer Notes . 268

G. User-Defined Permissions and Roles . 269

Using Realms, Roles, and Permissions . 270

Using Propsrealm. .270

Using the Security Property File. 271

Using the Realm. .272

Updating Permissions. 276

Deleting a Permission. 277

Server Roles .279

Legal and Third-Party Notices . 287

Contents

Security Guide 7

Contents

8

Chapter1
Introducing Security

A secure system is a system on which enough trust can be put to use it together with
sensitive information. To reach this trust, the system needs confidentiality, integrity, and
authentication.

Confidentiality ensures that information is not accessed by unauthorized persons.

Integrity ensures the data has not been tampered with.

Authentication ensures that users are who they claim to be.

This chapter provides a background on computer security, which sets the foundation for
the following chapters that describe how these concepts relate to iWay Service Manager.

In this chapter:

Confidentiality

Integrity

Authentication

Confidentiality

Confidentiality is achieved through encryption. A plain text is scrambled using a key into an
unintelligible cipher text. The process is inverted with decryption where the cipher text is
transformed into the original plain text. This procedure is called symmetric encryption because
the same key is used for encryption and decryption. The key must be known to both parties
ahead of time. For a particular cryptographic algorithm, the longer the key the more secure it
will be. The difficulty to transmit the key is the main disadvantage of symmetric encryption.

In asymmetric encryption, a key pair is made up of the public key and the private key. The two
keys are related mathematically, but it is not possible to deduce one from the other. The public
key can be freely published whereas the private key must be kept a secret by the owner of the
key. Indeed, asymmetric encryption offers no protection if the private key is compromised. The
public and private keys are inverses of each other. Encrypting with the public key produces a
cipher text that can only be decrypted by the private key. This can be done by everyone to
ensure the message can only be understood by owner of the private key. Inversely, encrypting
with the private key produces a cipher text that can be decrypted by the public key. Since
everyone can have the public key, this cipher text is not secret, but it proves that it originated
from the owner of the private key.

Security Guide 9

Public key encryption imposes considerable computational overhead and is not appropriate for
securely transmitting large amounts of data. It is more feasible to use public key encryption to
send a symmetric key, which can then be used to encrypt additional data. This is the approach
used by the SSL protocol.

Integrity

Tampering detection relies on a mathematical function called a one-way hash. A hash is a
function that reduces a variable amount of data to a fixed-size quantity. The hash is computed
by the originator and sent together with the data. The recipient recomputes the hash from the
data and compares against the hash it received. The data has not been modified if the two
values match. The hash is not sufficient to prove data integrity because an attacker can
replace both the message and the hash in transit. To address that, we need digital signatures.

Authentication

Most server software permits client authentication by means of a user ID and password. For
example, a server might require a name and password before granting access to the server.
The server maintains a list of names and passwords to which it will grant access.

Another form of authentication is a client certificate with a digital signature.

Public key cryptography employs certificates to avoid impersonation. A certificate is a binding
between a subject identity and a public key. In other words, a certificate is a document that
claims the embedded public key belongs to that subject. Anyone can produce a certificate, so
how can we have confidence the claim is true? The answer is to delegate the verification.

Certificate Authority (CA). Certificate Authority (CA) is an entity that follows certain
procedures to verify the public key really belongs to the subject and the subject is really
who he claims to be. Obtaining a certificate involves a one-time exchange between the CA
and the subject. The subject creates a Certificate Request which also creates a new key
pair. The subject keeps the private key secret and sends the certificate request (which
contains the public key) to the Certificate Authority. The CA performs all the checks
including validating the requester. The CA responds with a certificate request response,
which is used to update the requester’s key pair.

A CA publishes its certificate to allow applications to verify the signature in the certificates
it issued. A Root CA is a CA that signed its own certificate. This is common for commercial
companies like VeriSign, or for internal projects that know they can trust themselves. A CA
that publishes a certificate signed by another CA is called an Intermediate CA.

Integrity

10

Certificate Chain. Certificate Chain is an ordered sequence starting with the subject
certificate up to the Root CA where each certificate is followed by the certificate that signed
it. A self-signed certificate has a chain of depth 1. Most certificates have a chain of depth 2
consisting of the subject certificate and the Root CA. A certificate chain of depth 3 including
an Intermediate CA is less common.

A CA may revoke a certificate it issued if it determines the certificate is no longer valid
before its expiration date. For example, this can happen if an employee leaves the company
or the private key is compromised. The Certificate Revocation List contains the list of all
certificates the CA revoked.

Keystore. A Keystore is an object that holds keys. It can contain symmetric keys, private
keys or public keys in the form of certificates. A keystore is usually a binary file, but it can
also be implemented as a crypto module in hardware.

Certstore. A Certstore is an object that holds certificates and Certificate Revocation Lists.
This is different than a keystore because there may not be any provisions to store
symmetric or private keys. In iWay Service Manager, a Certstore can be implemented as a
keystore, a collection of files in a directory, or with LDAP.

Truststore. A Truststore is a Certstore that contains exclusively the signing certificate of
Trusted CAs.

Digital Signature. A Digital Signature is a binding between a document and an identity. This
is achieved by encrypting the hash of the document with the private key of the signer. The
signature is then sent together with the document. The recipient needs to follow these
steps to verify the signature. It recomputes the hash over the original document. It finds
the certificate of the originator to obtain its public key. It decrypts the signature using the
public key to obtain the hash computed by the originator. The signature is valid if the two
hash values match. This proves the document has not been tampered with after it was
signed. Furthermore, we know the document came from that originator because only the
originator knows the private key used in the signature. The identity in the originator
certificate can be trusted if the certificate has been signed by one of the Trusted CAs.

Certificates can be used to replace user name/password schemes. In SSL, the server can
ask the client to authenticate itself. During the handshake the server asks the client to
send the client certificate together with a signed piece of random data. The server can
ascertain the identity of the client by verifying that signature.

1. Introducing Security

Security Guide 11

Authentication

12

Chapter2
Security in iWay Service Manager

This section describes the areas concerned with security within iWay Service Manager.

In this chapter:

Introducing Security Components

Areas of Responsibility

Message Acquisition and Disposition

Rejection of Spurious Messages

Secure Multi-Purpose Internet Mail Extension (S/MIME)

XML Digital Signature

Authentication and Authorization

Using Policies

Password Masking

Security Related iFL Functions

Restricted XPath Expressions

Introducing Security Components

iWay Service Manager (iSM) is designed to service secure message traffic. Security within the
iSM framework focuses on the following areas:

Message acquisition and disposition using standards-based message protocols such as
SSL and AS/2.

Identification and rejection of spurious messages including DOS-type attacks.

Standards-based cryptography to process secure messages such as S/MIME messages.

XML Digital Signature for non-repudiation of messages.

Authentication and authorization for connection and access to secure services within the
server.

Security Guide 13

Policy-based protected configuration, which prevents tampering or unauthorized changes to
system components and their use during message processing.

Masking of stored passwords.

Security related functions in the iWay Functional Language.

This manual discusses each of these areas in terms of the security mechanisms being applied
and the ways in which these mechanisms fit into the use of the server.

Note: iWay realizes that hackers and attackers will constantly create new and ingenious means
to circumvent security. iWay will consider it a bug if such attacks result in the compromise of a
secure protocol or security mechanism and will address such a defect on an expedited basis
upon the presentation of necessary reproduction or diagnostic data.

Areas of Responsibility

No system can be secure unless good security practices are employed by the developers of
the system and by those charged with running the system on a daily basis. iWay Service
Manager uses advanced security mechanisms to acquire and emit protected messages, and to
work with those messages during their transit through the server. iWay assumes good security
practices by those running the server, including:

Generation of private keys and acquisition/distribution of public keys and certificates.

Note: iWay recommends the use of secure utilities for this purpose. As standards vary
between users and countries, iWay does not offer these tools except for testing and
demonstration purposes.

Protection of configuration passwords.

Physical protection of the software itself from detailed inspection and modification.

Management of secure files, such as key stores and trust stores by the appropriate
software.

Note: iWay recommends the use of secure utilities for this purpose. As standards vary
between users and countries, iWay does not offer these tools except for testing and
demonstration purposes.

Employment of good security practices including proper testing and validation of the
software.

Areas of Responsibility

14

Users should protect their private keys. In particular, this means physical access to the
machine must be protected. Should a private key become compromised, others could
potentially gain access to sensitive information or forge digital signatures.

Message Acquisition and Disposition

Message acquisition and disposition refers to the secure receipt and distribution (emit) of
messages. Messages on any channel can also be encrypted and decrypted using services
provided by iWay Service Manager. Specific security protocols that are provided with iWay
Service Manager are listed and described in the following table:

Protocol Description

nHTTP HTTP including SSL and support for both basic and digest
authentication.

nAS2 AS2 secure messaging protocol.

FTP[/S] FTP client over secure SSL channels.

SFTP FTP client over secure shell.

FTPServer FTP server offering FTP/S protocol.

MQ [with crypto] Access to standard MQ security settings.

For more information on these message protocols, see the iWay Service Manager Component
and Functional Language Reference Guide. All of these protocols are designed to automatically
encrypt and decrypt messages, apply authentication and authorization accordingly, and attempt
to isolate and prevent spurious message attacks.

Rejection of Spurious Messages

Invalid messages must be rejected to avoid denial of service attacks. Spurious message
identification includes detection of invalid protocols, buffer overflow detection, large message
rejection, IP address spoofing and the filtering of peer addresses through white lists of
acceptable sources of messages.

2. Security in iWay Service Manager

Security Guide 15

Secure Multi-Purpose Internet Mail Extension (S/MIME)

S/MIME provides a way to send secure MIME data through encryption, digital signatures and
compression. Many email programs support S/MIME to send secure messages. S/MIME can
also be used in other protocols. For example, AS2 builds on S/MIME to provide a secure
protocol on top of HTTP.

iWay Service Manager components related to S/MIME are listed and described in the following
table:

Component Description

nAS2 AS2 secure messaging protocol.

XDSMIMEPackerAgent A service to create S/MIME messages.

XDSMIMEUnpackerAgent A service to unwrap and verify S/MIME messages.

XDSmimePreParser A preparser to unwrap and verify S/MIME messages.

XDNewSMIMEPE A preemitter to serialize the document and
attachments to S/MIME.

For more information on these components, see the iWay Service Manager Component and
Functional Language Reference Guide.

XML Digital Signature

XML Digital Signature components support the creation and verification of Digital Signatures
over an XML document and its attachments. It is possible to add reference key material to
identify the signing key either directly in the Signature or in a BinarySecurityToken.

iWay Service Manager components related to XML Digital Signatures are listed and described
in the following table:

Component Description

XDInsertSAMLAssertionAgent Inserts a SAML assertion in a new
SecurityTokenReference element.

XDInsertWSSETimestampAgent Inserts a WSSE timestamp in an XML document.

XDInsertWSSETokenAgent Inserts a WSSE SecurityToken in an XML document.

Secure Multi-Purpose Internet Mail Extension (S/MIME)

16

Component Description

XDXMLDSigCreateAgent Creates an XML Digital Signature.

XDXMLDSigVerifyAgent Verifies an XML Digital Signature.

XDXAdESCreateAgent Creates an XML Advanced Electronic Signature.

XDXAdESVerifyAgent Verifies an XML Advanced Electronic Signature.

For more information on these components, see Security Services on page 71.

Authentication and Authorization

Authentication is the process by which an application verifies the identity of users.
Authorization is the process that determines the permissions of an authenticated user within
the application. In iWay Service Manager (iSM), these closely related functions are performed
using security realms. A security realm is a database of user information that can be used to
validate the credentials of a user. Realms also include the list of security roles that have been
assigned to each user. Thus, authorization is a matter of checking to see whether a user has
the role required to access a resource or perform an action.

iSM listeners implementing protocols with standard authentication mechanisms, such as
NHTTP, NAS2, and TelnetD, are tightly integrated with security realms. However, authentication
and authorization can be added to any channel using the Authenticate/Impersonate service
and the _hasrole() iFL function. For more information, see Configuring Runtime Security Using
Access Control on page 35.

Using Policies

Security within the server is controlled using policies that can be configured. Policies can only
be set by an operator with administrative privileges. Most policies can be set on a general
(installation) or a configuration basis.

There are two basic kinds of policies:

Boolean. A boolean policy is either on or off.

Value. A value policy is set to a specific value to be applied to the server.

Policies currently in effect can be displayed by the show policies command from a shell
terminal. To set a policy, use the following command:

set policy <[configname/]name> <value> [-noverify]

2. Security in iWay Service Manager

Security Guide 17

The security-based policies available in the server are listed in the following table:

Name Default Use

minpswd 0 Minimum number of characters needed for a
password to operate the configuration consoles.

signpflow false Determines whether process flows must be signed
for message execution.

signdict false Determines whether the catalog for the
configuration/dictionary must be signed for the
server to start.

signconfig false Determines whether the configuration file, which
defines the configurations, must be signed for a
server to start.

Although configuration files are generally signed, the policies control whether the signature is
checked before the configuration file is used.

Policies are contained in a security file in the main (<iwayhome>/config) area of the server.
This file is always signed and verified on each use, which prevents unauthorized access to the
policies as a result.

Password Masking

All passwords identified as such to iWay Service Manager (iSM) are masked when stored in
iSM configuration files. The masking is designed to prevent unauthorized disclosure of the
password. The algorithm used is a salted value cipher that produces values suitable for
storage in XML files. Password policies such as minimum password length apply only to iSM
passwords, and not to passwords stored by iSM for use in other systems. For example, the
password associated with iSM as a client of an external FTP server is controlled by the policies
of that server; iSM simply masks the password during its storage.

Security Related iFL Functions

iWay Service Manager provides a scripting language, called iFL (iWay Functional Language),
which is documented in the iWay Service Manager Programmer's Guide and iWay Service
Manager Component and Functional Language Reference Guide.

Password Masking

18

iFL can be used to configure server components and to manipulate information. Several iFL
functions are offered to assist in constructing secure applications. For example, hash
functions are often used to add validation hashes to database records or to messages. While
the details of these functions are discussed elsewhere, some of the most useful functions are
listed and described in the following table.

Function Description

_aes() Encrypt or decrypt data using the AES algorithm.

_encr() Masks the value using a storage masking algorithm that is provided
by the server.

_getprin() Return the user name or password from the current principal.

_hasrole() Determines whether the authenticated source of this message has
the authority to perform some operation.

_sha1() Generates a hash over a series of values using the SHA1 algorithm.

_sha256() Generates a hash over a series of values using the SHA256
algorithm.

_md5() Generates a hash over a series of values using the MD5 algorithm.

Restricted XPath Expressions

Some security service parameters accept an XPath expression to locate an element in the XML
document. These parameters support the full syntax of the XPath engine that is selected by
the XPath Version parameter. For convenience, the security services can construct the path to
the element if it is not found in the XML document. This is useful to ensure that a parent
element exists before a new XML child is inserted at that location. Unfortunately, XPath is
ambiguous when describing the construction of a path. For example, the element name might
be missing (/root/*), some parents might be unknown (//ds:Signature), or siblings might
be unknown (/root/child[3]).

To allow the creation of the path, you must restrict the syntax to a subset of XPath 1.0. A
Restricted XPath expression has the following form:

/step1/step2/...

A step has the following form:

2. Security in iWay Service Manager

Security Guide 19

ns:elem[predicate]

The predicate is optional and has the following form when it is present:

[@ns1:attr1='val1' and @ns2:attr2='val2' and ...]

The namespace prefixes are optional, but when present, they must be declared in the XML
Namespace provider. To evaluate a step:

1. Look under the current node to find the first element named elem, in the namespace
declared with the prefix ns, which has all the specified attributes equal to the given value.

2. If there is a match, make the child element the current node.
3. If there is no match, create a new child element with all the attributes assigned to the

specified value and make the new child the current node.

Because Restricted XPath creates the missing nodes as it progresses, there is no
backtracking to find alternative paths. Notice that the document root element cannot be
constructed by Restricted XPath. This is to respect the XML limitation of a single root element
in an XML document.

As a special case, a pair of consecutive steps can have the following form:

*[1]/self::ns:elem[predicate]

Similar to XPath 1.0, this indicates that the requested element must be the first child of its
parent. If the first child does not match, then create a new child element as mentioned in step
3 and insert it first in the list of children.

The Create Parent Element parameter tells the service whether to construct the path leading to
the parent element, and consequently tells the service which XPath syntax to accept. When the
parameter is set to false, the full expressive power of the XPath engine is available. However,
the parent element must already exist in the XML document, otherwise an exception is
generated. When the parameter is set to true, the path to the element will be constructed if
necessary, but the expression syntax must be Restricted XPath.

The following Restricted XPath expression can create a SOAP Header before an existing SOAP
Body:

/soapenv:Envelope/*[1]/self::soapenv:Header/wsse:Security

It is sometimes desirable to create multiple WSSE Security Headers in the same document
because they are destined for different actors. The services must choose the WSSE Security
Header with the correct actor when inserting the new content. The solution is to write the
XPATH expression with a predicate for the actor attribute. The following is an expression that
selects the mandatory WSSE Security Header destined for the next role even if there are other
WSSE Security headers present:

Restricted XPath Expressions

20

/soapenv:Envelope/*[1]/self::soapenv:Header/
wsse:Security[soapenv:mustUnderstand='1' and
soapenv:actor='http://schemas.xmlsoap.org/soap/actor/next']

This expression is valid for full XPATH 1.0 or Restricted XPATH. When the Create Parent
Element parameter is set to true and the WSSE Security Header is not found, then Restricted
XPath creates a new WSSE Security Header and its two SOAP attributes.

2. Security in iWay Service Manager

Security Guide 21

Restricted XPath Expressions

22

Chapter3
Security Providers

This section describes the available security providers that can be configured for iWay
Service Manager.

An iWay Service Manager provider is an object that can be configured separately and
then referred to by name in the configuration of other components. This helps
maintenance by centralizing the configuration of commonly used properties. It also helps
conserve memory because the underlying resource the provider represents can be
created once and shared among all components that refer to the provider. It is possible
to create multiple providers of the same type.

The providers that relate specifically to security are the Keystore, the SSL Context, the
Directory CertStore, and the LDAP providers.

In this chapter:

Keystore Provider

Directory CertStore Provider

SSL Context Provider

LDAP Certstore Provider

OCSP Responder Provider

Keystore Provider

The Keystore provider holds the necessary configuration to access a Keystore. A Keystore is
an object that can hold symmetric keys, private keys or public keys in the form of certificates.
A Keystore is usually a binary file. It can also be implemented as a crypto module in hardware
and accessed through Sun's PKCS11 provider. See nCipher Configuration on page 203 for an
example using the nCipher crypto module.

Keystore providers are usually referred to by name in other components, but you can also
declare a default Keystore provider for SSL, and a (possibly different) Keystore provider for
SMIME.

Security Guide 23

The Reload Period property tells the provider how often to check whether the Keystore should
be reloaded. By default, the Keystore is loaded only once the first time the provider is
accessed and will never be reloaded. When defined, the Reload Period is the minimum time to
wait before a reload can occur. The check occurs only when the provider is accessed so there
is no cost if there is no activity. The value 0 means the provider must check for a possible
reload every time it is accessed. This is not as expensive as it may appear since the Keystore
file will be reloaded only if the file was modified since the last check as determined by the file
time stamp.

The Keystore provider is usually configured with the required password. The provider can also
request the password at runtime if the application security requirements forbid storing the
Keystore password in the configuration. This is done using a user-provided callback that
queries for the password the first time the Keystore provider is accessed. This mechanism
might be desirable for more secure Keystores implemented in hardware, such as an nCipher
device.

The following class is a sample callback implementation. This callback can be enabled by
setting the Callback Handler property to com.example.SampleCallbackHandler.

package com.example;
import javax.security.auth.callback.CallbackHandler;
public class SampleCallbackHandler implements CallbackHandler
{
 public SampleCallbackHandler() {}
 public void handle(Callback[] callbacks)
 throws IOException, UnsupportedCallbackException
 {
 char[] password = …; // application specific
 for (Callback cb : callbacks)
 {
 if (cb instanceof PasswordCallback)
 {
 ((PasswordCallback)cb).setPassword(password);
 }
 }
 }
}

In iSM, a Keystore can also be used where a CertStore is expected. The corresponding
Certstore contains the trusted certificate entries and the first certificate of each private key
entries. For example, a Keystore can be used as TrustStore if it only contains the certificates
of trusted CAs. A Keystore is not a general CertStore because it cannot contain a Certificate
Revocation List.

The following table lists the Keystore Provider properties.

Keystore Provider

24

Property Description

Name * The name of the Keystore definition to add.

Description A brief description of the use of this Keystore.

Keystore * Location of the Keystore file or "NONE" if using PKCS11.

Keystore Password The password used by the Keystore.

Keystore Type * Keystore Type, for example, JKS or PKCS12, and so on.

Keystore JCE Provider JCE Provider implementing this Keystore type.

Callback Handler The fully qualified class name of a Callback handler that will
satisfy authentication callbacks for the Keystore. The callback
handler must satisfy the javax.security.auth.callback.
CallbackHandler interface and be available on the iSM classpath.

Reload Period Minimum time to wait before the provider checks if the Keystore
needs to be reloaded. The format is [xxh][xxm]xx[s]. Enter 0 to
check for reload every time the Keystore is requested. Leave the
parameter empty to never reload the Keystore. A file based
Keystore is reloaded only if the file was modified since last
reload.

Directory CertStore Provider

A Directory CertStore provider implements a certificate store as a set of files in a file system
directory. Each file in the directory is scanned for certificates or certificate revocation lists. A
Directory CertStore provider is particularly useful in components that support CRL checking.

The provider accepts a sequence of DER-encoded certificates in binary or in printable base64.
If the certificate is provided in Base64 encoding, it must be bounded at the beginning by -----
BEGIN CERTIFICATE-----, and must be bounded at the end by -----END CERTIFICATE-----.

The provider also accepts a sequence of DER-encoded Certificate Revocation Lists in binary or
in printable base64. If the CRL is provided in Base64 encoding, it must be bounded at the
beginning by a line starting with -----BEGIN, and must be bounded at the end by a line starting
with -----END.

The provider also accepts certificates and CRLs in pkcs#7 format.

3. Security Providers

Security Guide 25

The Reload Period property tells the provider how often to check whether the Certstore should
be reloaded. By default, the Certstore is loaded only once the first time the provider is
accessed and will never be reloaded. When defined, the Reload Period is the minimum time to
wait before a reload can occur. The check occurs only when the provider is accessed so there
is no cost if there is no activity. The value 0 means the provider must check for a possible
reload every time it is accessed. The Certstore is completely reloaded if the directory or any of
the files have modification times later than the last check. This guarantees additions and
deletions are recognized.

The following table lists the Directory CertStore Provider properties.

Property Description

Name * The name of the Directory CertStore definition to add.

Description A brief description of the use of this Directory CertStore.

CertStore Location * CertStore directory location.

Certificate Factory JCE
Provider

JCE Provider to use when creating the X.509 Certificate
Factory.

Reload Period Minimum time to wait before the provider checks if the
directory contents was modified, hereby forcing the
CertStore to be reloaded. The format is [xxh][xxm]xx[s]. Enter
0 to check the directory every time the CertStore is
requested. Leave the parameter empty to never reload the
CertStore.

SSL Context Provider

An SSL Context Provider defines the parameters used to make to make server or client
connections secure over SSL. Once a provider is defined, it can be applied to IP-based
protocols (such as HTTP or AS2). An SSL Context provider refers to other providers to simplify
its configuration. You will need to create these providers before you can complete the creation
of the SSL Context Provider.

The Security Protocol property specifies the version of the protocol. The options are: SSL,
SSLv2, SSLv3, TLS, TLSv1, and TLSv2. SSL is the Secure Socket Layer and TLS is the
Transport Layer Security. TLS is the successor of SSL. In fact, SSLv3 and TLSv1 are very
similar except they are not compatible with each other.

SSL Context Provider

26

TLS protocol version 2 is supported. Basic SSL is no longer considered to be sufficiently
secure, and many of its shortcomings have been addressed with TLS. The SSL level setting
represents the minimum acceptable security algorithm. iWay Software strongly recommends
that TLS be considered as the minimum acceptable level. For secure transactions,
specification of TLS version 2 is recommended, provided that both sides of the transaction
have this algorithm available. iSM will negotiate for the highest level available when
connections are established.

Note: You must have Java version 1.7 configured on your system to use TLS protocol version
2.

When the Client Authentication property is true, servers using this provider will use SSL client
authentication, that is, the server must receive and authenticate a certificate from the client as
part of the SSL handshake.

When the Hostname Verification property is true, clients using this provider will attempt to
verify that the server's certificate matches its host name. That is, the common name part of
the subject distinguished name must be the hostname.

The Enabled Cipher Suites property determines which cipher suites will be available during SSL
negotiation. This is a comma-delimited list forming a subset of the Cipher Suites supported by
the platform. If left blank, all available cipher suites will be enabled. A secure connection is
only as secure as its weakest available cipher suite. Since some built-in cipher suites can be
very weak, it is important to review the enabled cipher suites to verify they meet the security
requirements of the application. The list of standard cipher suite names appears in Oracle's
"Java Cryptography Architecture Standard Algorithm Name Documentation". The exact list of all
cipher suites on the platform can be obtained by calling String[]
SSLServerSocketFactory.getSupportedCipherSuites().

A Keystore provider is needed to know where to find the private keys. This can be the default
SSL Keystore or a specific Keystore provider selected by name. A server always needs a
private key associated with its server certificate. You can let JSSE pick a private key within the
Keystore, or you can choose exactly which key to use by specifying the server key alias. A
client does not need a private key associated with a client certificate, unless client
authentication is used. In that case, you can let JSSE pick a private key within the Keystore, or
you can choose exactly which key to use by specifying the client key alias.

Another Keystore provider is needed to list the certificate of Trusted CAs. Preferably, this
should not contain any other keys because they would also be treated as Trusted CAs. In
particular, it is not recommended to use the same Keystore provider for the private keys and
the TrustStore. The client will use the TrustStore to validate the server certificate. The server
will use the TrustStore to validate the client certificate when client authentication is used.

3. Security Providers

Security Guide 27

The validation can be improved by enabling certificate revocation to verify the peer certificate
has not been revoked. This requires the name of a CertStore provider in the PKIX CertStore
Provider property to specify where to find the certificate revocation lists.

An SSL Context maintains a session cache. Sessions in the cache can be reconnected with
less overhead than those not cached. The Session Cache Size property determines the
maximum number of SSL sessions that will be retained in the cache. The Session Timeout is
the maximum length of time (in seconds) that an SSL session can remain in the cache.

It is possible to select exactly which JCE provider will be used to create certain objects. The
JCE SSL Context Provider determines which provider will be used to create the SSLContext.
The JCE PKIX Trust Manager Provider property specifies which JCE provider will be used to get
the instance of the PKIX TrustManagerFactory. The JCE Signature Provider property tells the
TrustManagerFactory which JCE provider to use to get Signature objects. These properties can
be set to "Not Specified" to choose the corresponding default JCE provider.

The following table lists the SSL Context Provider properties.

Property Description

Name * The name of the SSL Context definition to add.

Description A brief description of the use of this SSL Context.

Keystore Provider * Configured Security Provider for the Keystore you wish to use
for this SSL context. Choose default to use the default SSL
Keystore Provider. Keystores hold private keys.

Truststore Provider * Configured Security Provider for the truststore you wish to
use for this SSL context. Choose default to use the default
SSL Keystore Provider. Truststores hold the certificate of
Trusted CAs used to verify peer certificates.

SSL Context Provider

28

Property Description

Security Protocol * Specify the version of security protocol that should be used.
During SSL handshake, a negotiation selects the protocol to
be used from the best mutually supported. This field sets the
minimum acceptable security protocol. If the handshake
cannot select a mutually supported protocol, the connection
fails. The options are: SSL, SSLv2, SSLv3, TLS, TLSv1, and
TLSv2.

Note: You must have Java version 1.7 configured on your
system to use TLS protocol version 2.

JCE SSL Context Provider JCE Provider for the SSL Context.

Server Key Alias Alias for the key to be used to identify secure servers using
this SSL context. If not supplied, the key will be selected
using JSSE default behavior.

Client Key Alias Alias for the key to be used to identify secure clients using
this SSL context. If not supplied, the key will be selected
using JSSE default behavior.

Session Cache Size The maximum number of SSL sessions that will be retained
in the session cache. Sessions in the cache can be
reconnected with less overhead than those not cached.

Session Timeout Maximum length of time (in seconds) that an SSL session
can remain in the cache.

Enable Certificate
Revocation

Enable CRL checking of certificates during handshake.

OCSP Responder Name of the OCSP Responder provider. This verifies the
status of certificates online instead of relying on Certificate
Revocation Lists (CRLs).

JCE PKIX Trust Manager
Provider

JCE provider to construct PKIX Trust Manager. Choose 'Not
Specified' for default.

JCE Signature Provider JCE provider used to verify digital certificate signatures
during handshake.

3. Security Providers

Security Guide 29

Property Description

PKIX Certificate Store Certificate store from which certificate revocation lists are
loaded.

Enabled Cipher Suites If supplied, only cipher suites on this list will be enabled for
SSL sockets or SSL engines created using this provider. The
user must take care that enabled cipher suites are
supported by other components specified. Enter as comma-
delimited list or use FILE() function. If left blank, all available
cipher suites will be enabled and be available during SSL
negotiation.

Hostname Verification If true, client SSL connections using this provider will attempt
to verify that the server certificate matches its host name.

Client Authentication If true, servers using this provider will use SSL client
authentication, that is, the server must receive and
authenticate a certificate from the client as part of the SSL
handshake.

LDAP Certstore Provider

The LDAP CertStore Provider implements a CertStore by querying an LDAP server that exposes
a schema adhering to RFC2587. Notice the Directory Provider used to access LDAP in a more
general way can also be used to implement a CertStore. The LDAP CertStore provider is
offered for those that need the extra configuration options made available by the Bouncy
Castle LDAP CertStore. These options give a little flexibility to deviate slightly from RFC2587,
though retaining the same working principles.

One difference between the LDAP CertStore provider and the Directory Provider is the Base DN
has a separate property instead of being bundled in the URL.

When the Search For Serial Number In property is not null, the serial number of the certificate
is searched in this LDAP attribute. The remaining properties allow you to give an alternate
name for some of the LDAP attributes queried by the LDAP CertStore.

Property Description

Name * The name of the LDAP CertStore definition to add.

LDAP Certstore Provider

30

Property Description

Description A brief description of the use of this LDAP CertStore.

URL * URL to reach LDAP directory. LDAP URL's are in the form
ldap://host[:port]

Base DN Base DN.

Search For Serial Number
in

If not null the serial number of the certificate is searched in
this LDAP attribute.

User Certificate Attribute Attribute name(s) in the LDAP directory where end certificates
are stored. Separated by space. Defaults to userCertificate.

CA Certificate Attribute Attribute name(s) in the LDAP directory where CA certificates
are stored. Separated by space. Defaults to CACertificate.

Cross-Certificate Attribute Attribute name(s), where the cross certificates are stored.
Separated by space. Defaults to crossCertificatePair.

Certificate Revocation List
Attribute

Attribute name(s) in the LDAP directory where CRLs are
stored. Separated by space. Defaults to
certificateRevocationList.

LDAP User Certificate
Attribute Name

The attribute name(s) in the LDAP directory where to search
for the attribute value of the specified
userCertificateSubjectAttributeName. For example, if cn is
used to put information about the subject for end
certificates, then specify cn. Defaults to cn.

LDAP CA Certificate
Attribute Name

The attribute name(s) in the LDAP directory where to search
for the attribute value of the specified
CACertificateSubjectAttributeName. For example, if ou is
used to put information about the subject for CA certificates,
then specify ou. Defaults to: cn ou o.

LDAP Cross-Certificate
Attribute Name

The attribute name(s) in the LDAP directory where to search
for the attribute value of the specified
crossCertificateSubjectAttributeName. For example, if o is
used to put information about the subject for cross
certificates, then specify o. Defaults to: cn ou o.

3. Security Providers

Security Guide 31

Property Description

LDAP Certificate
Revocation List Attribute
Name

The attribute name(s) in the LDAP directory where to search
for the attribute value of the specified
certificateRevocationListIssuerAttributeName. For example, if
ou is used to put information about the issuer of CRLs,
specify ou. Defaults to: cn ou o.

User Certificate Subject
Attribute Name

Attribute(s) in the subject of the certificate which is used to
be searched in the ldapUserCertificateAttributeName. For
example, the cn attribute of the DN could be used. Defaults
to cn.

CA Certificate Subject
Attribute Name

Attribute(s) in the subject of the certificate which is used to
be searched in the ldapCACertificateAttributeName. For
example, the ou attribute of the DN could be used. Defaults
to: o ou.

Cross-Certificate Subject
Attribute Name

Attribute(s) in the subject of the cross certificate which is
used to be searched in the
ldapCrossCertificateAttributeName. For example, the o
attribute of the DN may be appropriate. Defaults to: o ou.

Certificate Revocation List
Issuer Attribute Name

Attribute(s) in the issuer of the CRL which is used to be
searched in the ldapCertificateRevocationListAttributeName.
For example, the o or ou attribute may be used. Defaults to:
o ou.

OCSP Responder Provider

The Online Certificate Status Protocol (OCSP) is an Internet protocol used to obtain the
revocation status of an X.509 digital certificate. It is formalized in RFC 2560.

OCSP was created as an alternative to Certificate Revocation Lists (CRLs), specifically
addressing certain problems associated with using CRLs in a Public Key Infrastructure
(PKI).The request and response nature of these messages lead to OCSP servers being termed
OCSP responders. iSM can communicate with an OCSP responder to obtain the revocation
status of a certificate, avoiding the need to manage certificates locally in many cases.

OCSP Responder Provider

32

The following table lists the OCSP Responder Provider properties.

Property Description

Name * The name of the OCSP Responder definition to add.

Description A brief description of the use of this OCSP Responder.

Responder URL * Location of the OCSP responder. For example:

http://ocsp.example.net:80

Certificate Subject
Name

Subject name of the certificate for the OCSP responder. For
example, CN=OCSP Responder and O=XYZ Corp.

Certificate Issuer
Name

Issuer name of the certificate for the OCSP responder. For
example, CN=Enterprise CA and O=XYZ Corp. This property is
required if a value for the Certificate Subject Name parameter is
not specified.

Certificate Serial
Number

Serial number of the OCSP responder's certificate. For example,
1234567890123456789. This property is required if a value for
the Certificate Subject Name parameter is not specified.

Certificate Store * Certificate store where the responder certificate can be retrieved.

HTTP Client Provider * HTTP client provider that manages outgoing connections to the
responder.

3. Security Providers

Security Guide 33

OCSP Responder Provider

34

Chapter4 Configuring Runtime Security Using
Access Control

This section describes how to configure run-time security using access control.

In this chapter:

Runtime Security Overview

Logon Schemes

Configuring Credential Requirements

Realm Based Authentication

Role Based Authentication

Impersonation

Runtime Security Overview

iWay Service Manager (iSM) offers runtime security capabilities for highly secure applications.
Runtime security includes authentication, often a logon process that validates a user's
credentials, and authorization, in which execution depends on the permissions granted to the
user.

Protocol based logon may involve a scheme, that is, a standardized method by which a server
requests credentials and a client offers them. In iSM, the validation of credentials is handled
by authentication realms. If a user is authenticated, the realm returns a principal, a structure
that holds the user's credentials along with a list of the security roles assigned to the user.
Once established, the principal is available for the duration of the transaction or session.

In addition to the creation of principals by logon, iSM provides services to define and assign a
principal to the current transaction. If the transaction already has one or more associated
principals, the new principal masks these. This is sometimes called impersonation.
Additionally, a process that uses its own logic to identify a user can create a principal for use
in the remainder of the transaction or session.

An application determines whether a particular action is authorized by checking to see whether
the current principal has a role that has been granted the permission required for that action.
The mapping of roles to permissions is sometimes called an Access Control List, or ACL.

Security Guide 35

The main components of iSM runtime security are:

1. Logon Schemes

2. Realm Based Authentication

3. Role Based Authentication

4. Impersonation

Logon Schemes

A logon authentication scheme is a protocol that defines the challenge sent by the server in
response to a request for a secure resource and the exchange of security information between
client and server in response to the challenge. Currently, the NHTTP and NAS2 listeners
support two such authentication schemes, HTTP Basic and Digest Access authentication, as
defined in RFC 2617. In addition to these, the NHTTP emitter and HTTP client provider support
NTLM and the negotiate scheme using Kerberos and SPNEGO. For more information on how to
configure the emitter to work with negotiate and Kerberos, see Authenticating an HTTP Client
Using Kerberos on page 209.

Authentication on the NHTTP listener can be tested using browsers that can show the request
and response HTTP headers.

With basic authentication, you should see:

1. The server responds to the initial request with 401 status code and a challenge. For
example:

WWW-Authenticate: Basic realm="realm name"

The realm name in our challenges will always match the name of the configured realm in
the server.

2. The client responds to the challenge by adding a header to its request. For example:

Authorization: Basic QWxhZGRpbjpvcGVuIHNlc2FtZQ==

The secret looking string after "Basic" contains the user name and password with Base-64
encoding.

If you are using digest authentication, the challenge and response have the following
structure:

Challenge

WWW-Authenticate: Digest realm="realm name",
 qop="auth",
 nonce="dcd98b7102dd2f0e8b11d0f600bfb0c093",
 opaque="5ccc069c403ebaf9f0171e9517f40e41"

Logon Schemes

36

The server, desiring credentials, passes the request to the client along with a newly-
created random number, called a nonce. The client hashes this nonce along with the
user ID, the realm name and the password (plus a few other things) to create a
message digest containing the hash code.

Response

The server performs the same calculation, but using its stored password.

Authorization: Digest username="Mufasa",
 realm="realm name",
 nonce="dcd98b7102dd2f0e8b11d0f600bfb0c093",
 uri="/dir/index.html",
 qop=auth,
 nc=00000001,
 cnonce="0a4f113b",
 response="6629fae49393a05397450978507c4ef1",
 opaque="5ccc069c403ebaf9f0171e9517f40e41"

The response should match the value computed by the server. The actual password
never appears on the line.

Other protocols obtain their logon user ID and password based on the RFC controlling their
operation. The FTP Server channel and the Telnet command channel are cases in point.

Configuring Credential Requirements

A user is authorized to perform an operation only if that user is assigned with a role that has
been granted the required permission for that operation. Users and their roles are configured
in the authentication realm. When a realm authenticates a user, it creates a Principal that
contains all of the security roles for the user. The list of roles that have been granted a
particular permission is called an Access Control List (ACL). Assigning roles to users and
granting permissions to roles is the responsibility of the security officer.

To execute an iWay Service Manager (iSM) operation, a user must either have the ism.admin
role, <configname>.admin role, or another role assigned that has been granted the permission
required for that command. The names of the specific permissions for iSM commands are built
into the server.

The set acl command grants a permission to a role and assigns the role to either the
general configuration or an application/configuration. If the role applies to a specific
application/configuration, then the permissions associated with that role in the application/
configuration are used. If the role is not applicable to the specific application/configuration,
then the permissions associated with the role in the general server are used. For example, the
devmgr role might offer the ability to control a development application, but deny any
permissions for production applications other than review.

4. Configuring Runtime Security Using Access Control

Security Guide 37

When using the set acl command to grant a permission to a role in an application, specify
the configuration by name as follows:

set acl devserver/devmgr cmdstop -append

Roles can be assigned to server groups by use of regular expressions. For example, if your
installation named all development servers with the prefix DEV_, then you might use the set
acl command as follows:

set acl DEV_./devmgr cmdstop -append

The regular expression DEV_. indicates all servers beginning with the DEV_. prefix.

When checking permissions, the security system of iSM checks in the following order:

1. Specific configuration roles.

2. Regular expression configuration roles.

3. General server roles.

Note: The general permission ism.admin must be held by the user in order to use the set acl
or set policy commands via the command line or the iSM Administration Console.

For example, to issue the start command, a user must have the required permission. The ACL
for the start command is named cmdstart. For more information, see iSM Commands and
Corresponding ACL Names on page 39. In this scenario, a security officer has decided that a
user with the permission starter can issue the start command. The ACL for the stop command
is named cmdstop. In addition, the security officer has decided that the permission starter can
also stop. To accomplish this, once when the server is installed, the security officer (with
administrative authority) must issue the following commands:

set acl cmdstart starter

set acl cmdstop starter

At some point the security officer may decide to grant a user with the permission, startonly, the
ability to start a channel, but not to stop a channel. The security officer issues the following
command:

set acl cmdstart startonly

Next, the security officer creates an authentication realm. For more information on the
authentication realm, see Realm Based Authentication on page 40.

For this example, a properties realm is defined (users.properties), which is commonly used for
simple situations. The security officer creates two users, each with a name and password.
Tom (password=tomspassword) can start and stop channels, but Fred
(password=fredspassword) can only start channels.

Configuring Credential Requirements

38

The security officer adds the following settings to the properties realm (users.properties):

tom=tomspassword
tom.role0=starter
fred=fredspassword
fred.role0=startonly

Additionally, the security officer decides that Tom can also run process flows from the
command line. The security officer issues the following command:

set acl cmdflow flower

The security officer also adds the following line to the properties file:

tom.role1=flower

iSM Commands and Corresponding ACL Names

The roles of the command handler are listed in the following table.

iSM Command ACL Name

Enqueue cmdflow

Flow cmdflow

Pull cmdpull

Refresh cmdrefresh

Remote cmdremote

Run cmdrun

Set acl cmdsetacl

Set policy cmdsetpolicy

set property cmdsetproperty

Set register cmdsetregister

Shell (or !) cmdsys

Start cmdstart

4. Configuring Runtime Security Using Access Control

Security Guide 39

iSM Command ACL Name

Stop cmdstop

Realm Based Authentication

Once the application has obtained the credentials from the user, they must be verified and the
user's security roles must be determined. In iSM, this function is performed by authentication
realms. A realm represents a database of information about valid users of the system,
containing, at a minimum, the user ID, password, and the names of any security roles that
have been assigned to the user. iSM supplies six different realm implementations, which can
be configured in the Provider section of the iSM Administration Console.

1. Properties Realm

This realm is configured with the path to a properties file that contains properties such as
username=password and username.role=rolename. For example:

steve=password
steve.role0=user
judy=secret
judy.role0=admin
judy.role1=bigdocs
clement=Canada
clement.role0=admin
richard=masked
richard.role0=financial.admin
richard.role1=audit.admin

In this example, judy has two access tokens, while steve has one. Unlike steve, judy can
work with bigdocs. The meaning of bigdocs is subject to tests in the process flow, and is
not defined by iWay.

Clement is a general administrator, while richard has been granted administrative privileges
for two applications (financial and audit). Obviously, this provides minimal security and is
intended for use only during testing and debugging. However, this realm does show how
roles are related to users.

2. Console Realm

This realm wraps the iSM Administration Console security systems, authenticating users
that have been defined on the Managed Servers page of the console. If the user has been
granted power user rights, the Principal returned will include the admin role. The console
realm is not configured as a provider. An instance of the console realm is always available
to the system under the name, consolerealm.

Realm Based Authentication

40

3. JDBC Realm

This realm authenticates users using a JNDI data source, which could be an iWay JDBC
Provider. The following table lists and describes the configuration parameters for the JDBC
authentication realm:

Parameter Description

JNDI Factory
Name

Initial Context Factory class to access the data source using JNDI.
To use an iWay JDBC provider, enter
com.ibi.jndi.XDInitialContextFactory.

JNDI Name Name for the data source in the JNDI directory. For iWay JDBC
providers, use the following format:

jdbc/[provider_name]

Users Table Table with at least one row for each valid user in this realm. The
table must include at least two columns, containing user name and
password. The names of these columns are specified by the
Username and User Credential Column parameters. The table may
include other columns if the application requires them.

User Roles Table Table with at least one row for each security role assigned to a
user. The table must contain at least two columns, for user name
and role. The names of these columns are specified by the
Username and Role Column parameters. The table may include
other columns if required by the application.

Username
Column

Name of the column that contains the user name in the Users and
User Roles tables.

User Credential
Column

Name of the column that contains the password in the Users table.

Role Column Name of the column that contains the name of the user security
role in the User Roles table.

The simplest tables that could be used with this realm might look as follows:

4. Configuring Runtime Security Using Access Control

Security Guide 41

CREATE TABLE users
(
username varchar(25),
password varchar(25)
)
CREATE TABLE user_roles
(
username varchar(25),
role varchar(25)
)

To look up the password for a user, the realm constructs an SQL statement. For example:

SELECT password FROM users WHERE username = ?

And it finds roles with the following statement:

SELECT role FROM user_roles WHERE username = ?

4. JAAS Realm

This realm wraps a JAAS logon context that must be configured externally in the JAAS logon
configuration file. The JAAS realm does not support digest authentication. The following
table lists and describes the configuration parameters for the JAAS authentication realm:

Parameter Description

JAAS Config File Path to the standard JAAS configuration file. If the system
variable java.security.auth.login.config is not set when the
realm is initialized, the realm will set it to this value. Consult
JAAS documentation for the structure of this file.

Application Entry The entry in the JAAS configuration to which this realm will
delegate authentication requests.

User Principal A successful JAAS logon results in a Subject that can contain
one or more Principal objects. Specify the class name of the
Principal object that should be understood as representing
the authenticated user.

Realm Based Authentication

42

Parameter Description

Role Principal Specify the class name (or a comma delimited list of class
names) for Principal objects created by the JAAS logon that
should be understood as representing security roles for the
authenticated user. The value returned by the Principal's
getName() method will be the name of the role assigned to
the user in iSM.

For testing, a simple JAAS logon module is provided that wraps the iSM console user
database. To try it, you must first create the JAAS configuration file with an application
entry pointing to the console module. For example:

test
{
com.ibi.providers.auth.jaas.ConsoleLoginModule REQUIRED;
};

Configure the JAAS authentication realm according to the values that are listed in the
following table:

Parameter Value

JAAS Config File The file containing the application entry above.

Application Entry For the above example, "test".

User Principal The logon module creates a principal for the user of type:

com.ibi.providers.auth.jaas.ConsoleUserPrincipal

Role Principal The logon module creates a principal for the role of type:

com.ibi.providers.auth.jaas.ConsoleRolePrincipal

It should be possible to configure the JAAS Realm to work with most logon modules.

5. LDAP Realm

4. Configuring Runtime Security Using Access Control

Security Guide 43

This realm implementation works with a directory server accessed via the Java Naming and
Directory Interface (JNDI) APIs. The following table lists and describes the configuration
parameters for the LDAP authentication realm:

Parameter Description

LDAP Provider Name of the directory provider describing the connection to
the LDAP server.

User Base Context The base of the subtree containing users. Each user that can
be authenticated must be represented by an individual entry
that corresponds to an element in this directory context. If no
value is specified, then the top level element in the directory
context will be used.

User Pattern A pattern for the distinguished name (DN) of the user's
directory entry. Use {0} to substitute the user name. For
example, (cn={0}). LDAP OR syntax is also supported. For
example, (|(cn={0})(cn={0},o=myorg)). You can use this
parameter instead of User Search Filter, Search User
Subtree, and User Base Context when the distinguished
name contains the user name and is otherwise the same for
all users.

Search User Subtree The search scope. Set to true if you wish to search the entire
subtree rooted at the User Base Context entry. The default
value of false requests a single-level search including only the
top level.

User Search Filter The LDAP filter expression to use when searching for a user's
directory entry, with {0} marking where the actual user name
should be inserted. Use this parameter (along with the
Search User Subtree parameter) instead of the User Pattern
parameter to search the directory for the user's entry.

Realm Based Authentication

44

Parameter Description

User Password
Attribute

Name of the attribute in the user's entry containing the
user's password. If you specify this value, then this realm will
retrieve the corresponding attribute for comparison to the
value specified by the user being authenticated. If you do not
specify this value, then this realm will attempt a simple bind
to the directory using the distinguished name (DN) of the
user's entry and password specified by the user, with a
successful bind being interpreted as an authenticated user.

Role Base Context The base directory entry for performing role searches. If no
value is specified, then the top level element in the directory
context is used.

Search Role Subtree Set this parameter to true if you want to search the entire
subtree of the element specified by the Role Base Context for
role entries associated with the user.

The default value of false causes only the top level to be
searched.

Role Search Filter The LDAP filter expression used for performing role searches.
Use {0} to substitute the distinguished name (DN) of the
user, and/or {1} to substitute the user name.

If no value is specified, then a role search does not take
place and roles are taken only from the attribute in the user's
entry specified by the User Role Attribute parameter.

Role Attribute The name of the attribute that contains role names in the
directory entries found by a role search. In addition you can
use the User Role Attribute parameter to specify the name of
an attribute, in the user's entry, containing additional role
names.

If no value is specified, then a role search does not take
place, and roles are taken only from the user's entry.

4. Configuring Runtime Security Using Access Control

Security Guide 45

Parameter Description

User Role Attribute The name of an attribute in the user's directory entry
containing zero or more values for the names of roles
assigned to this user. In addition you can use the Role
Attribute parameter to specify the name of an attribute to be
retrieved from individual role entries found by searching the
directory.

If no value is specified, then all the roles for a user derive
from the role search.

6. Active Directory Realm

The Active Directory realm authenticates the user with a login to Active Directory. The
properties are identical to the LDAP realm, except that the User Password Attribute
parameter is not used to force a login. This realm displays a warning on the General
Properties page of the iSM Administration Console if the password is about to expire in
Active Directory, as shown in the following image.

LDAP Configuration for iWay Service Manager Administration Console Authentication

The new feature for LDAP authentication provides additional capability for iWay Service
Manager (iSM) to authenticate against LDAP and associate an LDAP iSM role to the user.

iSM includes a built-in role for an administrator that allows for complete management and
control of iSM from the Administration Console. Other roles may be added from the Web
Console to limit access and management of iSM.

Realm Based Authentication

46

To implement LDAP authentication for the iSM Administration Console, each of these roles
need to be added to an LDAP/Active Directory configuration as Groups and then associated to
users. Optionally, an LDAP attribute like title may be associated to a role like ism.admin.

The built-in administrator roles are:

ism.admin

<configname>.admin

For example, myapp.admin for an application/configuration that is named myapp.

Additional roles will need to be defined in the iSM Administration Console and also in LDAP.
The following procedure describes the required configuration for LDAP and iSM.

LDAP Setup and Configuration

This section describes how to set up an LDAP group, how to setup and configure iWay Service
Manager (iSM), and how to add additional Server roles in iSM.

4. Configuring Runtime Security Using Access Control

Security Guide 47

Procedure: How to Setup the LDAP Group

This section describes the LDAP group setup for iSM roles. The following steps describe
creating an LDAP group based on the iWay Service Manager role and a common name (cn) that
is the iSM role. Subsequently adding LDAP members to the group. For example, the LDAP
group for the built-in iSM administrator, ism.admin will have a CN=ism.admin.

1. Create a new LDAP Group for ism.admin and set cn=ism.admin, as shown in the
following image.

Realm Based Authentication

48

2. Add LDAP users as members to the LDAP Group ism.admin, as shown in the following
image.

The LDAP Group ism.admin and the associated members of the group can be viewed in the
scope pane, as shown in the image below.

4. Configuring Runtime Security Using Access Control

Security Guide 49

LDAP User screen showing the example used earlier, Bob Hittner, is a member of the
ism.admin LDAP Group, is displayed in then image below.

Procedure: How to Setup and Configure iWay Service Manager

The following section describes the steps to configure iWay Service Manager (iSM) to access
and authenticate against LDAP. The following steps describe how to create an iSM Directory
provider and an authentication realm.

1. To create an iSM Directory Provider to access the LDAP directory, login to the iSM
Administration Console. Click the Server Link, then click Directory Provider.

The Directory Providers: LDAP dialog is displayed, as shown in the following image.

Realm Based Authentication

50

2. Update all the required fields for the LDAP Directory Provider, including the LDAP URL, and
Base DSN fields.

3. Click the Authentication Mechanism drop-down and select Simple. Add the User ID and
Password for LDAP, as shown in the following image.

4. Click Add. Test for successful connectivity. If the connection is successful, the following
dialog is displayed.

5. To add the Authentication Realm, click Authentication Realm under Providers.

6. Click New.

4. Configuring Runtime Security Using Access Control

Security Guide 51

7. In the Authentication Realm dialog, Select ldaprealm from drop-down in the Realm Type
field. Enter a name, and select the configured directory provider in the LDAP Provider field,
as displayed in the following image.

8. in the Search User Subtree drop-down, select true.

9. In the User Search Filter field, enter sAMAccountName={0}, as shown in the following
image.

10. Enter Role based information as follows:

Role Base Context: OU=Groups,OU=Data Center.

Search role Subtree: Select true from the drop-down.

Realm Based Authentication

52

Role Search Filter: Enter member={0}.

Role Attribute: Enter cn.

11. Click Finish.

12. To update iSM Console Security, Click Management, as shown in the following image.

13. Click Servers.

The Server creation and management dialog is displayed.

14. Click the configuration name that will be using the LDAP authentication, as shown in the
following example.

15. Under Console Attributes, update the Authentication Realm parameter to use the
authentication realm created above, as shown in the following image.

16. Enter the LDAP User ID and Password that is associated with ism.admin LDAP Group.

Optionally, check Console Tracing to debug LDAP authentication issues.

17. Click Finish.

18. Restart iSM and login to the iSM Administration Console.

4. Configuring Runtime Security Using Access Control

Security Guide 53

Note: To debug LDAP authentication problems, start iSM from a Windows Command Prompt
window and start iSM using the following command and option -u; iway61 base -u.

The setup of LDAP connection and authentication for iSM is complete.

Procedure: How to Add Additional Server Roles in iWay Service Manager

The following section describes how to define additional iSM roles.

1. Click Management and then Server Roles.

2. Click Add.

The Server roles page is displayed.

3. In the Name field, enter ReadWrite.

4. Select the allowable actions, as shown in the following image.

5. Follow the steps under LDAP Setup and Configuration on page 47 to add the LDAP Group
for the ReadWrite role.

Note: The name of the iSM role must match the name of the LDAP group i.e. iSM role =
ReadWrite LDAP Group = ReadWrite. They are mapped by using the same name.

6. Restart iSM and verify new role.

Realm Based Authentication

54

Troubleshooting LDAP Authentication in iSM configuration log(tracing)

To troubleshoot LDAP authentication in iSM, perform the following:

Enable Console tracing as described in step 16 of How to Setup and Configure iWay Service
Manager on page 50.

Click on the Server link and click Trace Settings. Enable Debug and Deep, as shown in the
following image.

Try logging in to the iSM console(configuration)

Collect log files from the iSM config log directory in the following path: \\iwayhome
\config\base\log. Review the most recent log file.

For example:

DEEP (console) LDAP Realm, entry found for csswxz with dn
CN=CSSWXZ,CN=Users,DC=eda,DC=csseda,DC=com
DEEP (console) LDAP User role name cn search
DEEP (console) LDAP Realm, retrieving values for attribute cn
DEBUG (console) LDAP Realm, csswxz authenticated successfully
DEEP (console) LDAP Realm,
getRoles(CN=CSSWXZ,CN=Users,DC=eda,DC=csseda,DC=com)
DEEP (console) LDAP Realm, retrieving values for attribute cn
DEEP (console) LDAP Realm, Returning roles: CSSWXZism.admin
DEEP (console) LDAP Realm, Closing directory contex

4. Configuring Runtime Security Using Access Control

Security Guide 55

Note: The ism.admin role may seem joined to another role(CSSWXZism.admin). This is
expected behavior. Check to make sure that the ism.admin role, or any other role you
assign, exists under Returning roles in the log file.

Role Based Authentication

Roles are represented by tokens carried in the principal. Roles are used within the process
flow to control the level of authority needed to perform specific actions. Roles can be tested
within the flow by the iWay Functional Language expression _hasrole(name).

The _hasrole() function returns true if the current principal carries the named token, otherwise
it returns false. For more information about this function and other security-related iFL
functions, see the iWay Service Manager Component and Functional Language Reference
Guide.

A sample use might be to test the role to determine whether a leg of the process flow is
permitted. A standard test object can be employed for this purpose. The true edge is followed
if the role is present, otherwise the false edge is followed.

In this example, a document arrives to register a sale. If the amount of the sale is under a
selected floor limit, the sale is registered. If greater than the floor limit, the sender must have
the 'bigsale' token. This is tested in the test object named ACL.

Impersonation

Impersonation refers to the creation of a new principal, carrying user ID and password along
with any desired roles. The principal is created using the Authenticate/Impersonate service
(XDPrincipalAgent). Once created, it is used for all subsequent actions.

You cannot create a principal with the admin role unless the principal currently in force has
that role.

Role Based Authentication

56

Principals can be used to control the authority passed onward in a flow, possibly to a subflow.
The principal will be carried to a channel reached via the internal emit service, so that the
channel inherits the authorizations of the calling channel.

The Authenticate/Impersonate service (XDPrincipalAgent) can either create a principal or
destroy the last one that it created. For more information on how to configure this service, see
Authenticate/Impersonate Service on page 196.

4. Configuring Runtime Security Using Access Control

Security Guide 57

Impersonation

58

Chapter5 Realm-based Security in the iSM
Administration Console

This section describes how to configure realm-based security in the iSM Administration
Console.

In this chapter:

Realm-based Security Overview

Creating or Editing a Role in the Management Section of the Console

Configuring Authentication for a Base Configuration Using a Properties File Realm

Managing User Accounts

Realm-based Security Overview

Access to the iSM Administration Console can be configured to use any authentication realm
as an alternative to the built-in iSM security (or console realm). This allows the management of
iSM console users to be integrated with existing security systems.

The authentication realm performs two tasks:

Authenticate credentials of the user. This determines whether or not the user is allowed
access to iSM. The iSM Administration Console uses the HTTP Basic Authentication
scheme.

Return the list of security roles assigned to the user.

A security role can be understood as a particular function that a user performs in iSM. The
specific permissions that are necessary for this function are granted to the role, and the role is
assigned to a user. To determine whether the user is authorized to do something in the iSM
console, the system checks to see whether the user has a role with the required permissions.
A user can be assigned multiple roles, since the permissions assigned to these roles are
cumulative.

Security Guide 59

Creating or Editing a Role in the Management Section of the Console

The console access permissions that can be granted to a role are identical to those that can
be granted to a user in the iSM console security scheme. There are general permissions,
applicable to all iSM configurations, supplemented by read, write, and monitor permissions for
each individual configuration. A realm user with a role that has been granted the same
permissions as an iSM Security user should have the same level of access to console services
as the iSM user.

Changes to roles do not take effect until iSM is restarted. You cannot create the Administrator
role here. The Administrator role is built into the system, with the name "ism.admin". A user
with the ism.admin role has full access to all iSM console services.

The iWay Service Manager offers several different types of authentication realm that can be
used for console security. Security roles must be assigned to users within the realm. For more
information on how to configure each type of realm and assign roles, see Realm Based
Authentication on page 40 and Role Based Authentication on page 56.

To enable realm-based authentication for an iSM configuration, you must specify the realm to
use in the properties of that configuration, on the Servers page in the Management section of
the console.

The following table lists and describes the three conditions that must be set.

Parameter Description

Authentication Realm Specifies the realm that will be used for console
authentication for this server. Note that the realm must
be configured in the server where you intend to use it.
Select iSM Security for the original, user-based, security
scheme.

Creating or Editing a Role in the Management Section of the Console

60

Parameter Description

Console Admin ID iSM often exchanges background messages between
configurations using the console service. This parameter
specifies the user ID that should be sent with these
internal requests. This user must be valid in the
authentication realm you specify for this configuration.

Console Admin Password The password to use with the Console Admin ID for
background requests to the console service of this
configuration.

The following image shows the Console Attributes pane in the iSM Administration Console.

Changes to the authentication realm of the configuration or console administration ID will not
take effect until the console is restarted.

5. Realm-based Security in the iSM Administration Console

Security Guide 61

You can force iSM to revert to iSM Security by starting the server from the command line using
the -u switch. This is useful to correct any problems that occur while configuring realm-based
authentication.

Configuring Authentication for a Base Configuration Using a Properties File Realm

This section provides an example that demonstrates how authentication for the base
configuration can be configured using a properties file realm. The properties file realm is the
simplest authentication realm that iSM offers, and is intended for prototypes and
demonstration, not production use. A role is created for users who have read-only access to
the console, and define two users in the properties realm, an administrator, and a user with
the read only role. The properties realm in iSM and the base configuration to use the realm for
console authentication will then be configured.

1. In the left console pane of the Deployments menu, select Server Roles, and then click Add
to add a new role.

2. Provide a name for the new role (for example, ReadOnly), and then click all the Read check
boxes in the Configuration Specific Permissions section. Do not provide any other
permissions, as shown in the following image.

The properties realm uses a simple Java properties file to define users and their roles.

Configuring Authentication for a Base Configuration Using a Properties File Realm

62

3. Create the following text file:

Admin=password
Admin.role0=ism.admin
User=password
User.role0=ReadOnly

4. Save the properties file as consoleauth.properties.

This creates the following two users:

Admin. The iSM Administrator.

User. The assigned read-only role that was just created.

The password for both users is password. For other types of realm, this step would be done
differently, using whatever tools are appropriate for the system that backs the realm. For
example, for an LDAP realm that uses Microsoft Active Directory, it would be necessary to
work with user attributes in the directory.

5. In the iSM Administration Console, create the authentication realm to use the properties
file by clicking on Authentication Realms, under Providers, of the Server menu.

6. Provide a name for the realm (for example, ConsolePropsRealm), its description, and the
location of where the consoleauth.properties file is located, as shown in the following
image.

5. Realm-based Security in the iSM Administration Console

Security Guide 63

7. Edit the server configuration so that the console will use the realm for authentication by
clicking on Management, Server Management, and selecting Servers.

The following table lists and describes the properties of the base configuration.

Parameter Value Description

Authentication Realm ConsolePropsRealm Realm that was just created.

Console Admin ID Admin The admin user in the realm.

Console Admin Password password The password assigned to the
admin user.

8. Restart the base configuration and access the iSM Administration Console.

When prompted, enter either Admin and password or User and password to log on to the
console.

Managing User Accounts

This section describes how to manage user accounts through the iWay Service Manager (iSM)
Administration Console.

Changing Passwords

Users who are logged in to the iSM Administration Console can change their password using
the Change Password facility. This facility applies only to users who are logged into the
Console Realm (default security realm) and does not apply to other security realms, such as
LDAP. To access this facility, click Change Password in the left pane under the Facilities
section, as shown in the following image.

Managing User Accounts

64

The Users page is displayed, which allows the logged in user to add to, or update their account
information, as shown in the following image.

The following table lists and describes the available parameters the logged in user can modify.

Parameter Description

Full Name Full name of the current user.

Description A brief description for the user (for example,
job title or department name).

Current Password Specify a current password for
authentication purposes.

Password Specify a new password.

Confirm Password Retype the new password for confirmation
purposes.

5. Realm-based Security in the iSM Administration Console

Security Guide 65

Accessing Configured Users

Administrators and non-administrative users that are allowed to reset passwords can access a
list of currently configured iSM users by clicking Management from the menu bar in the iSM
Administration Console, as shown in the following image.

Continue by selecting Users in the left pane under the Server Management section, as shown
in the following image.

The Users page is displayed, as shown in the following image.

This Users page is available to administrators and users that are authorized to reset
passwords. Note the Locked column that is available on this page. Accounts that are locked
are prevented from accessing iSM functionality.

Managing User Accounts

66

Password Control Parameters

Selecting an available user from the Users page displays a table containing configuration
parameters for the user account. The Account Information section of the table provides fields
to control passwords, as shown in the following image.

The following table lists and describes the available parameters in the Account Information
section.

Parameter Description

Password Permanent When this check box is selected, the user’s
password never expires.

5. Realm-based Security in the iSM Administration Console

Security Guide 67

Parameter Description

Password Duration Specifies the number of days that the
current password is valid. This field and the
Password Permanent check box are
mutually exclusive. If the Password
Permanent check box is selected, then the
Password Duration field should not contain
a value.

Account Locked When this check box is selected, the user’s
account is locked and is unable to access
iSM.

Under the User Access Rights section, the Can Reset Passwords check box is available. This
option allows the administrator to designate one or more individuals as users that have the
capability to reset passwords.

Users that are provided with this privilege can only reset another user’s password and nothing
else.

Non-Administrative Users

Users with the Can Reset Passwords privilege, will see a list of users that are locked out, as
well as their own user ID when clicking Management from the menu bar in the iSM
Administration Console, and then selecting Users in the left pane under the Server
Management section.

Managing User Accounts

68

In the following example, a sample user tarzan was granted with the Can Reset Passwords
privilege.

When selecting the tester user, the following screen is displayed.

Clearing the Account Locked check box will now allow the tester user to log on to iSM for the
remainder of the current day. That user must change their password at some point during the
current day. Otherwise, they will be locked out again on the following day.

5. Realm-based Security in the iSM Administration Console

Security Guide 69

Locked Accounts

If a user’s account is locked by the administrator, or there were too many attempts to log in to
iSM with invalid credentials, the user will see the following message displayed.

If a user enters their password incorrectly five times, their account will be temporarily locked
for five minutes. After five minutes, the user can enter their password once again.

Managing User Accounts

70

Chapter6
Security Services

This section describes several security-related services, that can be used in a secure
application. Not all security-related services are discussed here. For example, S/MIME
services are documented in the iWay Service Manager Component and Functional
Language Reference Guide along with many more general services available to
applications.

In this chapter:

OAuth 1.0 Authentication Service

OAuth 2.0 Authentication Service

Insert WSSE Timestamp Service

Insert WSSE Token Service

Insert SAML Assertion Service

XML Digital Signature Create Service

XML Digital Signature Verify Service

XAdES Digital Signature Create Service

XAdES Digital Signature Verify Service

Authenticate/Impersonate Service

OAuth 1.0 Authentication Service

Syntax:

com.ibi.agents.XDOAuth1Agent

Description:

This service creates the HTTP Authorization header for OAuth 1.0a as specified in RFC5849.
This RFC describes a 3-legged protocol where the user authorizes the client application to
access a protected resource hosted by a service provider.

Security Guide 71

The OAuth 1.0 Authentication supports a variant called the 0-legged protocol where the request
is signed without the user credentials. The signature is computed using just the consumer key
and the consumer secret. These credentials are obtained once when the application
programmer registers his client application with the service provider during development. This
service assumes the consumer secret is a private key.

Parameters:

The following table lists and describes the parameters for the OAuth 1.0 Authentication
service.

Parameter Description

HTTPS URL Request URL used in the computation of the
Signature Base String.

HTTP Method HTTP Method used in the computation of the
Signature Base String. Selecting POST will also
cause the current document to be hashed to
produce the oauth_body_hash.

Header Namespace Special register namespace where the Authorization
HTTP header is stored. If not supplied, the default
namespace will be used.

Client ID The consumer key of the client credentials.

KeyStore Provider Provider for the keystore containing the client private
key.

Private Key Alias Alias of the private key within the keystore.

Private Key Password Password for the private key. If left blank, the
password for accessing the keystore will be used.

The OAuth Authentication service only creates the Authorization header. The HTTP request
must be sent in a separate step, usually with the NHTTP Emit service.

OAuth 1.0 Authentication Service

72

The HTTPS URL and HTTP Method parameters are used in the Signature Base String. They
must match the Target URL and Action Method of the NHTTP Emit service. The URL scheme
must be HTTPS because an SSL connection is needed to protect the information that is
passed in clear. Choosing the POST method also instructs the service to compute a hash of
the entity body to be part of the signature. This algorithm was specified by Google in its OAuth
Request Body Hash extension.

The Authorization header will be stored in the specified Header Namespace. This parameter
should match the Request Header Namespace in the NHTTP Emit Agent. This will ensure that
the header is sent with the request. It is possible to use different namespaces, as long as the
Authorization register is copied to the Request Header Namespace before the request is sent.

The Client ID is the consumer key supplied by the service provider when the developer
registered the client application with the service provider. This serves as the user name for the
client application. The service provider uses the client ID to retrieve the public key to validate
the signature.

The KeyStore Provider is the name of the provider that holds the client private key. The Private
Key Alias and Private Key Password are the Alias and Password for the private key. This key is
used as the consumer secret when signing the Authorization header.

The output document is the same as the input document.

For the POST method, the document contains the same data but it will be stored as bytes if it
was not already. This is to guarantee the document will not be altered before it is sent
because any change to the document would invalidate the signature.

Edges:

The following table lists and describes the edges that are returned by the OAuth Authentication
service.

Edge Description

success The Authorization header was successfully created.

fail_parse An iFL expression could not be evaluated.

fail_operation The operation could not be completed successfully.

6. Security Services

Security Guide 73

Example 1

This example shows the creation of an OAuth 1.0a Authorization header for a GET method. The
following table lists the parameter values for the service.

Parameter Value

HTTPS URL https://sandbox.api.mastercard.com/atms /v1/atm?
Format=XML&PageOffset=0&PageLength=10&
PostalCode=46312&Country=USA

HTTP Method GET

Header Namespace hdrns

Client ID DKB0vGSHs4r1Vv308yObMj4QhhJkIMP5G
3a14KmEa7f96b5e!414a78536b4a6f6272634a41446e
4566483851625a7a413d

KeyStore Provider keyprov

Private Key Alias key1

Private Key Password key1pass

This assumes key1 is the alias of a private key entry in the KeyStore provider keyprov. The
service will compute the following Signature Base String. The oauth_nonce and
oauth_timestamp will obviously change each time the service executes.

GET&https%3A%2F%2Fsandbox.api.mastercard.com%2Fatms%2Fv1%2Fat
m&Country%3DUSA%26Format%3DXML%26PageLength%3D10%26PageOffset%3D0
%26PostalCode%3D46312%26oauth_consumer_key%3DDKB0vGSHs4r1Vv308yObMj4QhhJ
kIMP5G3a14KmEa7f96b5e%2521414a78536b4a6f6272634a41446e4566483851625a7a41
3d%26oauth_nonce%3D180284899533025%26oauth_signature_method%3DRSA
SHA1%26oauth_timestamp%3D1396020436%26oauth_version%3D1.0

The service will store the following header value in the hdrns. Authorization special register.
The oauth_signature changes every time the service is executed because the oauth_nonce and
oauth_timestemp varies.

OAuth 1.0 Authentication Service

74

https://sandbox.api.mastercard.com/atms/v1/atm?Format=XML&PageOffset=0&PageLength=10&PostalCode=46312&Country=USA
https://sandbox.api.mastercard.com/atms/v1/atm?Format=XML&PageOffset=0&PageLength=10&PostalCode=46312&Country=USA
https://sandbox.api.mastercard.com/atms/v1/atm?Format=XML&PageOffset=0&PageLength=10&PostalCode=46312&Country=USA

OAuth
oauth_signature="JjBI1gi5EMHwcihnCyK0RX7UzCC2SCtplutEjUgUXaI2nhGd4IR3L7b
WMtpJKkyUnR667lpkI7zqbM3oR3CHc2%2FgxPerD%2FSDGibHTAcTHCfV9%2F0xBVzv%2Fzo
1egU4CEqjZGSeIAeJKQYOflKSrfX8ken0MsXwXv5s9TLQuO8pRPwCfrqgrmVa%2FHhlzRxU7
pEv2kpJn4opG3Cvn01aKlotztxG8u476aEydFq03emqjVh8GMArtGDt8RhJqisJ0OB9SsaWU
K%2FsV%2BQtvghmX7G0pyQ6hLJUa3NSqlINU2k19cLOhUEnylDVD62sTZGrPe9%2B3zKLj%2
BX77eGLFKrDqOxk9w%3D%3D",oauth_version="1.0",oauth_nonce="18028489953302
5",oauth_signature_method="RSASHA1",oauth_consumer_key="DKB0vGSHs4r1Vv30
8yObMj4QhhJkIMP5G3a14KmEa7f96b5e%21414a78536b4a6f6272634a41446e456648385
1625a7a413d",oauth_timestamp="
1396020436"

If the Request Header Namespace is hdrns in the NHTTP Emit service, this will add the
following HTTP header to the HTTP request.

Authorization: OAuth
oauth_signature="JjBI1gi5EMHwcihnCyK0RX7UzCC2SCtplutEjUgUXaI2nhGd4IR3L7b
WMtpJKkyUnR667lpkI7zqbM3oR3CHc2%2FgxPerD%2FSDGibHTAcTHCfV9%2F0xBVzv%2Fzo
1egU4CEqjZGSeIAeJKQYOflKSrfX8ken0MsXwXv5s9TLQuO8pRPwCfrqgrmVa%2FHhlzRxU7
pEv2kpJn4opG3Cvn01aKlotztxG8u476aEydFq03emqjVh8GMArtGDt8RhJqisJ0OB9SsaWU
K%2FsV%2BQtvghmX7G0pyQ6hLJUa3NSqlINU2k19cLOhUEnylDVD62sTZGrPe9%2B3zKLj%2
BX77eGLFKrDqOxk9w%3D%3D",oauth_version="1.0",oauth_nonce="18028489953302
5",oauth_signature_method="RSASHA1",oauth_consumer_key="DKB0vGSHs4r1Vv30
8yObMj4QhhJkIMP5G3a14KmEa7f96b5e%21414a78536b4a6f6272634a41446e456648385
1625a7a413d",oauth_timestamp="1396020436"

Example 2

This example shows the creation of an OAuth 1.0a Authorization header for a POST method.
The following table lists the parameter values for the service.

Parameter Value

HTTPS URL https://sandbox.api.mastercard.com/fraud/merchant/v1/
termination-inquiry?
Format=XML&PageLength=10&PageOffset=0

HTTP Method POST

Header Namespace hdrns

Client ID DKB0vGSHs4r1Vv308yObMj4QhhJkIMP5G3
a14KmEa7f96b5e!414a78536b4a6f6272634a41446e4
566483851625a7a413d

KeyStore Provider keyprov

6. Security Services

Security Guide 75

https://sandbox.api.mastercard.com/fraud/merchant/v1/termination-inquiry?Format=XML&PageLength=10&PageOffset=0
https://sandbox.api.mastercard.com/fraud/merchant/v1/termination-inquiry?Format=XML&PageLength=10&PageOffset=0
https://sandbox.api.mastercard.com/fraud/merchant/v1/termination-inquiry?Format=XML&PageLength=10&PageOffset=0

Parameter Value

Private Key Alias key1

Private Key Password key1pass

The following input document is the parsed XML document:

<ns2:TerminationInquiryRequest xmlns:ns2="http://mastercard.com/
termination"><AcquirerId>1996
</AcquirerId><TransactionReferenceNumber>1</TransactionReferenceNumber>
<Merchant><Name>TEST</Name><DoingBusinessAsName>TEST
</DoingBusinessAsName><PhoneNumber>5555555555</PhoneNumber>
<NationalTaxId>1234567890</NationalTaxId><Address><Line1>5555 Test Lane
</Line1><City>TEST</City><CountrySubdivision>XX</CountrySubdivision>
<PostalCode>12345</PostalCode><Country>USA</Country></Address>
<Principal><FirstName>John</FirstName><LastName>Smith</LastName>
<NationalId>1234567890</NationalId><PhoneNumber>5555555555</PhoneNumber>
<Address><Line1>5555 TestLane</Line1><City>TEST</City><CountrySubdivision>XX
</CountrySubdivision><PostalCode>12345</PostalCode><Country>USA
</Country></Address><DriversLicense><Number>1234567890</Number>
<CountrySubdivision>XX</CountrySubdivision></DriversLicense></Principal>
</Merchant></ns2:TerminationInquiryRequest>

The service will compute the following Signature Base String. Notice the extra attribute
oauth_body_hash compared to Example 1.

POST&https%3A%2F%2Fsandbox.api.mastercard.com%2Ffraud%
2Fmerchant%2Fv1%2Fterminationinquiry&Format%3DXML%26PageLength%3D10%
26PageOffset%3D0%26oauth_body_hash%3Dh3%252BhLMkT%252B3pBvRolKEc95fobEB8
%253D%26oauth_consumer_key%3DDKB0vGSHs4r1Vv308yObMj4QhhJkIMP5G3a14KmEa7f
96b5e%2521414a78536b4a6f6272634a41446e4566483851625a7a413d%26oauth_nonce
%3D180286176383600%26oauth_signature_method%3DRSA-SHA1%26oauth_timestamp
%3D1396020438%26oauth_version%3D1.0

The service will store the following header value in the hdrns Authorization special register. The
oauth_signature, oauth_nonce, and oauth_timestamp will change every time the service is
executed.

OAuth
oauth_signature="GSgJ6wUiYDznurpspn2ztn9PZeuXIBy4LZZHOSuMQrQ8OskwdWdaX0i
UXfNELxEQUniy6z5b2c06yVCut4XoYtV5XJaYnoG78bqkJ3LLVBqZ%2Brv%2F%2FTbIQmz0c
enMAinlR09QeduIHV7gPGqd%2FBi9Rkj%2BHnxI5bLNGn0nQoOie%2BSNUAPCjnn2Ydoj44l
Sufmur6N2U7paJAuEIfp3VANbLwCI%2Bts5EBr3ecCn7eEqbuQMzs8hW2c%2FdzZqoOvyEda
O86SVcTX9vT5XI8V%2FRluupobCRy8xSuxubnCJrf5USfT%2FB5rudqNkHW0%2BmtE8hxVLI
L9v2dKPSRxtqsU75GsrgA%3D%3D",oauth_body_hash="h3%2BhLMkT%2B3pBvRolKEc95f
obEB8%3D",oauth_version="1.0",oauth_nonce="180286176383600",oauth_signat
ure_method="RSASHA1",oauth_consumer_key="DKB0vGSHs4r1Vv308yObMj4QhhJkIMP
5G3a14KmEa7f96b5e%21414a78536b4a6f6272634a41446e4566483851625a7a413d",
oauth_timestamp="1396020438"

OAuth 1.0 Authentication Service

76

The output document is the same as the input but the data is now stored as bytes.

If the Request Header Namespace is hdrns in the NHTTP Emit service, this will add an
Authorization header to the HTTP request.

OAuth 2.0 Authentication Service

Syntax:

com.ibi.agents.XDOAuth2Agent

Description:

This service emits an HTTPS request authenticated by OAuth 2.0 using the credentials of a
Google service account.

OAuth 2.0 is described in RFC6749 and RFC6750. It is an authorization framework that
enables an application to obtain access to an HTTP resource. The role of the client and the
resource owner are separate. The client does not use the resource owner credentials. Instead,
it requests an access token from a trusted authorization server. The client presents the token
together with the request to the resource server which grants access if the token is valid.

The OAuth 2.0 Authentication service manages the creation and renewal of access tokens by
communicating with the authorization server. If it obtains a valid access token, it incorporates
the token with the outgoing HTTPS request to make the authenticated call.

When OAuth 2.0 is used interactively, the user is often redirected to a consent screen to enter
his credentials. Since the iSM service operates in a server-to-server scenario, there is no
consent screen involved. Instead, the client provides its credentials with the private key
associated with a Google service account. The authorization server will be accessed at the
same location as the resource server.

When obtaining a token, the client must specify the scope of the access requested. For
example, there could be a scope for read-only and another for read-write permissions. It is also
possible to request multiple scopes in a single access token.

The scopes are not standardized. The resource servers are free to define the scopes that
make sense for their application. The documentation of the resource server API will make it
clear which OAuth 2.0 scopes it supports. It remains the responsibility of the application
designer to request and use the appropriate scopes.

Parameters:

The following table lists and describes the parameters for the OAuth 2.0 Authentication
service.

6. Security Services

Security Guide 77

Parameter Description

HTTP Client Provider HTTP Client provider that manages connections for this
emitter.

Destination URL URL where the request will be addressed. The URL should
be fully specified, including the HTTPS scheme.

HTTP Method POST sends the current document as a request entity. GET
and HEAD will send a request to the configured URL.

Content Type Content type for the HTTP request to be sent by this
emitter.

Request Header Namespace Special register namespace from which HTTP headers for
the outgoing request will be taken. Select Default
Namespace to send the HDR type registers with no
namespace prefix, or supply a namespace prefix here.
None means that no special registers will be sent as HTTP
headers.

Response Header
Namespace

Special register namespace into which HTTP headers from
the incoming response will be saved. Select Default
Namespace to create special registers with no namespace
prefix, or supply a namespace prefix here.

Scopes Determines which services the application requests
access to. Select one from the list or enter a space-
separated list of scopes.

Project ID Value of the x-goog-project-id header.

Service Account Email Email address of the service account.

KeyStore Provider Provider for the keystore containing the service account
private key.

Private Key Alias Alias of the service account private key within the keystore.

Private Key Password Password for the private key. If left blank, the password for
accessing the keystore will be used.

OAuth 2.0 Authentication Service

78

The HTTP Client provider can be defined on the pooling providers page in the iWay Service
Manager console. Google recommends that OAuth 2.0 should always be used with HTTPS,
therefore the HTTP Client provider should specify an SSLContext Provider.

The authenticated request will be sent to the Destination URL. The service will access the
authorization server at the same location to obtain access tokens. The HTTP method specifies
the type of request: GET, PUT, POST, HEAD, PATCH or DELETE. The Content Type parameter
specifies the content type of the authenticated request.

If additional headers are needed, they can be declared as HDR registers in the Request
Header Namespace. The default value is none, which means there is no Request Header
Namespace and no extra headers are added.

The headers of the HTTP response are stored as special registers in the specified Response
Header Namespace.

The Scopes parameter specifies the access scope requested from the authorization server.
The access token returned will grant those scopes. For example, if the scope in the token is
read-only-access and a write operation is attempted, the resource server will reject the call
because the scope is not sufficient. The scopes are application specific. For more information,
see the resource server API documentation to learn which scopes it supports.

The Project ID is optional. When present, it specifies the value of the x-goog-project-id header.
In the cloud platform of Google, a Project consists of a set of users, a set of APIs, and billing,
authentication, and monitoring settings for those APIs.

The Service Account Email acts like a user name for a service account. It looks like an email
address but there is no actual email involved. The credential for the service account is a
private key. The KeyStore Provider is the name of the iSM keystore provider that holds the
private key. The Private Key Alias and the Private Key Password are the alias and password of
the private key entry within the Keystore.

Edges:

The following table describes the edges that are returned by the OAuth 2.0 Authentication
Service.

Edge Description

Success The request message was successfully sent and the
response received.

fail_parse An iFL expression could not be evaluated.

6. Security Services

Security Guide 79

Edge Description

fail_operation The operation could not be completed successfully.

Example:

This example shows how to retrieve a document from the Google Cloud Storage using the
OAuth 2.0 Authentication Service.

Google Cloud Storage is a service to store data in the cloud and retrieve it later. It has a
RESTful API, authenticated with OAuth 2.0. The equivalent of a file is called an object. Objects
are stored in folders called buckets. Buckets are like directories, except they are not
hierarchical. Every bucket exists in a single namespace shared by all users of the service. The
slash (/) character is invalid in a bucket name but is accepted in an object name.

The Google Cloud platform supports multiple varieties of credentials. For server to server
applications, a service account must be used. This is a name associated with a public key.
The client proves his identity by encrypting with the private key which is kept secret. Service
accounts are tied to a specific Google project. They are created in the Google Developer
Console. Google chooses the service account name and creates the public-private key pair
automatically. The private key is downloaded at the time the service account is created.

The Google Developer Console may change without notice. Proceed with the following steps:

From the following website, https://console.developers.google.com:

1. Sign in with your Google account or create a new google account on the sign-in page if you
do not already have one. This is your regular Google account, not a service account yet.

2. Create a new Google project, specify the project name and the project ID, and then write
down the project ID.

3. In the left menu, select APIs & auth and then click on APIs. Ensure that the Google Cloud
Store is set to ON.

4. In the left menu, select APIs & auth, click Consent. and then proceed to the next step. The
consent screen is not used in this example, but it must be selected and meet the
requirements of Google.

5. Enter any Product Name and click Save.

6. In the left menu, select APIs & auth, click Credentials, and select Create new Client ID.

7. In the dialog that appears, select Service Account and click Create client ID. This will
download a PKCS12 Keystore containing the private key of this service account.

8. Save the keystore in a convenient location and write down the keystore password shown on
the screen, for example, notasecret.

OAuth 2.0 Authentication Service

80

https://console.developers.google.com

9. Record the email address of the service account shown on the screen. The email address
will look similar to the following:

298643775104-81neakmsco3agrv956tl8inu8ci7oedl@developer.gserviceaccount.c
om

10.In the left menu, select Billing & settings, then enable the billing, and fill in the financial
information.

11.In the left menu, click Storage, select Cloud Storage, Storage Browser and then click Create
a bucket, and enter the bucket name. This must be a unique name among all buckets in
the Google Cloud Storage. A good practice is to use your bucket name with your domain
name changing the period with a dash. For example: test99-example-com

12.Click Upload and select a file to store in the Google Cloud Storage, then write down the
name of the bucket and the file name in the bucket.

13.Go to https://pki.google.com and download the CA certificate for Google Internet Authority
G2. This will be used to create a truststore.

The following information will be available:

The project ID.

The Keystore containing the private key.

The Keystore password.

The service account email address.

The bucket name.

The object name in the bucket.

The certificate for Google Internet Authority G2.

14.Import the Google CA certificate into a Java Keystore with the following command. This
assumes the certificate is stored in a file called GIAG2.cer

keytool -import -trustcacerts -file GIAG2.cer -alias giag2 -keystore
GIAG2.jks -storepass secret -storetype JKS

15.In the left menu of the iWay Service Manager console, click Security Providers, and then
click New to create a new Keystore provider to be used as the truststore.

The following table lists the parameters and values of the Keystore provider.

Parameter Value

Name giag2

6. Security Services

Security Guide 81

https://pki.google.com%20

Parameter Value

Description Google Internet Authority G2

Keystore Path to GIAG2.jks

Keystore Password secret

Keystore type JKS

KeyStore JCE Provider SUN

16.Click New again to create another Keystore provider for the private key of the service
account.

Parameter Description

Name cloudkey

Keystore Path to the keystore containing the service account
private key.

Keystore Password The keystore password chosen by Google, for example,
notasecret.

Keystore type PKCS12-DEF

KeyStore JCE Provider BC

17.Create an SSLContext provider to be used by the HTTPS connections, and accept all default
parameters except the following:

Parameter Description

Name GoogleSSL

Keystore Provider Not used but required. You can enter giag2

Truststore Provider giag2

Security Protocol TLS

18.Create an HTTP Client provider to manage connections to the Google Cloud Storage by
clicking Pooling Providers in the left menu of the iWay Service Manager console, and then
clicking New.

OAuth 2.0 Authentication Service

82

19.Accept all default parameters except those found in the following table:

Parameter Description

Name GoogleClient

SSL Context Provider GoogleSSL

20.In your process flow, create an instance of the OAuth 2.0 Authentication Service configured
as shown in the following table. Replace the values in angle brackets with the actual value
obtained in the Google Developers console.

Parameter Description

HTTP Client Provider GoogleClient

Destination URL URL of the object in the Google Cloud Storage.

HTTP Method GET

Scopes https://www.googleapis.com/auth/
devstorage.read_only

Project ID The Google Project ID.

Service Account Email The service account email address chosen by Google.

KeyStore Provider cloudkey

Private Key Alias privatekey

Private Key Password Password chosen by google, for example, notasecret.

The Destination URL can take one of the following forms:

https://<bucketname>.storage.googleapis.com/<objectname>

https://storage.googleapis.com/<bucketname>/<objectname>

For example, if the bucket name is mybucket-example-com, and the object name is root.xml,
the destination URL can be one of two equivalent URLs:

https://mybucket-example-com.storage.googleapis.com/root.xml

https://storage.googleapis.com/mybucket-example-com/root.xml

6. Security Services

Security Guide 83

https://www.googleapis.com/auth/devstorage.read_only
https://www.googleapis.com/auth/devstorage.read_only

This instance of the OAuth 2.0 Authentication Service accepts any input document since
the GET method does not send a request entity in the body of the message. The output
document will be the contents of the object found in the Google Cloud Storage or an error
document.

Insert WSSE Timestamp Service

Syntax:

com.ibi.agents.XDInsertWSSETimestampAgent

Description:

This service is used to generate a WSSE Timestamp.

Parameters:

The following table lists and describes the parameters for the Insert WSSE Timestamp service.

Parameter Name Description

XML Namespace Provider Provider for the mapping between XML namespace
prefix and namespace URI. If left blank, the XPath
expression that is specified for the Timestamp Parent
Element parameter cannot contain namespaces.

XPath Version Determines which implementation of XPath should be
used. You can select the iWay implementation of XPath,
an external XPath implementation, or the default. The
default option selects the XPath implementation that is
specified in the General Settings area of the iSM
Administration Console.

Create Parent Element Determines whether the parent element is created if it
is missing. Select true or false (default) from the drop-
down list.

Insert WSSE Timestamp Service

84

Parameter Name Description

Timestamp Parent Element Path to the element where the timestamp will be
inserted. The default value is:

/soapenv:Envelope/soapenv:Header/
wsse:Security

If the Create Parent Element parameter is set to true,
then the expression must adhere to Restricted XPath
syntax, otherwise the expression may adhere to the full
syntax of the XPath engine selected by the XPath
Version parameter.

Restricted XPath has the form /step1/step2/...
where a step has the form ns:elem[predicate] or a
pair of consecutive steps that has the form *[1]/
self::ns:elem[predicate] to indicate the element
must be the first child of its parent. The namespace
prefixes are optional, but if present they must be
declared in the XML Namespace provider. The predicate
is optional, but when present it has the form
[@ns1:attr1='val1' and @ns2:attr2='val2'

and ...]. If no element matches the Restricted XPath
expression and the Create Parent Element parameter is
set to true, then the necessary elements and attributes
will be created such that the expression would match
successfully.

WSSE Timestamp Id The value of the Timestamp ID attribute. Subsequent
services can retrieve this value in the
wsse_timestamp_id special register.

Expiration Period The time period after which the timestamp will expire. If
left blank, the timestamp will never expire.

Use the following format:

[xxh][xxm]xx[s]

For example, 1m30s is 90 seconds.

6. Security Services

Security Guide 85

Edges:

The following table lists and describes the edges that are returned by the Insert WSSE
Timestamp service.

Edge Description

success The WSSE Timestamp was successfully inserted.

fail_parse An iFL or XPath expression could not be evaluated.

fail_operation The WSSE Timestamp could not be inserted.

The Created time is always the current time. The Expires Time is the current time plus the
given Expiration Period. If the Expiration Period is left blank, the Expires element will not
appear and the timestamp will never expire. The location where to insert the timestamp is
given by an XPath expression that is specified in the Timestamp Parent Element parameter.
The XPath expression can contain namespace prefixes if the optional XML Namespace Map
Provider is specified. When the Create Parent Element parameter is true, the parent element
will be created if needed, but the XPath expression must adhere to the Restricted XPath
syntax. When the Create parent Element parameter is false, the parent element must exist but
the expression may adhere to the full syntax of the XPath engine selected by the XPath Version
parameter. The optional WSSE Timestamp Id parameter will generate a wsu:Id attribute if
specified. The Id is saved in the wsse_timestamp_id special register. This can be used to refer
to the Timestamp in an XML Digital Signature Reference using the URL expression
#_sreg(wsse_timestamp_id).

The following example shows the creation of an WSSE Timestamp with an expiration period of
90 seconds. The following table lists the parameter values that were used.

Parameter Names Value

XML Namespace Provider

XPath Version default

Create Parent Element true

Timestamp Parent Element

WSSE Timestamp Id mytimestampid

Insert WSSE Timestamp Service

86

Parameter Names Value

Expiration Period 1m30s

A sample input document is shown as follows (indented for display purposes only):

The resulting document shows the addition of the Timestamp in the SOAP header block
(indented for display purposes only):

Insert WSSE Token Service

Syntax:

com.ibi.agents.XDInsertWSSETokenAgent

6. Security Services

Security Guide 87

Description:

This service is used to generate a WSSE Binary Security Token containing an X509 certificate.

Parameters:

The following table lists and describes the parameters for the Insert WSSE Token service.

Parameter Name Description

KeyStore Provider Provider for the keystore containing the key.

Key Alias Alias for the key to insert into the security token.

XML Namespace Provider Provider for the mapping between XML namespace
prefix and namespace URI. If left blank, elements in
the security token will use the default namespace.

XPath Version Determines which implementation of XPath should
be used. You can select the iWay implementation of
XPath, an external XPath implementation, or the
default. The default option selects the XPath
implementation that is specified in the General
Settings area of the iSM Administration Console.

Create Parent Element Determines whether the parent element is created
if it is missing. Select true or false (default) from
the drop-down list.

Insert WSSE Token Service

88

Parameter Name Description

Security Token Parent Element Path to the element where the security token will be
inserted. The default value is:

/soapenv:Envelope/soapenv:Header/
wsse:Security

If the Create Parent Element parameter is set to
true, then the expression must adhere to Restricted
XPath syntax, otherwise the expression may adhere
to the full syntax of the XPath engine selected by
the XPath Version parameter.

Restricted XPath has the form /step1/step2/...
where a step has the form ns:elem[predicate]
or a pair of consecutive steps that has the form
*[1]/self::ns:elem[predicate] to indicate
the element must be the first child of its parent.
The namespace prefixes are optional, but if present
they must be declared in the XML Namespace
provider. The predicate is optional, but when
present it has the form [@ns1:attr1='val1'
and @ns2:attr2='val2' and ...]. If no
element matches the Restricted XPath expression
and the Create Parent Element parameter is set to
true, then the necessary elements and attributes
will be created such that the expression would
match successfully.

WSSE Security Token Id The value of the BinarySecurityToken ID attribute. If
left blank, the default value is x509_signer.
Subsequent services can retrieve this value in the
wsse_token_id special register.

Edges:

6. Security Services

Security Guide 89

The following table lists and describes the edges that are returned by the Insert WSSE Token
service.

Edge Description

success The BinarySecurityToken was successfully inserted.

fail_parse An iFL or XPath expression could not be evaluated.

fail_operation The BinarySecurityToken could not be inserted.

The WSSE Binary Security Token can later be referred to by an XML Digital Signature KeyInfo
element and signed like any other XML content. The Keystore Provider and Key Alias specify
which certificate will appear in the Security Token. There is no password to enter because you
are only retrieving the public certificate corresponding to this private key. The location where to
insert the Binary Security Token is given by an XPath expression specified in the Security Token
Parent Element parameter. The XPath expression can contain namespace prefixes if the
optional XML Namespace Map Provider is specified. When the Create Parent Element
parameter is set to true, the parent element will be created if needed, but the XPath
expression must adhere to the Restricted XPath syntax. When the Create Parent Element
parameter is set to false, the parent element must exist but the expression may adhere to the
full syntax of the XPath engine selected by the XPath Version parameter.

The optional WSSE Security Token Id parameter is used to generate a wsu:Id attribute on the
wsse:BinarySecurityToken element. The Id is saved in the wsse_token_id special register. This
can be used to refer to the security token in an XML Digital Signature Reference using the URL
expression #_sreg(wsse_token_id). It can also be used to generate a KeyInfo/
SecurityTokenReference with the Token Id expression _sreg(wsse_token_id).

The following example shows the creation of Binary Security Token. The following table lists the
parameter values that were used.

Parameter Name Value

KeyStore Provider ksprov

Key Alias alias1

XML Namespace Provider

XPath Version default

Insert WSSE Token Service

90

Parameter Name Value

Create Parent Element true

Security Token Parent Element

WSSE Security Token Id tokenid

This assumes there is a private key entry with alias alias1 in the keystore specified by the
KeyStore provider ksprov.

A sample input document is shown as follows (indented for display purposes only):

The resulting output document shows the addition of the Binary Security Token in the SOAP
header block (indented for display purposes only):

Insert SAML Assertion Service

Syntax:

com.ibi.agents.XDInsertSAMLAssertionAgent

Description:

6. Security Services

Security Guide 91

This service is used to generate a WSSE SecurityTokenReference containing an embedded
SAML assertion.

Parameters:

The following table lists and describes the parameters for the Insert SAML Assertion service.

Parameter Name Description

XML Namespace Provider Provider for the mapping between XML namespace
prefix and namespace URI. If left blank, elements in
the security token will use the default namespace.

XPath Version Determines which implementation of XPath should be
used. You can select the iWay implementation of
XPath, an external XPath implementation, or the
default. The default option selects the XPath
implementation that is specified in the General
Settings area of the iSM Administration Console.

Create Parent Element Determines whether the parent element is created if it
is missing. Select true or false (default) from the drop-
down list.

Insert SAML Assertion Service

92

Parameter Name Description

Security Token Parent Element Path to the element where the security token
reference will be inserted. The default value is:

/soapenv:Envelope/soapenv:Header/
wsse:Security

If the Create Parent Element parameter is set to true,
then the expression must adhere to Restricted XPath
syntax, otherwise the expression may adhere to the
full syntax of the XPath engine selected by the XPath
Version parameter.

Restricted XPath has the form /step1/step2/...
where a step has the form ns:elem[predicate] or
a pair of consecutive steps that has the form *[1]/
self::ns:elem[predicate] to indicate the
element must be the first child of its parent. The
namespace prefixes are optional, but if present they
must be declared in the XML Namespace provider.
The predicate is optional, but when present it has the
form [@ns1:attr1='val1' and
@ns2:attr2='val2' and ...]. If no element
matches the Restricted XPath expression and the
Create Parent Element parameter is set to true, then
the necessary elements and attributes will be created
such that the expression would match successfully.

WSSE Security Token Reference Id The value of the SecurityTokenReference ID Attribute.
Subsequent services can retrieve this value in the
saml_token_id special register.

SAML Assertion Id The value of the SAML Assertion ID Attribute.
Subsequent services can retrieve this value in the
saml_assertion_id special register.

SAML Issue Instant The value of the SAML IssueInstant attribute.
Subsequent services can retrieve this value in the
saml_issue_instant special register.

SAML Issuer The value of the SAML Issuer attribute.

6. Security Services

Security Guide 93

Parameter Name Description

SAML Major Version The value of the SAML MajorVersion attribute. The
default value is 1.

SAML Minor Version The value of the SAML MinorVersion attribute. The
default value is 1.

SAML Authentication Instant The value of the SAML AuthenticationInstant attribute.

SAML Authentication Method The value of the SAML AuthenticationMethod
attribute.

SAML Name Identifier Format The value of the SAML NameIdentifier Format
attribute.

SAML Name Identifier The value of the SAML NameIdentifier element.

SAML Subject Confirmation
Method

The value of the SAML ConfirmationMethod element.

Edges:

The following table lists and describes the edges that are returned by the Insert SAML
Assertion service.

Edge Description

success The SAML assertion was successfully inserted.

fail_parse An iFL or XPath expression could not be evaluated.

fail_operation The SAML assertion could not be inserted.

Insert SAML Assertion Service

94

The location where to insert the Security Token Reference is given by an XPath expression
specified in the Security Token Parent Element. The XPath expression can contain namespace
prefixes if the optional XML Namespace Map Provider is specified. When the Create Parent
Element parameter is true, the parent element will be created if needed, but the XPath
expression must adhere to the Restricted XPath syntax. When the Create parent Element
parameter is false, the parent element must exist but the expression may adhere to the full
syntax of the XPath engine selected by the XPath Version parameter. The optional WSSE
Security Token Reference Id parameter is used to generate a wsu:Id attribute on the
wsse:SecurityTokenReference element. The Id is saved in the saml_token_id special register.
This can be used to refer to the security token in an XML Digital Signature Reference using the
URL expression #_sreg(saml_token_id).

The required SAML Assertion Id is used to generate a saml:AssertionId attribute on the
saml:Assertion element. The Assertion Id is saved in the saml_assertion_id special register for
later reference. The required SAML Issue Instant is used to generate a saml:IssueInstant
attribute on the saml:Assertion element. The issue instance is saved in the
saml_issue_instant special register. As per the SAML schema, the following parameters are all
required: SAML Issuer, SAML Major Version, SAML Minor Version, SAML Authentication
Instant, SAML Authentication Method, SAML Name Identifier Format, SAML Name Identifier,
and SAML Subject Confirmation Method. The Major and Minor Versions both default to 1.

The following sample shows a SAML Assertion created by the service. The following table lists
the parameter values that were used.

Parameter Name Value

XML Namespace Provider

XPath Version default

Create Parent Element true

Security Token Parent Element

WSSE Security Token Reference Id tokenid

SAML Assertion Id _a75adf55-01d7-40cc-929f-dbd8372ebdfc

SAML Issue Instant 2007-02-26T10:11:11Z

SAML Issuer urn:tokenIssuer:sms:com

SAML Major Version 1

6. Security Services

Security Guide 95

Parameter Name Value

SAML Minor Version 1

SAML Authentication Instant 2007-02-26T10:11:00Z

SAML Authentication Method urn:oasis:names:tc:SAML:1.0:am:X509-PKI

SAML Name Identifier Format urn:oasis:names:tc:SAML:1.1:nameid-
format:X509SubjectName

SAML Name Identifier CN=Client gateway,O=Some client,C=GB

SAML Subject Confirmation Method urn:oasis:names:tc:SAML:1.1:cm:sender-
vouches

A sample input document is shown as follows (indented for display purposes only):

Insert SAML Assertion Service

96

The resulting document shows the addition of the WSSE SecurityTokenReference in the SOAP
header block (indented for display purposes only):

6. Security Services

Security Guide 97

XML Digital Signature Create Service

Syntax:

com.ibi.agents.XDXMLDSigCreateAgent

Description:

This service is used to generate an XML Digital Signature.

Parameters:

The following tables describe the parameters for the XML Digital Signature Create service.
Each table is followed by a discussion of that parameter group.

Algorithms

XML Digital Signature JCE
Provider

JCE Provider for the XMLSignatureFactory service.

Canonicalization Method Algorithm used to canonicalize the SignedInfo element
before it is digested as part of the signature operation.

Canonicalization Method
Parameters

Parameters for the Canonicalization Method. For Inclusive
Canonical XML, this is empty. For Exclusive Canonical XML,
this is a space-separated list of XML namespace prefixes.

Signature Method Signature algorithm used to convert the canonicalized
SignedInfo into the SignatureValue.

The XML Digital Signature JCE Provider selects the XML Digital Signature implementation.
Choose XMLDSig for the implementation built-in to Java, or ApacheXMLDSig for the Apache
Santuario implementation. ApacheXMLDSig is often a better choice because it is updated
more frequently and therefore is more up to date.

The Canonicalization Method is the Algorithm used to canonicalize the SignedInfo element
before it is digested as part of the signature operation. It can be the URI for Inclusive
Canonical XML with or without comments, or the URI for Exclusive Canonical XML with or
without comments. For Inclusive Canonical XML, the Canonicalization Method Parameters are
empty. For Exclusive Canonical XML, the Canonicalization Method Parameters hold a space-
separated list of XML namespace prefixes.

XML Digital Signature Create Service

98

The Signature Method is the Signature algorithm used to convert the canonicalized SignedInfo
into the SignatureValue. Notice the SHA1 algorithm is common, but is not considered secure
anymore.

Signature Key

KeyStore Provider Provider for the keystore containing the signature private
key.

Signing Key Alias Private key alias used to sign the SignedInfo.

Signing Key Password Password for the signing private key. If left blank, the
password for accessing the keystore will be used.

Enforce KeyUsage Extension If set to true, the verify certificates used for signing allow
the digitalSignature KeyUsage extension.

The KeyStore Provider is the name of the provider that holds the private key. The Signing Key
Alias and Signing Key Password are the Alias and Password for the private key. This key must
be compatible with the signature algorithm chosen in the Signature Method parameter. When
the Enforce KeyUsage Extension parameter is on, it will ensure certificates used for signing
allow the digitalSignature KeyUsage extension.

Signature Location

XML Namespace Provider Provider for the mapping between XML namespace prefix
and namespace URI. If left blank, elements in the XML
Digital Signature will use the default namespace, and XPath
expressions in the Parent and Next Sibling Paths cannot
contain namespaces.

XPath Syntax Determines which syntax level of XPath should be used. You
can select the iWay abbreviated syntax or the XPath 1.0 full
syntax. The default option selects the syntax level as set in
the General Settings area of the iSM Administration
Console.

Create Parent Element Determines whether the parent element is created if it is
missing. Select true or false (default) from the drop-down
list.

6. Security Services

Security Guide 99

Signature Location

Signature Parent Element Path to the element where the signature will be inserted. If
left blank, then the signature parent is the root element.

If the Create Parent Element parameter is set to true, then
the expression must adhere to Restricted XPath syntax,
otherwise the expression may adhere to the full syntax of
the XPath engine selected by the XPath Syntax parameter.

Restricted XPath has the form /step1/step2/... where a
step has the form ns:elem[predicate] or a pair of
consecutive steps that has the form *[1]/
self::ns:elem[predicate] to indicate the element must
be the first child of its parent. The namespace prefixes are
optional, but if present they must be declared in the XML
Namespace provider. The predicate is optional, but when
present it has the form [@ns1:attr1='val1' and
@ns2:attr2='val2' and ...]. If no element matches
the Restricted XPath expression and the Create Parent
Element parameter is set to true, then the necessary
elements and attributes will be created such that the
expression would match successfully.

Signature Next Sibling Path to the next sibling node. The signature will be inserted
before this node. If left blank, the signature is added as the
last child of the parent.

The XML Namespace Provider is optional. It is the name of the provider that gives the mapping
between XML Namespace prefixes and XML Namespace URIs. If left blank, the Signature
Parent Element and Signature Next Sibling path expressions cannot contain namespace
prefixes. The XML Namespace Provider is also used to choose a prefix for the Signature
elements. If the http://www.w3.org/2000/09/xmldsig# namespace is not found, the
generated Signature element will re-declare the default namespace to this URI.

The Signature Parent Element is an XPath expression pointing to the element where the
ds:Signature element will be inserted.

The Signature Next Sibling is an XPath expression that points to a child of the parent element.
The signature will be inserted before this node. If left blank, the signature is added as the last
child of the parent.

XML Digital Signature Create Service

100

When the Create Parent Element parameter is true, the parent element will be created if
needed, but the XPath expression must adhere to the Restricted XPath syntax. When the
Create parent Element parameter is false, the parent element must exist but the expression
may adhere to the full syntax of the XPath engine selected by the XPath VersionXPath Syntax
parameter.

Key Info

Include Issuer Serial Determines whether the X509IssuerSerial element is
included in the KeyInfo X509Data element. Select true or
false (default) from the drop-down list.

Include Subject Name Determines whether the X509SubjectName element is
included in the KeyInfo X509Data element. Select true
(default) or false from the drop-down list.

Include Certificate Chain Determines how much of the signer certificate chain is
included in the KeyInfo X509Data element. Select one of
the following values from the drop-down list:

Complete Certificate Chain {complete}

Signer Certificate Only {signer} (default)

No Certificates {none}

Include WSSE Security
Token Reference

Determines whether a WSSE SecurityTokenReference is
included in the KeyInfo element. Select true or false (default)
from the drop-down list.

WSSE Security Token Id The value of the BinarySecurityToken ID attribute referenced
by the WSSE SecurityTokenReference. If left blank, the
default value is x509_signer.

These parameters determine the content of the generated KeyInfo element. They can be used
alone or in any combinations. If none of the parameters are used, the KeyInfo element will not
appear.

The Include Issuer Serial boolean parameter determines whether a KeyInfo/X509Data/
X509IssuerSerial element is generated. This element uniquely describes the signer certificate
by listing the Issuer DN and the certificate Serial Number.

6. Security Services

Security Guide 101

The Include Subject Name boolean parameter determines whether a KeyInfo/X509Data/
X509SubjectName element is generated. This element contains the signer certificate subject
DN.

The Include Certificate Chain parameter determines how many certificates in the certificate
chain are included in the KeyInfo. The choices are: no certificates, just the signer certificate, or
all certificates. Each certificate is base64 encoded in a separate KeyInfo/X509Data/
X509Certificate element.

The Include WSSE Security Token Reference parameter determines whether a KeyInfo/
SecurityTokenReference element is generated to point to a previously generated WSSE Binary
Security Token. If on, the WSSE Security Token Id parameter specifies the Id of the existing
Binary Security Token. The InsertWSSETokenAgent is a convenient way to pre generate the
Binary Security Token. In that case, the Security Token Id can be retrieved with the expression
SREG(wsse_token_id).

ID Attributes

Signature Id The value of the Signature Id Attribute. If left blank, the
generated Signature element will not have an Id attribute.

SignatureValue Id The value of the SignatureValue Id Attribute. If left blank, the
generated SignatureValue element will not have an Id
attribute.

SignedInfo Id The value of the SignedInfo Id Attribute. If left blank, the
generated SignedInfo element will not have an Id attribute.

KeyInfo Id The value of the KeyInfo Id Attribute. If left blank, the
generated KeyInfo element will not have an Id attribute.

XML Digital Signature Create Service

102

ID Attributes

ID Attributes Space-separated list of attributes that are considered type
ID. The value of an ID attribute can be used in a same-
document reference with a URI of the form #idvalue. Each
attribute declaration has the form

ns:*/@ns1:attrib

or

@ns1:attrib

In this declaration, ns: and ns1: are optional. If used, the ns
and ns1 prefixes must be declared in the XML Namespace
Provider parameter.
The form @ns1:attrib means an attribute named attrib in
XML Namespace ns1. The form ns:*/@ns1:attrib is similar
except the attribute must also appear on an element of any
name in the XML Namespace ns. The default value is:

xml:id ds:*/@Id wsu:Id xenc:Id

The Signature Id, SignedInfo Id, SignatureValue Id and KeyInfo Id parameters specify the value
of the Id attribute on the Signature, Signature/SignedInfo, Signature/SignatureValue and
Signature/KeyInfo elements respectively. If left blank, the Id attribute will not appear.

The ID Attributes parameter is a space-separated list of attributes that are considered type ID.
The value of an attribute can be used in a same-document reference with a URI of the form
#idvalue but only if it is declared of type ID. This parameter performs this type assignment.
Each attribute declaration has the form ns:*/@ns1:attrib or @ns1:attrib where ns: and ns1:
are optional. If used, the ns and ns1 prefixes must be declared in the XML Namespace
Provider. The form @ns1:attrib means an Attribute named attrib in XML Namespace ns1. The
form ns:*/@ns1:attrib is similar except the attribute must also appear on an element of any
name in the XML Namespace ns. The default value is:

xml:id ds:*/@Id wsu:Id xenc:Id

6. Security Services

Security Guide 103

The namespace prefix actually used is not important. Only the namespace URI is used to find a
match.

Reference 1

Reference 1 URI URI to the first piece of data that will be digested and
signed. If left blank, then the whole XML document will be
digested and signed.

Reference 1 Digest Method Digest algorithm applied to the first reference data (after
Transforms are applied if specified) to yield the DigestValue.

Reference 1 Transform 1 First transform algorithm to apply to the first reference data.

Reference 1 Transform 1
Parameters

Parameters for the first transform algorithm to apply to the
first reference data. For Exclusive Canonical XML, this is a
space-separated list of XML namespace prefixes. For XSLT,
this is the name of a defined transform. For XPathFilter, this
is an XPath expression. For XPathFilter2, this is the string
intersect, subtract or union, followed by an XPath
expression. For more XPathFilter2 XPathType clauses, create
user parameters called ref1transform1parms[Z],
ref1transform1parms[Z]nsmap where Z >= 2. For STR-
Transform, this is the canonical method URI.

Reference 1 Transform 1
XML Namespace Provider

Provider for the XML Namespace Map for XPathFilter and
XPathFilter2 transforms.

Reference 1 Transform 2 Second transform algorithm to apply to the first reference
data.

Reference 1 Transform 2
Parameters

Parameters for the second transform algorithm to apply to
the first reference data. For Exclusive Canonical XML, this is
a space-separated list of XML namespace prefixes. For
XSLT, this is the name of a defined transform. For
XPathFilter, this is an XPath expression. For XPathFilter2,
this is the string intersect, subtract or union, followed by an
XPath expression. For more XPathFilter2 XPathType clauses,
create user parameters called ref1transform2parms[Z],
ref1transform2parms[Z]nsmap where Z >= 2. For STR-
Transform, this is the canonical method URI.

XML Digital Signature Create Service

104

Reference 1

Reference 1 Transform 2
XML Namespace Provider

Provider for the XML Namespace Map for XPathFilter and
XPathFilter2 transforms.

The reference URIs supported are: <empty string> for the whole XML document; #idattrib for
the same-document sub-tree rooted at the element that has an ID attribute with value idattrib;
cid:contentid for the attachment that has a Content-ID header with value <contentid>; http://
host:port/page for the resource located at this HTTP address, and possibly other URLs built-in
to Java.

The Reference 1 URI parameter is the URI to the first piece of data that will be digested and
signed. If left blank, then the whole XML document will be digested and signed.

The Reference 1 Digest Method is the digest algorithm applied to the reference data (after
Transforms are applied if specified) to yield the DigestValue. Example choices are the full URI
corresponding to sha1, sha256, or sha512 plus some others.

The Reference 1 Transform 1 is the first transform algorithm to apply to the reference data.
The Reference 1 Transform 1 Parameters contain the parameters for the transform.

The Reference 1 Transform 2 is the second transform and Reference 1 Transform 2
Parameters specify its parameters.

Reference 2

Reference 2 URI URI to the second piece of data that will be digested and
signed. If you need more references, create user
parameters named ref[X]uri, ref[X]digest, ref[X]transform[Y],
ref[X]transform[Y]parms[Z] where X >= 3, Y >= 1, Z >= 1.

For example, ref3transform2 is the second transform of the
third reference.

Reference 2 Digest Method Digest algorithm applied to the second reference data (after
Transforms are applied if specified) to yield the DigestValue.

Reference 2 Transform 1 First transform algorithm to apply to the first reference data.

6. Security Services

Security Guide 105

Reference 2

Reference 2 Transform 1
Parameters

Parameters for the first transform algorithm to apply to the
second reference data. For Exclusive Canonical XML, this is
a space-separated list of XML namespace prefixes. For
XSLT, this is the name of a defined transform. For
XPathFilter, this is an XPath expression. For XPathFilter2,
this is the string intersect, subtract or union, followed by an
XPath expression. For more XPathFilter2 XPathType clauses,
create user parameters called ref2transform1parms[Z],
ref2transform1parms[Z]nsmap where Z >= 2. For STR-
Transform, this is the canonical method URI.

Reference 2 Transform 1
XML Namespace Provider

Provider for the XML Namespace Map for XPathFilter and
XPathFilter2 transforms.

Reference 2 Transform 2 Second transform algorithm to apply to the second
reference data.

Reference 2 Transform 2
Parameters

Parameters for the second transform algorithm to apply to
the second reference data. For Exclusive Canonical XML,
this is a space-separated list of XML namespace prefixes.
For XSLT, this is the name of a defined transform. For
XPathFilter, this is an XPath expression. For XPathFilter2,
this is the string intersect, subtract or union, followed by an
XPath expression. For more XPathFilter2 XPathType clauses,
create user parameters called ref2transform1parms[Z],
ref2transform2parms[Z]nsmap where Z >= 2. For STR-
Transform, this is the canonical method URI.

Reference 2 Transform 2
XML Namespace Provider

Provider for the XML Namespace Map for XPathFilter and
XPathFilter2 transforms.

Subsequent references 2, 3, ... are similar to reference 1 except a missing reference URI
indicates the end of the list of references instead of the whole document.

The list of transforms per reference is not limited to 2. Any number of transforms can be
specified using user parameters.

The list of references is not limited to 2. Any number of references can be specified using user
parameters.

XML Digital Signature Create Service

106

The following table lists the transforms available. Some transforms have implicit parameters
and do not require any explicit parameters. Other transforms take parameters as described in
the table.

Transforms Available to Digital Signature Service

Attachment Complete
Signature Transform

http://docs.oasis-
open.org/wss/oasis-wss-
SwAProfile-1.1#Attachme
nt-Complete-Signature-
Transform

This transform indicates that both the content and selected
headers of the MIME part are referenced for signing.

The following MIME headers are to be included(when present):

Content-Description

Content-Disposition

Content-ID

Content-Location

Content-Type

This transform takes no explicit parameters.

Attachment Content
Signature Transform

http://docs.oasis-
open.org/wss/oasis-wss-
SwAProfile-1.1#Attachme
nt-Content-Signature-
Transform

This transform indicates that only the content of the MIME part
is referenced for signing. All of the MIME headers associated
with the MIME part are ignored and not included in the output
octet stream.

This transform takes no explicit parameters

Base64

http://www.w3.org/
2000/09/
xmldsig#base64

This transform decodes the Base64 encoded character data. If
the input is a node-set, then the string-value of the node-set is
decoded (ignoring the element tags, comments and processing
instructions).

This transform takes no explicit parameters.

Enveloped Signature

http://www.w3.org/
2000/09/
xmldsig#enveloped-
signature

This transform removes the Signature element from the
calculation of the signature when the signature is within the
content that it is being signed.

This transform takes no explicit parameters.

6. Security Services

Security Guide 107

http://docs.oasis-open.org/wss/oasis-wss-SwAProfile-1.1#Attachment-Content-Signature-Transform
http://docs.oasis-open.org/wss/oasis-wss-SwAProfile-1.1#Attachment-Content-Signature-Transform
http://docs.oasis-open.org/wss/oasis-wss-SwAProfile-1.1#Attachment-Content-Signature-Transform
http://docs.oasis-open.org/wss/oasis-wss-SwAProfile-1.1#Attachment-Content-Signature-Transform
http://docs.oasis-open.org/wss/oasis-wss-SwAProfile-1.1#Attachment-Content-Signature-Transform
http://www.w3.org/2000/09/xmldsig#base64
http://www.w3.org/2000/09/xmldsig#base64
http://www.w3.org/2000/09/xmldsig#base64
http://www.w3.org/2000/09/xmldsig#enveloped-signature
http://www.w3.org/2000/09/xmldsig#enveloped-signature
http://www.w3.org/2000/09/xmldsig#enveloped-signature
http://www.w3.org/2000/09/xmldsig#enveloped-signature

Transforms Available to Digital Signature Service

Exclusive Canonical XML

http://www.w3.org/
2001/10/xml-exc-c14n#

This transform is useful when message parts can be enveloped
and stripped off to construct new messages. Exclusive
Canonical XML ignores the namespace context inherited from
parent elements. This keeps the digested data constant
despite these operations.

This transform takes an optional space-separated list of XML
namespace prefixes declared in the XML Namespace provider.
These are additional prefixes to be ignored.

Exclusive Canonical XML
With Comments

http://www.w3.org/
2001/10/xml-exc-
c14n#WithComments

This transform is similar to Exclusive Canonical XML except
comments are preserved in the digested data.

This transform takes an optional space-separated list of XML
namespace prefixes declared in the XML Namespace provider.
These are additional prefixes to be ignored.

XPathFilter

http://www.w3.org/TR/
1999/REC-
xpath-19991116

This transform evaluates the XPath expression for each node in
the input node-set and keeps only the nodes where the
expression evaluated to true.

This transform takes the XPath expression in
ref[X]transform[Y]parms1 and optionally an XML Namespace
provider name in ref[X]transform[Y]parms1nsmap to declare a
namespace map.

XPathFilter2

http://www.w3.org/
2002/06/ xmldsig-filter2

This transform computes a filter node-set. The output is the
intersection of the input node-set and the filter node-set. The
filter node-set is computed by evaluating a sequence of XPath
expressions and combining their result by intersection,
subtraction or union.

Each XPathType can be declared by a pair of parameters:
ref[X]transform[Y]parms[Z] and optionally
ref[X]transform[Y]parms[Z]nsmap. ref[X]transform[Y]parms[Z]
must start with the string intersect, subtract or union, followed
by an XPath expression. ref[X]transform[Y]parms[Z]nsmap if
present must be the name of an XML Namespace Provider to
declare the Namespace map for this XPathType.

XML Digital Signature Create Service

108

http://www.w3.org/2001/10/xml-exc-c14n
http://www.w3.org/2001/10/xml-exc-c14n
http://www.w3.org/2001/10/xml-exc-c14n#WithComments
http://www.w3.org/2001/10/xml-exc-c14n#WithComments
http://www.w3.org/2001/10/xml-exc-c14n#WithComments
http://www.w3.org/TR/1999/REC-xpath-19991116
http://www.w3.org/TR/1999/REC-xpath-19991116
http://www.w3.org/TR/1999/REC-xpath-19991116
http://www.w3.org/2002/06/xmldsig-filter2
http://www.w3.org/2002/06/xmldsig-filter2

Transforms Available to Digital Signature Service

XSLTTransform

http://www.w3.org/TR/
1999/REC-xslt-19991116

This transform indicates an XSLT stylesheet must be used and
the result is what is referenced for signing.

This transform takes the name of a defined transform as
parameter (similar to what is done with the XDGenTransform
service). The defined transform must be an XSLT transform and
return XML.

Inclusive Canonical XML

http://www.w3.org/TR/
2001/REC-xml-
c14n-20010315

This transform performs typical XML Canonicalization that
attracts the xml namespace declarations from the inherited
context. This canonicalization is the default if the last
transform returns a node-set. This transform takes no
parameters.

Inclusive Canonical XML
With Comments

http://www.w3.org/TR/
2001/REC-xml-
c14n-20010315#WithCo
mments

This transform is similar to Inclusive Canonical XML except
comments are preserved.

This transform takes no parameters.

Security Token Reference
(STR) Transform

http://docs.oasis-
open.org/wss/2004/01/
oasis-200401-wss-soap-
message-
security-1.0#STR-
Transform

This transform is used to resolve security token references,
replacing the reference by the actual token in the signature.

This transform takes an optional parameter for the canonical
method URI in ref[X]transform[Y]parms1. The default is the
Exclusive Canonical XML method http://www.w3.org/
2001/10/xml-exc-c14n#.

If the canonical method selected is the Exclusive Canonical
XML method (with or without comments), then the transform
also takes an optional space-separated list of XML namespace
prefixes in the user parameter
ref[X]transform[Y]parms1parms1. These are additional prefixes
to be ignored.

If you need more references, create user parameters named ref[X]uri, ref[X]digest,
ref[X]transform[Y], ref[X]transform[Y]parms[Z] where X >= 3, Y >= 1 and Z >= 1. For example,
ref3transform2 is the second transform of the third reference.

6. Security Services

Security Guide 109

http://www.w3.org/TR/1999/REC-xslt-19991116
http://www.w3.org/TR/1999/REC-xslt-19991116
http://www.w3.org/TR/2001/REC-xml-c14n-20010315
http://www.w3.org/TR/2001/REC-xml-c14n-20010315
http://www.w3.org/TR/2001/REC-xml-c14n-20010315
http://www.w3.org/TR/2001/REC-xml-c14n-20010315#WithComments
http://www.w3.org/TR/2001/REC-xml-c14n-20010315#WithComments
http://www.w3.org/TR/2001/REC-xml-c14n-20010315#WithComments
http://www.w3.org/TR/2001/REC-xml-c14n-20010315#WithComments
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0#STR-Transform
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0#STR-Transform
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0#STR-Transform
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0#STR-Transform
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0#STR-Transform
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0#STR-Transform

When the Tree level is selected in the trace settings, the service will log the referenced data
that was actually digested.

Edges:

The following table lists and describes the edges that are returned by the XML Digital
Signature Create service.

Edge Description

success The Signature was successfully inserted.

fail_parse An iFL or XPath expression could not be evaluated.

fail_operation The Signature could not be inserted.

Examples

The examples in this section are specific to the XML Digital Signature Create service
(com.ibi.agents.XDXMLDSigCreateAgent). For your convenience, the sample input and output
documents are attached to the PDF in unabbreviated and unindented form.

For PDF-compatibility purposes, the file extension of the XMLDSigCreate.zip file is temporarily
renamed to .zap. After saving this file to your file system, you must rename this extension back
to .zip before the file can be used.

Example 1: Enveloped Signature

The following example is a very simple Signature. There is only one reference that englobes the
whole document. The signing key is the private key entry at alias alias1 within the keystore
specified by the KeyStore Provider ksprov. The KeyInfo mentions the Subject Name to help the
verifier retrieve the signer certificate from a certificate store. The Subject Name is convenient
for users but the Issuer Name and Serial Number would have made the certificate retrieval
less ambiguous. Notice the use of the Signature Next Sibling parameter to insert the Signature
before the current first child of the root element. By default, the Signature element would
appear as the last child of the root element instead. Since the default empty reference URI is
used to sign the whole document, you must also specify the Enveloped Signature transform to
avoid signing the Signature element.

XML Digital Signature Create Service

110

This table lists the parameter values for this example. Other parameters that are not listed
have their default value.

Parameter Value

XML Digital Signature JCE Provider XMLDSig

Canonicalization Method http://www.w3.org/TR/2001/REC-xml-
c14n-20010315

Signature Method http://www.w3.org/2000/09/xmldsig#rsa-
sha1

KeyStore Provider ksprov

Signing Key Alias alias1

Signing Key Password secret

Signature Next Sibling /*/*[1]

Include Subject Name true

Include Certificate Chain No Certificates

Reference 1 Transform 1 http://www.w3.org/2000/09/
xmldsig#enveloped-signature

A sample input document is shown as follows (indented for display purposes only):

6. Security Services

Security Guide 111

A sample output of the service is shown as follows (indented for display purposes only):

Example 2: Simple SOAP Message

The following example shows how to sign a SOAP message by inserting a digital signature in
the SOAP Header. The WSSE Security profile suggests to create separate References for SOAP
header blocks and the SOAP Body. Since our sample input document does not have a SOAP
Header, a single reference to the SOAP Body is all that is required. Since the Body is a
fragment of the whole document, it is recommended to apply an Exclusive Canonical XML
transform. The reference URL has the form #id, where the id is the value of an ID attribute on
the referenced node. By default, the service recognizes the following ID attributes:

xml:id ds:*/@Id wsu:Id xenc:Id

XML Digital Signature Create Service

112

In the sample input document below, the ID attribute on the SOAP Body is wsu:Id. Since this ID
attribute is recognized by default, you do not need to declare a new ID attribute in the ID
Attributes parameter. The path to the parent element of the Signature contains elements in
namespaces, so an XML Namespace provider is necessary to define the prefixes used in the
XPath expression. The SOAP Header element will be created automatically because the service
is instructed to create the parent element. The syntax *[1]/self::soapenv:Header
instructs the Restricted XPath engine to create the Header element as the first child of the
SOAP Envelope before the Body element. The signing key is the private key entry at alias
alias1 within the keystore specified by the KeyStore Provider ksprov. The KeyInfo contains the
Issuer Name and Serial Number to unambiguously specify the signing certificate. The verifier
will need to retrieve that certificate from a certificate store to verify the Signature.

It is assumed the XML Namespace provider xmlnsprov defines these prefixes:

Prefix XML Namespace

soapenv http://schemas.xmlsoap.org/soap/envelope/

wsse http://docs.oasis-open.org/wss/2004/01/oasis-200401-
wss-wssecurity-secext-1.0.xsd

This table lists the parameter values for this example. Other parameters that are not listed
have their default value.

Parameter Value

XML Digital Signature JCE
Provider

XMLDSig

Canonicalization Method http://www.w3.org/TR/2001/REC-xml-c14n-20010315

Signature Method http://www.w3.org/2000/09/xmldsig#rsa-sha1

KeyStore Provider ksprov

Signing Key Alias alias1

Signing Key Password secret

XML Namespace Provider xmlnsprov

Create Parent Element true

6. Security Services

Security Guide 113

Parameter Value

Signature Parent Element /soapenv:Envelope/*[1]/self::soapenv:Header/
wsse:Security

Include Issuer Serial true

Include Subject Name false

Include Certificate Chain No Certificates

Reference 1 URI #bodyid

Reference 1 Digest Method http://www.w3.org/2000/09/xmldsig#sha1

Reference 1 Transform 1 http://www.w3.org/2001/10/xml-exc-c14n#

A sample input document is shown as follows (indented for display purposes only):

XML Digital Signature Create Service

114

A sample output of the service is shown as follows (indented for display purposes only):

Example 3: WSSE SecurityTokenReference

The following is an example of a signature over the SOAP Body with a WSSE
SecurityTokenReference in the KeyInfo pointing to a WSSE BinarySecurityToken previously
generated in the SOAP Header. The security token and the digital signature appear in the same
wsse:Security Header block. The signature has two references, one for the
BinarySecurityToken in the header, and another for the SOAP Body.

The XDInsertWSSETokenAgent can create the BinarySecurityToken in the SOAP Header. For
more information about the XDInsertWSSETokenAgent and an example, see Insert WSSE Token
Service on page 87. The output of the XDInsertWSSETokenAgent example will be used as the
input document of this digital signature example.

6. Security Services

Security Guide 115

The following table lists the parameter values of the XDXMLDSigCreateAgent for this example.

Parameter Value

XML Digital Signature JCE
Provider

XMLDSig

Canonicalization Method http://www.w3.org/TR/2001/REC-xml-c14n-20010315

Signature Method http://www.w3.org/2000/09/xmldsig#rsa-sha1

KeyStore Provider ksprov

Signing Key Alias alias1

Signing Key Password secret

XML Namespace Provider xmlnsprov

Create Parent Element false

Signature Parent Element /soapenv:Envelope/soapenv:Header/wsse:Security

Include Subject Name false

Include Certificate Chain No Certificates

Include WSSE Security Token
Reference

true

WSSE Security Token Id tokenid

Reference 1 URI #tokenid

Reference 1 Digest Method http://www.w3.org/2000/09/xmldsig#sha1

Reference 1 Transform 1 http://www.w3.org/2001/10/xml-exc-c14n#

Reference 2 URI #bodyid

Reference 2 Digest Method http://www.w3.org/2000/09/xmldsig#sha1

Reference 2 Transform 1 http://www.w3.org/2001/10/xml-exc-c14n#

XML Digital Signature Create Service

116

The input document is shown as follows (indented for display purposes only):

6. Security Services

Security Guide 117

The output of the XMLDSigCreateAgent is shown as follows (indented for display purposes
only):

Example 4: Security Token Reference Transform

This example shows how a SecurityTokenReference can be signed with the Security Token
Reference (STR) Transform. The parameter of the STR-Transform is a canonicalization method.
The example selects the Exclusive Canonical XML, which itself requires a parameter for the
additional namespace prefixes to ignore. Since the parameter of a transform parameter is rare,
the value must be entered as a user parameter based on the following naming convention:

ref[X]transform[Y]parms1parms1

XML Digital Signature Create Service

118

The signature has two references. The first reference covers the SOAP Body. The second
reference covers the KeyInfo element containing the SecurityTokenReference. Signing a token
reference is not secure, which is why the STR-Transform is used to resolve the token
reference. This replaces the reference by the actual token in the signature. The STR-Transform
is the first transform (Y=1) of the second reference (X=2). Therefore the name of the user
parameter for the namespace prefixes is:

ref2transform1parms1parms1

The XDInsertWSSETokenAgent can create the BinarySecurityToken in the SOAP Header. For
more information about the XDInsertWSSETokenAgent and an example, see Insert WSSE Token
Service on page 87. The output of the XDInsertWSSETokenAgent example will be used as the
input document of this digital signature example.

The following table lists the parameter values of the XDXMLDSigCreateAgent that are used for
this example.

Parameter Value

XML Digital Signature JCE
Provider

XMLDSig

Canonicalization Method http://www.w3.org/TR/2001/REC-xml-c14n-20010315

Signature Method http://www.w3.org/2000/09/xmldsig#rsa-sha1

KeyStore Provider ksprov

Signing Key Alias alias1

Signing Key Password secret

XML Namespace Provider xmlnsprov

Create Parent Element false

Signature Parent Element /soapenv:Envelope/soapenv:Header/wsse:Security

Include Subject Name false

Include Certificate Chain No Certificates

Include WSSE Security
Token Reference

true

6. Security Services

Security Guide 119

Parameter Value

WSSE Security Token Id tokenid

KeyInfo Id keyinfoid

Reference 1 URI #bodyid

Reference 1 Digest Method http://www.w3.org/2000/09/xmldsig#sha1

Reference 1 Transform 1 http://www.w3.org/TR/2001/REC-xml-c14n-20010315

Reference 2 URI #tokenid

Reference 2 Digest Method http://www.w3.org/2000/09/xmldsig#sha1

Reference 2 Transform 1 http://docs.oasis-open.org/wss/2004/01/oasis-200401-
wss-soap-message-security-1.0#STR-Transform

Reference 2 Transform 1
Parameters

http://www.w3.org/2001/10/xml-exc-c14n#

The PrefixList of the Exclusive Canonical XML method of the STR-Transform is specified with
this user parameter. The parameter name and the value must be entered as shown in the
following table. The namespace prefix list is space separated.

Parameter Value

ref2transform1parms1parms1 env wsse wsu

XML Digital Signature Create Service

120

A sample input document is shown as follows (indented for display purposes only):

6. Security Services

Security Guide 121

A sample output of the XMLDSigCreateAgent is shown as follows (indented for display
purposes only):

XML Digital Signature Create Service

122

Example 5: Signed Attachment

The following example shows how to sign a MIME attachment. It assumes the Body of the XML
document refers to the attachment, and therefore both must be signed. This requires at least
two references, one for the Body and another for the attachment. The Reference URI to point
to an attachment has the form cid:contentid. The cid URI scheme instructs the Reference to
find the attachment with the Content-ID equal to <contentid>. The angle brackets are absent in
the URI but must be present in the Content ID header. The Reference must choose one of the
attachment transforms. The Attachment Complete Signature Transform (http://docs.oasis-
open.org/wss/oasis-wss-SwAProfile-1.1#Attachment-Complete-Signature-Transform) indicates
that the content and selected headers of the MIME part are referenced for signing, whereas,
the Attachment Content Signature Transform (http://docs.oasis-open.org/wss/oasis-wss-
SwAProfile-1.1#Attachment-Content-Signature-Transform) indicates that only the content of a
MIME part without headers is referenced for signing.

An attachment can be associated with a document directly from external input (for example, by
the NHTTP listener reading an HTTP request), or with the help of one the attachment services
(XDAddAttachmentAgent or XDAddAttachmentFromFileAgent). In this example, the
XDAddAttachmentFromFileAgent is called to attach a JPEG image to the document. The binary
Content-Transfer-Encoding is chosen to take advantage of the more compact format compared
to what is possible within an XML document. Notice the explicit angle brackets in the value of
the Content-ID parameter. These are part of the Content-ID syntax.

The following table lists the parameter values for the XDAddAttachmentFromFileAgent. Other
parameters that are not listed have their default value.

Parameter Value

Input File pic.jpg

Content-Type image/jpeg

Content-Transfer-Encoding binary

Content-Disposition attachment; filename=pic.jpg

Content-ID <pic>

6. Security Services

Security Guide 123

http://docs.oasis-open.org/wss/oasis-wss-SwAProfile-1.1#Attachment-Content-Signature-Transform
http://docs.oasis-open.org/wss/oasis-wss-SwAProfile-1.1#Attachment-Content-Signature-Transform

The following table lists the parameter values for the XMLDSigCreateAgent. Other parameters
that are not listed have their default value.

Parameter Value

XML Digital Signature JCE Provider XMLDSig

Canonicalization Method http://www.w3.org/TR/2001/REC-xml-
c14n-20010315

Signature Method http://www.w3.org/2000/09/xmldsig#rsa-sha1

KeyStore Provider ksprov

Signing Key Alias alias1

Signing Key Password secret

XML Namespace Provider xmlnsprov

Create Parent Element true

Signature Parent Element /soapenv:Envelope/*[1]/self::soapenv:Header/
wsse:Security

Include Subject Name true

Include Certificate Chain No Certificates

Reference 1 URI #bodyid

Reference 1 Digest Method http://www.w3.org/2000/09/xmldsig#sha1

Reference 1 Transform 1 http://www.w3.org/2001/10/xml-exc-c14n#

Reference 2 URI cid:pic

Reference 2 Digest Method http://www.w3.org/2000/09/xmldsig#sha1

Reference 2 Transform 1 http://docs.oasis-open.org/wss/oasis-wss-
SwAProfile-1.1#Attachment-Complete-Signature-
Transform

XML Digital Signature Create Service

124

The input document of the XDAddAttachmentFromFileAgent is shown as follows (indented for
display purposes only):

6. Security Services

Security Guide 125

The output of the XDAddAttachmentFromFileAgent is used as the input of the
XMLDSigCreateAgent. When the resulting document is sent by the XDXNHTTPEmitAgent, the
HTTP request has the following structure (indented for display purposes only):

XML Digital Signature Create Service

126

Example 6: Signature Transform Parameters

The following example shows how to specify a complex Signature Transform. In particular, it
shows how user parameters are required to specify extra transform parameters. It also proves
the transform worked by enabling the debugging aid to view the data digested by each
Reference.

The Signature XPath Filter 2.0 Transform takes a sequence of one or more elements named
XPath. The text value of the XPath element is an XPath expression. The XPath element has an
attribute called Filter that specifies the set operation to apply to the node-set returned by the
XPath expression. The possible values are intersect, subtract, or union.

The following is a sample XPath Filter 2.0 transform:

In the service configuration, each transform parameter becomes one XPath element. The
parameter value consists of the chosen set operation followed by the XPath expression
separated by a space. For example, the first XPath element above is configured with the
following value:

intersect //ToBeSigned

If the XPath expression contains XML namespaces, the XML Namespace provider is specified
in another related parameter. Because this transform can take more than one parameter, the
extra parameters must be entered as user parameters. The name of the parameter contains
an index to specify which reference and which transform it belongs to.

6. Security Services

Security Guide 127

To simplify, this example signs the whole document and therefore requires the Enveloped
Signature transform. The XPath Filter 2.0 transform becomes the second transform of the first
Reference. The location of the Signature element is not specified, therefore it will appear as
the last child of the root element.

The following table lists the parameter values of the XMLDSigCreateAgent. Other parameters
that are not listed have their default value.

Parameter Value

XML Digital Signature JCE
Provider

XMLDSig

Canonicalization Method http://www.w3.org/TR/2001/REC-xml-
c14n-20010315

Signature Method http://www.w3.org/2000/09/xmldsig#rsa-sha1

KeyStore Provider ksprov

Signing Key Alias alias1

Signing Key Password secret

Include Subject Name true

Include Certificate Chain No Certificates

Reference 1 URI

Reference 1 Digest Method http://www.w3.org/2000/09/xmldsig#sha1

Reference 1 Transform 1 http://www.w3.org/2000/09/xmldsig#enveloped-
signature

Reference 1 Transform 2 http://www.w3.org/2002/06/xmldsig-filter2

Reference 1 Transform 2
Parameters

intersect //ToBeSigned

XML Digital Signature Create Service

128

The extra transform parameters are specified with these user parameters. The parameter
name and the value must be entered as shown in the following table.

Parameter Value

ref1transform2parms2 subtract //NotToBeSigned

ref1transform2parms3 union //ns1:ReallyToBeSigned

ref1transform2parms3nsmap ns1prov

This example assumes there is an XML Namespace provider called ns1prov that defines a
single mapping: alias ns1 to namespace http://ns1.com. The input document is shown in the
following image (indented for display purposes only):

6. Security Services

Security Guide 129

The following image shows the output of the service (indented for display purposes only):

To prove that the transform worked, you can enable logging at the Tree level. You should see a
message similar to the following in your log:

TREE (W.file3.1) Digested input for signed reference '':
<ToBeSigned> <Data></Data><ns:ReallyToBeSigned
xmlns:ns="http://ns1.com"><Data></Data></ns:ReallyToBeSigned>
</ToBeSigned><ToBeSigned><Data></Data></ToBeSigned>

The Reference URI is shown within single quotes. In this case, the Reference URI was empty
because the whole document is signed.

XML Digital Signature Verify Service

Syntax:

XML Digital Signature Verify Service

130

com.ibi.agents.XDXMLDSigVerifyAgent

Description:

This service is used to validate an XML Digital Signature.

Parameters:

The following tables describe the parameters for the XML Digital Signature Verify service. Each
table is followed by a discussion of that parameter group.

Signature Location

XML Namespace Provider Provider for the mapping between XML namespace prefix
and namespace URI. If left blank, the XPath expression in
the Element Path and Required Signature Coverage
parameters cannot contain namespaces.

XPath Syntax Determines which syntax level of XPath should be used. You
can select the iWay abbreviated syntax or the XPath 1.0 full
syntax. The default option selects the syntax level as set in
the General Settings area of the iSM Administration
Console.

Signature Element Path Path to the signature XML element. If left blank, the service
will search throughout the document for an element named
Signature in the namespace http://www.w3.org/2000/09/
xmldsig#.

ID Attributes Space-separated list of attributes that are considered type
ID. The value of an ID attribute can be used in a same
document reference with a URI of the form #idvalue. Each
attribute declaration has the form ns:*/@ns1:attrib or
@ns1:attrib where ns: and ns1: are optional. If used, the ns
and ns1 prefixes must be declared in the XML Namespace
Provider. The form @ns1:attrib means an Attribute named
attrib in XML Namespace ns1. The form ns:*/@ns1:attrib is
similar except the attribute must also appear on an element
of any name in the XML Namespace ns. The default value
is:

xml:id ds:*/@Id wsu:Id xenc:Id

6. Security Services

Security Guide 131

Signature Location

Remove Security Parent
Element

If set to true, the WSSE Security parent element is removed
from the document after the verification is successful.

The Signature Element Path parameter is an XPath expression that evaluates to the Signature
node. For example, for a SOAP message, the XPath expression would be a path somewhere
within the SOAP Headers. The XPath expression can be the union of two paths if the
application is expecting signatures in one of two locations. An XML Namespace Provider is
needed if the XPath expression contains namespaces.

The Remove Security Parent Element boolean parameter is a way to remove a SOAP header
from the document after the verification is successful.

Acceptance Criteria

XML Digital Signature JCE
Provider

JCE Provider for the XMLSignatureFactory service.

TrustStore Provider Provider for the keystore containing the Certificate
Authorities.

Certificate Store Providers Comma-separated List of Keystore, Directory CertStore or
LDAP providers for the certificate stores used to complete
signer certificate chains when the signature contains fewer
certificates than needed.

PKIX Signature JCE
Cryptography Provider

JCE Provider for Signature Objects created by the PKIX
Certificate Path Builder.

PKIX JCE Provider JCE Provider for PKIX services. If left blank, the default JCE
provider for PKIX will be used.

Enable Certificate
Revocation

If set to true, use the CRLs from the CertStore to check
whether the certificate of the signer has been revoked.

Enforce KeyUsage Extension If set to true, verify certificates used for signing allow the
digitalSignature KeyUsage extension. Select true or false
(default) from the drop-down list.

XML Digital Signature Verify Service

132

Acceptance Criteria

Acceptable Transforms Space-separated list of transforms that can appear in the
XML Digital Signature. Other transforms will cause a
validation failure before being evaluated. If this field is left
blank, all transforms are accepted.

Required Signature
Coverage

An XPath expression that returns a node-set, where each
node in the set must have been signed by the Signature to
be considered valid.

Unsigned Attachment Action to perform when a document contains an unsigned
attachment. Select one of the following values from the
drop-down list:

Keep Unsigned Attachment {keep} (default)

Remove Unsigned Attachment {remove}

Fail Validation {fail}

The XML Digital Signature JCE Provider selects the XML Digital Signature implementation.
Choose XMLDSig for the implementation built-in to Java, or ApacheXMLDSig for the Apache
Santuario implementation. ApacheXMLDSig is often a better choice because it is updated
more frequently and therefore is more up to date.

The service recovers the signer public key based on the information it finds in the KeyInfo
element. To begin, the service collects all the X509Certificates and X509CRLs under the
X509Data element and creates a certificate store. This store together with the certificate store
providers will be used to complete the certificate chain. The service then iterates through the
KeyInfo content. The service understands X509IssuerSerial, X509SubjectName and X509SKI
(for example, the Subject Key Identifier). The service also understands a
wsse:SecurityTokenReference pointing to a wsse:BinarySecurityToken holding an X509
certificate encoded in base64. The service iterates in order of appearance and works with the
first item it understands ignoring subsequent ones. A Certificate selector is created and the
CertStores are queried to complete and validate the chain.

Edges:

6. Security Services

Security Guide 133

The following table lists and describes the edges that are returned by the XML Digital
Signature Verify service.

Edge Description

success The Signature is valid.

fail_parse An iFL or XPath expression could not be evaluated.

fail_operation The validation could not be performed.

fail_unsigned The XML document is not signed.

fail_verify The Signature is invalid.

fail_coverage The application specified a node or attachment that should
have been signed but was not covered by the Signature.

If the signature validates, the service will continue on the success edge. If validation fails
because of Unsigned Attachments or incomplete Required Signature Coverage, the service will
follow the fail_coverage edge. If validation fails for other reasons, the service will follow the
fail_verify edge. If there is no signature, the flow will continue on the fail_unsigned edge.

When the Tree level is selected in the trace settings, the service will log the referenced data
that was actually digested. It will also show whether core validation passed, and the validation
status of each reference.

Special Registers

The following table lists and describes the special registers assigned upon successful
validation of the signature.

Special Register Description

xmldsig_signer Holds the signer Distinguished Name.

xmldsig_signer_cn Holds the signer Common Name found in the signer
Distinguished Name.

XML Digital Signature Verify Service

134

Examples

The examples in this section are specific to the XML Digital Signature Verify service
(com.ibi.agents.XDXMLDSigVerifyAgent). For your convenience, the sample input and output
documents are attached to the PDF in unabbreviated and unindented form.

For PDF-compatibility purposes, the file extension of the XMLDSigVerify.zip file is temporarily
renamed to .zap. After saving this file to your file system, you must rename this extension back
to .zip before the file can be used.

Example 1: Completing the Certificate Chain

The verification of a digital signature involves the following steps:

1. The Signature element is retrieved and its syntax is checked.

2. For each Reference, its transforms are evaluated and the output digested into a hash. The
hash is compared against that Reference DigestValue in the signature.

3. The signer certificate is retrieved and the certificate chain is validated.

4. The signature is recomputed over the SignedInfo and compared against the SignatureValue
in the document.

These steps can be performed by the XDXMLDSigVerifyAgent with very little configuration
because the signature contains the necessary information. This makes the service more
adaptable to different signature formats it may receive. By default, the service searches the
whole document for an element named Signature in the namespace http://www.w3.org/
2000/09/xmldsig#.

The Reference URI instructs the service where to find the referenced data. The signature
declares the algorithms used for hashing and signing. The KeyInfo element provides the hints
to find the signer certificate. The only necessary configuration is the TrustStore used to
validate the certificate chain. The TrustStore parameter gives the name of the KeyStore
provider that declares a KeyStore file containing the certificates of the Trusted CAs. It is highly
recommended to use this KeyStore exclusively as a TrustStore. It should not contain private
keys or any other unrelated certificates. The JRE includes a sample TrustStore, which is
located in the following directory:

<java-home>/lib/security/cacerts

This file is convenient to retrieve the certificates of some well known CAs. It is not
recommended to use the JRE sample TrustStore directly. It is better to restrict the contents of
the TrustStore to the small list of Trusted CAs the application is willing to trust.

In this example, the flexibility of the service is demonstrated by validating various signatures
showing multiple ways the certificate chain can be completed.

6. Security Services

Security Guide 135

http://www.w3.org/2000/09/xmldsig
http://www.w3.org/2000/09/xmldsig

The following table lists the parameter values for the XDXMLDSigVerifyAgent. Other parameters
that are not listed have their default value.

Parameter Value

TrustStore Provider trustprov

This assumes trustprov is the name of a KeyStore provider that contains the certificates of the
Trusted CAs.

The simplest case is when the Signature contains the complete certificate chain, though this
produces documents that are slightly bulkier. The certificates appear in X509Certificate
elements under the KeyInfo in no particular order. The verify service needs an extra hint to
determine which one is the signer certificate. For example, the SubjectName can also be
added to the KeyInfo.

The XDXMLDSigCreateAgent can create this signature by setting the Include Certificate Chain
parameter to Complete Certificate Chain and setting the Include Subject Name parameter to
true.

In this sample signature, the certificate chain contains two certificates: the signer certificate
and the issuer CA. The TrustStore must contain the certificate of the issuer CA to validate the
chain.

XML Digital Signature Verify Service

136

A sample input document is shown as follows (indented for display purposes only):

Since the issuer CA is already in the TrustStore, many applications choose to omit the CA
certificate in the signature KeyInfo. The service is able to complete the certificate chain
because it adds the TrustStore to the list of CertStores to search for certificates. The service
still needs an extra hint to recognize that the certificate in the signature is the signer
certificate. This example includes the certificate IssuerName/SerialNumber in the KeyInfo. In
general, the IssuerName/SerialNumber is better than the Subject DN because it uniquely
identifies the certificate (even if it is renewed later).

6. Security Services

Security Guide 137

The XDXMLDSigCreateAgent can create this signature by setting the Include Certificate Chain
parameter to Signer Certificate Only, the Include Issuer Serial parameter to true, and the
Include Subject Name parameter to false.

A sample input document is shown as follows (indented for display purposes only):

XML Digital Signature Verify Service

138

Some web service security standards advocate that the certificate should be passed in a
BinarySecurityToken within the SOAP Headers. The KeyInfo element should contain a
SecurityTokenReference pointing to the BinarySecurityToken. The service is able to follow the
URI in the SecurityTokenReference to retrieve the certificate in the BinarySecurityToken. It is
recommended to include the BinarySecurityToken within the signed data by declaring a
signature Reference that covers that element.

For more information on how to create this signature, see Example 3: WSSE
SecurityTokenReference on page 115.

6. Security Services

Security Guide 139

A sample input document is shown as follows (indented for display purposes only):

XML Digital Signature Verify Service

140

Example 2: Omitting the Certificate Chain

If the originator is sending many signed documents to the application, it might be more
efficient to send the certificate chain out of band and let the application retrieve it locally. The
signer certificate must be added to one of the CertStores accessible to the service.
Intermediate CAs must also be added to the CertStores if the chain has a depth of 3 or more.
The Trusted CA must be in the TrustStore as always. The service uses the hints in the KeyInfo
to query its CertStores to find the signer certificate. The service completes the chain by
querying for the parent certificates.

The Certificate Store Providers parameter accepts a comma-delimited list of Keystore,
Directory CertStore, or LDAP providers. The TrustStore is implicitly used as a CertStore so the
Trusted CA certificates are not required to be duplicated in one of those CertStores. A
certificate can be added to a Keystore using the JDK keytool. To add a certificate to a Directory
CertStore, save the certificate file in the file system directory. To add a certificate to LDAP,
consult your system administrator. The LDAP database must conform to the schema described
in RFC2587.

The following table lists the parameter values for the XDXMLDSigVerifyAgent. Other parameters
that are not listed have their default value.

Parameter Value

TrustStore Provider trustprov

Certificate Store Providers ksprov

This assumes that trustprov is the name of a KeyStore provider that contains the certificates
of the Trusted CAs and that ksprov is the name of a KeyStore provider that points to a
keystore file that contains the signer certificate. The Certificate Store provider could also be a
Directory CertStore or an LDAP Provider.

The XDXMLDSigCreateAgent can create this signature by setting the Include Certificate Chain
parameter to No Certificates, the Include Issuer Serial parameter to true, and the Include
Subject Name parameter to false.

6. Security Services

Security Guide 141

A sample input document is shown as follows (indented for display purposes only):

XML Digital Signature Verify Service

142

Example 3: Certificate Revocation

For a variety of reasons, the certificate issuer might revoke a certificate before its expiration
date. For example, this can happen if the private key is compromised, an employee has left
the company, and so on. The issuer publishes a Certificate Revocation List (CRL) to instruct
applications that these certificates are no longer valid. The service can validate the signer
certificate chain against a CRL if Certificate Revocation is enabled. The service will query its
CertStores for the CRL from that issuer. If there are no revoked certificates, a CRL that
contains no certificates is required. If the CRL is not found, then the service takes the
conservative approach and assumes that the certificate might be invalid and rejects the
signature as a result. Since a KeyStore cannot contain a CRL, the CRL must be stored in
another provider, such as a Directory CertStore or LDAP. The simplest solution is to store the
CRL file in the file system directory of a Directory CertStore.

The KeyInfo element may also contain X509CRL elements to include CRLs within the
Signature. The service can use the CRLs in X509CRL elements if present. In practice, this is
rarely used since CRLs can become quite large compared to the size of the message.

The following table lists the parameter values for the XDXMLDSigVerifyAgent. Other parameters
that are not listed have their default value.

Parameter Value

TrustStore Provider trustprov

Certificate Store Providers ksprov,certprov

Enable Certificate Revocation true

This assumes that trustprov is the name of a KeyStore provider that contains the certificates
of the Trusted CAs; ksprov is the name of a KeyStore provider that points to a keystore file
that contains the signer certificate; and certprov is the name of a Directory CertStore provider
that points to a directory that contains the issuer CRL in a file.

Any signature example you have seen so far can be validated by this service. The signature will
fail if the signer certificate was revoked, and succeed otherwise.

Example 4: Signature Coverage

A signature can be valid and still be useless. The application must also verify that all sensitive
information in the document has been covered by the signature. Otherwise, the information
could be modified after the fact without affecting the signature. The service can verify the
signature has appropriate coverage.

6. Security Services

Security Guide 143

The Required Signature Coverage parameter is an XPath expression that returns a NodeSet.
Each node in the NodeSet must have been signed to consider the signature valid. For every
sensitive node, the XPath expression should return that node or one of its ancestors. Notice
that the parameter does not demand the presence of a node. If a node is missing in the
document, then it does not matter whether that node has been signed or not because there is
no possibility the application could use that node anyway. The application can reject the
incomplete message at a later time, but that is unrelated to the signature.

For example, if the application expects a SOAP message with a BinarySecurityToken in a SOAP
Header, it can specify the union of the path to the security token and the SOAP Body in the
XPath expression. Since a Signature never covers itself, the Signature element should never
be returned by the XPath expression.

To avoid the dual evaluation of the transforms, that feature assumes the transforms are
hierarchical starting at the node pointed to by the Reference URI. The inclusive and exclusive
XML canonical transforms are supported, but the XPath Filter and XSLT transforms are not.

If the application accesses the attachments, then it should ensure they have been covered by
the signature. The Unsigned Attachment parameter determines what action to perform when
there are unsigned attachments. The service can keep the unsigned attachments and accept
the signature, remove the unsigned attachments and accept the signature, or fail validation.
There is no option to demand the presence of an attachment since there is no possibility the
application could use an unsigned attachment if that attachment is absent. Again, the
application can reject incomplete messages at a later time.

It is assumed that the XML Namespace provider xmlnsprov defines the following prefixes:

Prefix XML Namespace

soapenv http://schemas.xmlsoap.org/soap/envelope/

wsse http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-
secext-1.0.xsd

The following table lists the parameter values for the XDXMLDSigVerifyAgent. Other parameters
that are not listed have their default value.

Parameter Value

TrustStore Provider trustprov

XML Digital Signature Verify Service

144

http://schemas.xmlsoap.org/soap/envelope/
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd

Parameter Value

XML Namespace Provider xmlnsprov

Required Signature Coverage /soapenv:Envelope/soapenv:Header/
wsse:Security/wsse:BinarySecurityToken|

/soapenv:Envelope/soapenv:Body

Unsigned Attachment Fail Validation

6. Security Services

Security Guide 145

The service will fail the following signature because the BinarySecurityToken in the SOAP
Header is not covered by any Reference. The Signature would have been valid if the Required
Signature Coverage parameter had been left blank.

XML Digital Signature Verify Service

146

Example 5: Reducing Risks

By default, the service looks throughout the document for the Signature element. A clever
attacker could add a second Signature to confuse the service. It is more secure to declare the
location where the application expects to find the signature. The Signature Element Path
parameter is an XPath expression that evaluates to the Signature node. For example, for a
SOAP message, the XPath expression would be a path somewhere within the SOAP Headers.
The XPath expression can be the union of two paths if the application is expecting signatures
in one of two locations. An XML Namespace Provider is needed if the XPath expression
contains namespaces.

Some transforms are very powerful, for example, the XSLT transform describes an engine that
is highly programmable. This makes the signature verification process vulnerable because it is
the equivalent of running code provided by the peer. An attacker can easily write a transform
that adversely affects the server, for example by running an infinite loop. To counter these
threats, the Acceptable Transforms parameter can be set to a space-separated list of
transform names. The service will accept to execute a transform only if it appears in this white
list. If another transform is encountered, then the validation fails before the transform is
evaluated. By default, the service accepts to execute any transform available to the server. The
service treats the Signature canonicalization method as just another kind of transform with
respect to this parameter, and therefore its algorithm must also be present in the white list.

The service can verify an encryption key has not been used inadvertently for signing. When the
Enforce KeyUsage Extension parameter is set, the service checks the KeyUsage extension in
the signer certificate for the presence of the digitalSignature and/or nonRepudiation flags. The
validation fails if the KeyUsage extension is missing or the chosen combination of the flags is
off. An application interested in these features will also be interested in the Signature
Coverage feature, which is discussed in Example 4: Signature Coverage on page 143.

It is assumed that the XML Namespace provider xmlnsprov defines the following prefixes:

Prefix XML Namespace

soapenv http://schemas.xmlsoap.org/soap/envelope/

wsse http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-
wssecurity-secext-1.0.xsd

ds http://www.w3.org/2000/09/xmldsig#

6. Security Services

Security Guide 147

http://schemas.xmlsoap.org/soap/envelope/
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd
http://www.w3.org/2000/09/xmldsig

The following table lists the parameter values for the service. Other parameters that are not
listed have their default value.

Parameter Value

TrustStore Provider trustprov

Enforce KeyUsage Extension digitalSignature

XML Namespace Provider xmlnsprov

Signature Element Path /soapenv:Envelope/soapenv:Header/
wsse:Security/ds:Signature

Acceptable Transforms http://www.w3.org/TR/2001/REC-xml-
c14n-20010315

http://www.w3.org/2000/09/xmldsig#enveloped-
signature

http://www.w3.org/2001/10/xml-exc-c14n#

http://docs.oasis-open.org/wss/oasis-wss-
SwAProfile-1.1#Attachment-Content-Signature-
Transform

XML Digital Signature Verify Service

148

http://www.w3.org/TR/2001/REC-xml-c14n-20010315
http://www.w3.org/TR/2001/REC-xml-c14n-20010315
http://www.w3.org/2000/09/xmldsig#enveloped-signature
http://www.w3.org/2000/09/xmldsig#enveloped-signature
http://www.w3.org/2001/10/xml-exc-c14n
http://docs.oasis-open.org/wss/oasis-wss-SwAProfile-1.1#Attachment-Content-Signature-Transform
http://docs.oasis-open.org/wss/oasis-wss-SwAProfile-1.1#Attachment-Content-Signature-Transform
http://docs.oasis-open.org/wss/oasis-wss-SwAProfile-1.1#Attachment-Content-Signature-Transform

The following signature is rejected by the service because it is not in the expected location
within the document:

6. Security Services

Security Guide 149

The following signature is rejected because the Reference includes a transform that is not
listed in the list provided by the Acceptable Transforms parameter:

XAdES Digital Signature Create Service

Syntax:

XAdES Digital Signature Create Service

150

com.ibi.agents.XDXAdESCreateAgent

Description:

This service is used to generate an XML Advanced Electronic Signature. XAdES defines formats
for XML Digital Signatures that remain valid over long periods and incorporate additional useful
information in common use cases. XAdES was developed by the European
Telecommunications Standards Institute and published in the Technical Specification ETSI TS
101 903. Individual copies of this specification can be downloaded from http://www.etsi.org.
This guide assumes that the reader is familiar with the XAdES specification.

An XAdES signature is a regular XML Digital Signature with extra signed and unsigned
properties. The specification is organized in a handful of signature forms that define strictly
increasing set of properties from the simplest form to the most complex one. The specification
uses the term qualifying properties because they qualify the signature, the signer, all
references, or specific references. A SignedDataObject is an object referenced by an XML
Digital Signature Reference.

Parameters:

The following tables describe the parameters for the XAdES Digital Signature Create service.
Each table is followed by a discussion of that parameter group.

Algorithms

XAdES Form The signature form determines which signed and
unsigned properties are added to the signature.
The options are XAdES-BES (Basic Electronic
Signature), XAdES-EPES (Explicit Policy Electronic
Signature), XAdES-T (electronic signature with
Time), XAdES-C (electronic signature with Complete
validation data references).

Signature Method Signature algorithm used to convert the
canonicalized SignedInfo into the SignatureValue.

Signature Canonicalization Method Algorithm used to canonicalize the SignedInfo
element before it is digested as part of the
signature operation.

Reference Digest Method Digest algorithm applied to the data object
references to yield the DigestValue.

6. Security Services

Security Guide 151

http://www.etsi.org

Algorithms

Reference Property Digest Method Digest algorithm applied to the qualifying properties
that contain references to certificates, CRLs, and
so on.

Time Stamp Canonicalization Method Algorithm used to canonicalize the qualifying
properties, when needed by a time stamp.

Time Stamp Digest Method Digest algorithm applied to the qualifying properties
that contain time stamps.

Message Digest JCE Provider JCE Provider for the MessageDigest service.

The signature form determines which signed and unsigned properties are added to the
signature. The forms are organized in a hierarchy where each form augments the previous form
with more properties.

The Signature Method is the Signature algorithm used to convert the canonicalized SignedInfo
into the SignatureValue. Notice the SHA1 algorithm is common, but is not considered secure
anymore.

The Signature Canonicalization Method is the Algorithm used to canonicalize the SignedInfo
element before it is digested as part of the signature operation.

The Reference Digest Method is the algorithm used to hash the references. The same digest
method will be used by all the references.

The Reference Property Digest Method is the algorithm used to hash some values in XAdES
properties. For example, the CertDigest of the SigningCertificate, or the SigPolicyHash of the
SignaturePolicyIdentifier.

The Time Stamp Canonicalization Method is the algorithm used to canonicalize the data for a
time stamp. The Time Stamp Digest Method is the hash algorithm to reduce the data before it
is signed by a time stamp. The Message Digest JCE Provider is the JCE Provider used to create
the JCE MessageDigest instance.

Signature Key

KeyStore Provider Provider for the keystore containing the signature
private key.

XAdES Digital Signature Create Service

152

Signature Key

Signing Key Alias Private key alias used to sign the SignedInfo.

Signing Key Password Password for the signing private key. If left blank, the
password for accessing the keystore will be used.

The KeyStore Provider is the name of the provider that holds the private key. The Signing Key
Alias and Signing Key Password are the Alias and Password for the private key. This key must
be compatible with the signature algorithm chosen in the Signature Method parameter. The
service will enforce the digitalSignature or the nonRepudiation usage if the KeyUsage
extension is present in the Signing Key Certificate.

Signature Location

XML Namespace Provider Provider for the mapping between XML namespace
prefix and namespace URI. If left blank, the XPath
expression in the Signature Parent Element cannot
contain namespaces.

XPath Syntax Determines which syntax level of XPath should be
used. You can select the iWay abbreviated syntax
or the XPath 1.0 full syntax. The default option
selects the syntax level as set in the General
Settings area of the iSM Administration Console.

Create Parent Element Determines whether the parent element is created
if it is missing. Select true or false (default) from
the drop-down list.

6. Security Services

Security Guide 153

Signature Location

Signature Parent Element Path to the element where the signature will be
inserted. If left blank, then the signature parent is
the root element.

If the Create Parent Element parameter is set to
true, then the expression must adhere to
Restricted XPath syntax, otherwise the expression
may adhere to the full syntax of the XPath engine
selected by the XPath Syntax parameter. Restricted
XPath has the form /step1/step2/... where a step
has the form ns:elem[predicate] or a pair of
consecutive steps that has the form *[1]/
self::ns:elem[predicate] to indicate the element
must be the first child of its parent. The
namespace prefixes are optional, but if present
they must be declared in the XML Namespace
provider. The predicate is optional, but when
present it has the form [@ns1:attr1='val1' and
@ns2:attr2='val2' and ...]. If no element matches
the Restricted XPath expression and the Create
Parent Element parameter is set to true, then the
necessary elements and attributes will be created,
such that the expression would match successfully.

The XML Namespace Provider is optional. It is the name of the provider that gives the mapping
between XML Namespace prefixes and XML Namespace URIs. The Signature Parent Element is
an XPath expression pointing to the element where the ds:Signature element will be inserted.
This expression cannot contain namespace prefixes if the XML Namespace Provider is left
blank.

XAdES Digital Signature Create Service

154

When the Create Parent Element parameter is true, the parent element will be created if
needed, but the XPath expression must adhere to the Restricted XPath syntax. When the
Create parent Element parameter is false, the parent element must exist but the expression
may adhere to the full syntax of the XPath engine selected by the XPath Syntax parameter.

KeyInfo

Include Signing Certificate Indicates whether the signing certificate should be
included in a ds:X509Certificate element within
ds:KeyInfo.

Include Public Key Indicates whether a ds:KeyValue element
containing the value of the public key should be
included in ds:KeyInfo.

These parameters determine the content of the generated KeyInfo element. They can be used
in any combination. If none of the parameters are used, the KeyInfo element will not appear.
Since the KeyInfo is not signed in general, the digest of every certificate in the certificate chain
will also appear under the SigningCertificate property. The SigningCertificate is a signed
qualifying property that is always added to the XAdES signature.

The Include Signing Certificate boolean parameter determines whether the signing certificate is
included in the KeyInfo element. If so, it will appear base64 encoded in a KeyInfo/X509Data/
X509Certificate element.

The Include Public Key boolean parameter determines whether the public key is included in the
KeyInfo element. For an RSA key, this adds a KeyInfo/KeyValue/RSAKeyValue/Modulus
element encoded in base 64.

Qualifying Properties

All Signed Data Objects Commitment Commitment type that applies to all the signed
data objects.

All Signed Data Objects Commitment
Description

The text description for the commitment type that
applies to all the signed data objects. A default
English description will be used if a standard
commitment type is chosen and this property is left
blank.

6. Security Services

Security Guide 155

Qualifying Properties

All Signed Data Objects Time Stamp Determines whether to add a time stamp computed
before the signature production, over the sequence
formed by ALL the Reference elements within the
SignedInfo referencing whatever the signer wants to
sign except the SignedProperties element.

Sign Signing Certificate Indicates whether the signature should cover the
ds:X509Certificate element containing the signing
certificate. This is only considered if Include Signing
Certificate is selected.

Signing Time Specifies the time at which the signer purportedly
performed the signing process. Leave blank to use
the current time.

Signer Roles A newline separated list of the roles claimed by the
signer.

TSA URL The location of the Time Stamp Authority used to
create time stamps.

These parameters define global qualifying properties of the signature, the signer or all of the
references. See the reference parameters for reference specific qualifying properties.

The All Signed Data Objects Commitment identifies the type of commitment made by the
signer with respect to all the references. It is possible to use custom commitment types by
typing a custom ObjectIdentifier. The dropdown list contains the commitment types already
defined by the XAdES Technical Specification, namely:

Proof of origin. Indicates that the signer recognizes to have created, approved, and sent
the signed data object.

Proof of receipt. Indicates that signer recognizes to have received the content of the signed
data object.

Proof of delivery. Indicates that the TSP providing that indication has delivered a signed
data object in a local store accessible to the recipient of the signed data object.

Proof of sender. Indicates that the entity providing that indication has sent the signed data
object (but not necessarily created it).

XAdES Digital Signature Create Service

156

Proof of approval. Indicates that the signer has approved the content of the signed data
object.

Proof of creation. Indicates that the signer has created the signed data object (but not
necessarily approved, nor sent it).

The All Signed Data Objects Commitment Description parameter contains a human readable
description of the commitment type. Enter the text of the custom description. This property can
also be left blank when a standard commitment type is chosen, and a default English
description will be used. This parameter is ignored if the All Signed Data Objects Commitment
parameter is unspecified.

The All Signed Data Objects Time Stamp Boolean parameter indicates whether the
AllDataObjectsTimeStamp element is generated. This element contains the time stamp
computed before the signature production, over the sequence formed by processing all the
References except the Reference to the SignedProperties.

The Sign Signing Certificate Boolean parameter indicates whether the signature should cover
the X509Certificate element containing the signing certificate. This parameter is ignored if the
Include Signing Certificate parameter is false.

The Signing Time parameter specifies the time at which the signer purportedly performed the
signing process. Leave this parameter blank to use the current time.

The Signer Roles parameter holds a newline separated list of the roles claimed by the signer.
One possible way to enter this expression is to double-quote the list and use the \n escape
sequence for the newline separator. To force the evaluation of the expression, surround the
string literal with a call to the _concat function. For example _concat("buyer\nmanager"). The
XAdES Technical Specification does not define any standard roles. A role could be something
like Sales Director, which would indicate that the signer was acting as the Sales Director when
he signed the document.

The TSA URL parameter is the location of the Time Stamp Authority used to create time
stamps. The XAdES properties that contain time stamps are: AllDataObjectsTimeStamp,
IndividualDataObjectsTimeStamp, SignatureTimeStamp, RefsOnlyTimeStamp, and
SigAndRefsTimeStamp.

Signature Production Place

City The purported city where the signer was at the time
of signature creation.

6. Security Services

Security Guide 157

Signature Production Place

State Or Province The purported state or province where the signer was
at the time of signature creation.

Postal Code The purported postal code where the signer was at
the time of signature creation.

Country The purported country where the signer was at the
time of signature creation.

Together, these parameters specify where the signer purportedly was at the time of signature
creation. The Signature Production Place is a qualifying property of the whole signature.

Signature Policy

Signature Policy Identifier An Object Identifier that uniquely identifies a specific
version of the signature policy. Leave this property
blank to specify an Implied policy in XAdES-EPES form
and above.

Signature Policy Document Path to the file containing a copy of the Signature
Policy Document. Leave this property blank to specify
an Implied policy in XAdES-EPES form and above.

The policy parameters specify the Signature policy for Explicit Policy Electronic Signature forms
and above. For an implied policy, simply leave both parameters empty. For an explicit policy,
specify the policy ObjectIdentifer (URI or OID) and the path to the policy file. The contents of
the file will be digested and the hash will appear in the SignaturePolicyIdentifier/
SignaturePolicyId/SigPolicyHash element. Both parameters are ignored if the XAdES-BES form
is selected.

Complete Form

TrustStore Provider Provider for the keystore containing the Certificate
Authorities. This property is required for XAdES-C
forms and above.

XAdES Digital Signature Create Service

158

Complete Form

Certificate Store Providers Comma-separated List of Keystore, Directory
CertStore or LDAP providers for the certificate stores
used to retrieve revocation material. This property is
required for XAdES-C forms and above.

These parameters are needed to retrieve the validation data for XAdES-C forms and above. The
data is found by executing PKIX validation of the signing certificate with revocation checking
enabled. The TrustStore provider specifies the keystore provider containing the Certificate
Authorities to be used as trust anchors. The Certificate Store Providers parameter is a comma-
separated List of providers used to retrieve revocation material.

Reference 1

Reference 1 URI URI to the first piece of data that will be digested and
signed. If left blank, the whole XML document will be
digested and signed.

Reference 1 Transform 1 First transform algorithm to apply to the first reference
data.

Reference 1 Transform 1
Parameters

Parameters for the first transform algorithm to apply
to the first reference data. For Exclusive Canonical
XML, this is a space separated list of XML namespace
prefixes. For XSLT, this is the name of a defined
transform. For XPathFilter, this is an XPath expression.

Reference 1 Transform 1 XML
Namespace Provider

Provider for the XML Namespace Map for XPathFilter
transforms.

Reference 1 Transform 2 Second transform algorithm to apply to the first
reference data.

Reference 1 Transform 2
Parameters

Parameters for the second transform algorithm to
apply to the first reference data. For Exclusive
Canonical XML, this is a space separated list of XML
namespace prefixes. For XSLT, this is the name of a
defined transform. For XPathFilter, this is an XPath
expression.

6. Security Services

Security Guide 159

Reference 1

Reference 1 Transform 2 XML
Namespace Provider

Provider for the XML Namespace Map for XPathFilter
transforms.

Reference 1 MimeType The MimeType element of the DataObjectFormat.
Indicates how a user should interpret the signed data
in the first reference (text, sound, video, and so on).

Reference 1 Encoding The Encoding element of the DataObjectFormat.
Indicates the encoding of the signed data in the first
reference. Ignored if MimeType is left blank.

Reference 1 Description The Description element of the DataObjectFormat.
Holds textual information related to the signed data in
the first reference. Ignored if MimeType is left blank.

Reference 1 Documentation URI A DocumentationReference sub-element of the
ObjectIdentifier element of the DataObjectFormat.
Points to a document where additional information
about the nature of the data object can be found.
Ignored if MimeType is left blank.

Reference 1 Identifier The Identifier sub-element of the ObjectIdentifier
element of the DataObjectFormat. Contains a
permanent identifier of the nature of the object.
Ignored if MimeType is left blank.

Reference 1 Commitment Commitment type that applies to this signed data
object.

Reference 1 Commitment
Description

The text description for the commitment type that
applies to this signed data object. A default English
description will be used if a standard commitment
type is chosen and this property is left blank.

Reference 1 Time Stamp Requests a time stamp to be computed before the
signature production, over a sequence formed by
some of the ds:Reference elements within the
ds:SignedInfo referencing whatever the signer wants
to sign except the SignedProperties element.

XAdES Digital Signature Create Service

160

The reference URIs supported are: <empty string> for the whole XML document; #idattrib for
the same-document sub-tree rooted at the element that has an ID attribute with value idattrib;
http://host:port/page for the resource located at this HTTP address, and possibly other URLs
supported by the library.

The Reference 1 URI parameter is the URI to the first piece of data that will be digested and
signed. If left blank, the whole XML document will be digested and signed.

The Reference 1 Transform 1 is the first transform algorithm to apply to the reference data.
The Reference 1 Transform 1 Parameters contain the parameters for the transform. Similarly,
the Reference 1 Transform 2 is the second transform and Reference 1 Transform 2
Parameters specify its parameters.

For more information on the transforms, see the table in this section that lists and describes
the transforms available to the digital signature service.

The remaining parameters in this group are reference-specific qualifying properties.

The MimeType, Encoding, Description, and Documentation URI parameters together form the
contents of the DataObjectFormat for this particular reference.

The Commitment and Commitment Description parameters are similar to the All Signed Data
Objects Commitment and All Signed Data Objects Commitment Description parameters, except
they apply to a single reference. Refer to the table on the Qualifying Properties group earlier in
this section for an explanation of the commitment types in the XAdES Technical Specification.

The Time Stamp boolean parameter indicates whether an IndividualDataObjectsTimeStamp
element is generated for this reference.

Subsequent references (2, 3) are similar to reference 1 except a missing reference URI
indicates the end of the list of references instead of the whole document.

The list of transforms per reference is not limited to 2. Any number of transforms can be
specified using user parameters.

6. Security Services

Security Guide 161

The list of references is not limited to 2. Any number of references can be specified using user
parameters.

Reference 2

Reference 2 URI URI to the second piece of data that will be digested and
signed. If you need more references, create user
parameters named ref[X]uri, ref[X]transform[Y],
ref[X]transform[Y]parms, ref[X]transform[Y]nsmap,
ref[X]formatmime, ref[X]formatenc, ref[X]formatdesc,
ref[X]formatdocuri, ref[X]formatident, ref[X]commitment,
ref[X]timestamp, where X >= 3, Y >= 1.

For example, ref3transform2 is the second transform of
the third reference.

Reference 2 Transform 1 First transform algorithm to apply to the second
reference data.

Reference 2 Transform 1
Parameters

Parameters for the first transform algorithm to apply to
the second reference data. For Exclusive Canonical XML,
this is a space separated list of XML namespace
prefixes. For XSLT, this is the name of a defined
transform. For XPathFilter, this is an XPath expression.

Reference 2 Transform 1 XML
Namespace Provider

Provider for the XML Namespace Map for XPathFilter
transforms.

Reference 2 Transform 2 Second transform algorithm to apply to the second
reference data.

Reference 2 Transform 2
Parameters

Parameters for the second transform algorithm to apply
to the second reference data. For Exclusive Canonical
XML, this is a space separated list of XML namespace
prefixes. For XSLT, this is the name of a defined
transform. For XPathFilter, this is an XPath expression.

Reference 2 Transform 2 XML
Namespace Provider

Provider for the XML Namespace Map for XPathFilter
transforms.

XAdES Digital Signature Create Service

162

Reference 2

Reference 2 MimeType The MimeType element of the DataObjectFormat.
Indicates how a user should interpret the signed data in
the second reference (text, sound, video, and so on).

Reference 2 Encoding The Encoding element of the DataObjectFormat.
Indicates the encoding of the signed data in the second
reference. Ignored if MimeType is left blank.

Reference 2 Description The Description element of the DataObjectFormat. Holds
textual information related to the signed data in the
second reference. Ignored if MimeType is left blank.

Reference 2 Documentation
URI

A DocumentationReference sub-element of the
ObjectIdentifier element of the DataObjectFormat. Points
to a document where additional information about the
nature of the data object can be found. Ignored if
MimeType is left blank.

Reference 2 Identifier The Identifier sub-element of the ObjectIdentifier element
of the DataObjectFormat. Contains a permanent identifier
of the nature of the object. Ignored if MimeType is left
blank.

Reference 2 Commitment Commitment type that applies to this signed data object.

Reference 2 Commitment
Description

The text description for the commitment type that applies
to this signed data object. A default English description
will be used if a standard commitment type is chosen
and this property is left blank.

Reference 2 Time Stamp Requests a time stamp to be computed before the
signature production, over a sequence formed by some
of the ds:Reference elements within the ds:SignedInfo
referencing whatever the signer wants to sign except the
SignedProperties element.

The Reference 2 parameters are similar to the Reference 1 parameters. Refer to the
Reference 1 group above for details.

6. Security Services

Security Guide 163

The following table lists the transforms available. Some transforms have implicit parameters
and do not require any explicit parameters. Other transforms take parameters, as described in
the following table.

Transforms Available to Digital Signature Service

Base64

http://www.w3.org/2000/09/
xmldsig#base64

This transform decodes the Base64 encoded
character data. If the input is a node-set, then the
string-value of the node-set is decoded (ignoring the
element tags, comments and processing
instructions).

This transform takes no explicit parameters.

Enveloped Signature

http://www.w3.org/2000/09/
xmldsig#enveloped-signature

This transform removes the Signature element from
the calculation of the signature when the signature is
within the content that it is being signed.

This transform takes no explicit parameters.

Exclusive Canonical XML

http://www.w3.org/2001/10/xml-
exc-c14n#

This transform is useful when message parts can be
enveloped and stripped off to construct new
messages. Exclusive Canonical XML ignores the
namespace context inherited from parent elements.
This keeps the digested data constant despite these
operations.

This transform takes an optional space-separated
list of XML namespace prefixes declared in the XML
Namespace provider. These are additional prefixes
to be ignored.

Exclusive Canonical XML With
Comments

http://www.w3.org/2001/10/xml-
exc-c14n#WithComments

This transform is similar to Exclusive Canonical XML
except comments are preserved in the digested
data.

This transform takes an optional space-separated
list of XML namespace prefixes declared in the XML
Namespace provider. These are additional prefixes
to be ignored.

XAdES Digital Signature Create Service

164

http://www.w3.org/2000/09/xmldsig#base64
http://www.w3.org/2000/09/xmldsig#base64
http://www.w3.org/2000/09/xmldsig#enveloped-signature
http://www.w3.org/2000/09/xmldsig#enveloped-signature
http://www.w3.org/2001/10/xml-exc-c14n
http://www.w3.org/2001/10/xml-exc-c14n
http://www.w3.org/2001/10/xml-exc-c14n#WithComments
http://www.w3.org/2001/10/xml-exc-c14n#WithComments

Transforms Available to Digital Signature Service

XPathFilter

http://www.w3.org/TR/1999/REC-
xpath-19991116

This transform evaluates the XPath expression for
each node in the input node-set and keeps only the
nodes where the expression evaluated to true.

This transform takes the XPath expression in
ref[X]transform[Y]parms1 and optionally an XML
Namespace provider name in
ref[X]transform[Y]parms1nsmap to declare a
namespace map.

XSLTTransform

http://www.w3.org/TR/1999/REC-
xslt-19991116

This transform indicates an XSLT stylesheet must be
used and the result is what is referenced for signing.

This transform takes the name of a defined
transform as parameter (similar to what is done with
the XDGenTransform service). The defined transform
must be an XSLT transform and return XML.

Inclusive Canonical XML 1.0

http://www.w3.org/TR/2001/REC-
xml-c14n-20010315

This transform performs typical XML Canonicalization
that attracts the xml namespace declarations from
the inherited context. This canonicalization is the
default if the last transform returns a node-set.

This transform takes no parameters.

Inclusive Canonical XML With
Comments 1.0

http://www.w3.org/TR/2001/REC-
xml-
c14n-20010315#WithComments

This transform is similar to Inclusive Canonical XML
except comments are preserved.

This transform takes no parameters.

6. Security Services

Security Guide 165

http://www.w3.org/TR/1999/REC-xpath-19991116
http://www.w3.org/TR/1999/REC-xpath-19991116
http://www.w3.org/TR/1999/REC-xslt-19991116
http://www.w3.org/TR/1999/REC-xslt-19991116
http://www.w3.org/TR/2001/REC-xml-c14n-20010315
http://www.w3.org/TR/2001/REC-xml-c14n-20010315
http://www.w3.org/TR/2001/REC-xml-c14n-20010315#WithComments
http://www.w3.org/TR/2001/REC-xml-c14n-20010315#WithComments
http://www.w3.org/TR/2001/REC-xml-c14n-20010315#WithComments

Transforms Available to Digital Signature Service

Inclusive Canonical XML 1.1

http://www.w3.org/2006/12/xml-
c14n11

Canonical XML 1.1 is a revision to Canonical XML
1.0 to address issues related to inheritance of
attributes in the XML namespace when
canonicalizing document subsets, including the
requirement not to inherit xml:id, and to treat
xml:base URI path processing properly. This
canonicalization is a better choice than the default
Inclusive Canonical XML 1.0.

This transform takes no parameters.

Inclusive Canonical XML With
Comments 1.1

http://www.w3.org/2006/12/xml-
c14n11#WithComments

This transform is similar to Inclusive Canonical XML
1.1 except comments are preserved.

This transform takes no parameters.

ref[X]transform[Y]parms where X >= 3 and Y >= 1, for example, ref3transform2 is the second
transform of the third reference.

When the Tree level is selected in the trace settings, the service will log the referenced data
that was actually digested.

Edges:

The following table lists and describes the edges that are returned by the XML Digital
Signature Create service.

Edge Description

success The Signature was successfully inserted.

fail_parse An iFL or XPath expression could not be evaluated.

fail_operation The Signature could not be inserted.

XAdES Digital Signature Create Service

166

http://www.w3.org/2006/12/xml-c14n11
http://www.w3.org/2006/12/xml-c14n11
http://www.w3.org/2006/12/xml-c14n11#WithComments
http://www.w3.org/2006/12/xml-c14n11#WithComments

Examples

For more information on related examples of XML Digital Signatures, see XML Digital Signature
Create Service on page 98. In particular, Example 2: Simple SOAP Message on page 112 shows
how an XPath expression for the signature parent element can instruct the service to find or
construct that path. There are also examples of Transform with Transform parameters.

Note: The examples in this section are specific to the XAdES Digital Signature Create service
(com.ibi.agents.XDXAdESCreateAgent). For your convenience, the sample input and output
documents are attached to the PDF in unabbreviated and unindented form.

For PDF-compatibility purposes, the file extension of the XAdESCreate.zip file is temporarily
renamed to .zap. After saving this file to your file system, you must rename this extension back
to .zip before the file can be used.

Example 1: Enveloped Basic Electronic Signature

The XAdES Digital Signature Create service has a large number of parameters but very few are
actually required. At a minimum, the signing key must be specified using the KeyStore Provider
and Signing Key Alias parameters. The Signing Key Password must also be specified if it is
different than the KeyStore password. Everything else is optional. Since we use the default
empty reference URI to sign the whole document, we must also specify the Enveloped
Signature transform.

This table lists the parameter values for this example. Other parameters that are not listed
have their default value.

Parameter Value

KeyStore Provider ksprov

Signing Key Alias alias1

Signing Key Password secret

Reference 1 Transform 1 http://www.w3.org/2000/09/
xmldsig#enveloped-signature

A sample input document is shown as follows (indented for display purposes only):

6. Security Services

Security Guide 167

A sample output of the service is shown as follows (indented for display purposes only):

XAdES Digital Signature Create Service

168

The signature is appended to the end of the parent element. In this case, the default parent is
the root element. This explains why the Body appears before the Signature. The Signature
contains two references. The first reference was configured in the service to cover the whole
document except the signature itself. The second reference was added automatically to cover
the SignedProperties.

A XAdES Signature is a regular XML Digital Signature with extra properties. Those properties
appear in a ds:Object element within the signature. The QualifyingProperties contain the
SIgnedProperties and the UnsignedProperties. In this simple case, there are no
UnsignedProperties.

The SigningTime is the first property under the QualifyingProperties element. The service
picked the current time since the Signing Time parameter was left blank.

Multiple certificates can bind the same private key to multiple identities. XAdES dictates the
Signing Certificate must be unambiguously declared to show in which capacity the signer
signed the document. Here the Signing Certificate appears in the KeyInfo. The KeyInfo is not
signed, but a hash of the Signing Certificate also appears under the SignedProperties. The
SigningCertificate holds a reference to each certificate in the signer certificate chain. The
Issuer and Serial Number pair plus a hash uniquely identify each certificate.

Example 2: Optional Qualifying Properties

XAdES has many optional Qualifying Properties. This example shows how to add more
qualifying properties to the signature.

This table lists the parameter values for this example. Other parameters that are not listed
have their default value.

Parameter Value

KeyStore Provider ksprov

Signing Key Alias alias1

Signing Key Password secret

All Signed Data Objects Commitment http://uri.etsi.org/01903/v1.2.2#ProofOfOrigin

All Signed Data Objects Time Stamp true

Sign Signing Certificate true

Signer Roles _concat("Buyer\nSales Director")

6. Security Services

Security Guide 169

Parameter Value

City New York

State Or Province NY

Postal Code 10121

Country US

Reference 1 URI #myid

A sample input document is shown as follows (indented for display purposes only):

XAdES Digital Signature Create Service

170

A sample output of the service is shown as follows (indented for display purposes only):

6. Security Services

Security Guide 171

This signature has three references: the first reference is declared in the service, the second
reference covers the SignedProperties, and the third reference covers the KeyInfo because we
asked to sign the Signing Certificate. The last two references were added automatically by the
service.

The QualifyingProperties element contains more properties. The SigningTime and
SigningCertificate are familiar from example 1. All the other properties are new in example 2.

The City, State Or Province, Postal Code, and Country parameters combine to form the
SignatureProductionPlace property.

The SignerRole property lists two ClaimedRoles: Buyer and Sales Director.

The signer declares he is the originator of this message by claiming the Proof of Origin
commitment. This commitment applies to all references because of the presence of the
AllSignedDataObjects element. Since the All Signed Data Objects Commitment Description
parameter is left blank, a default commitment description appears in the signature.

The AllDataObjectsTimeStamp is a time stamp calculated over all the references except the
one marked with Type attribute equal to "http://uri.etsi.org/01903#SignedProperties".

Example 3: Implied Policy

To specify the Signature Policy, the XAdES form must be EPES or above. The XAdES Technical
Specification states:

A signature policy is useful to clarify the precise role and commitments that the signer intends
to assume with respect to the signed data object, and to avoid claims by the verifier that a
different signature policy was implied by the signer.

The signer may reference the policy either implicitly or explicitly. An implied policy means the
signer follows the rules of the policy but the signature does not indicate which policy. It is
assumed the choice of policy is clear from the context in which the signature is used. When
the policy is not implied, the signature contains an ObjectIdentier (URI or OID) that uniquely
identifies the version of the policy in use. The signature also contains a hash of the policy
document to make sure the signer and verifier agree on the contents of the policy document.

Example 3 demonstrates an implied policy. This is obtained by setting the XAdES form to EPES
and leaving the Signature Policy Identifier and Signature Policy Document parameters blank.

XAdES Digital Signature Create Service

172

This table lists the parameter values for this example. Other parameters that are not listed
have their default value.

Parameter Value

XAdES Form XAdES-EPES

KeyStore Provider ksprov

Signing Key Alias alias1

Signing Key Password secret

Reference 1 URI #myid

A sample input document is shown as follows (indented for display purposes only):

6. Security Services

Security Guide 173

A sample output of the service is shown as follows (indented for display purposes only):

XAdES Digital Signature Create Service

174

The property to notice is the SignaturePolicyIdentifier with the SignaturePolicyImplied empty
element.

Example 4: Explicit Policy Identifier

This example demonstrates an explicit policy identifier. This is obtained by setting the XAdES
form to EPES, and assigning values to the two policy parameters. The Signature Policy
Identifier is a URI or OID that uniquely identifies the version of the policy document. The
Signature Policy Document is the path to the policy file in the file system. The signature will
contain a hash of the policy to prove both the signer and verifier agree on the contents of the
policy. It is important to keep the policy file intact in order to keep the hash constant. It would
be wise to make the policy file read-only.

This table lists the parameter values for this example. Other parameters that are not listed
have their default value.

Parameter Value

XAdES Form XAdES-EPES

KeyStore Provider ksprov

Signing Key Alias alias1

Signing Key Password secret

Signature Policy Identifier http://iwaysoftware.com/xades#policy1.0

Signature Policy Document policy-1.0.doc

Reference 1 URI #myid

A sample input document is shown as follows (indented for display purposes only):

A sample output of the service is shown as follows (indented for display purposes only):

6. Security Services

Security Guide 175

XAdES Digital Signature Create Service

176

The property to notice is the SignaturePolicyIdentifier with a SigPolicyId and a SigPolicyHash.

Example 5: Reference Specific Properties

This example shows the effect of qualifying properties that pertain to a specific reference. Two
references are declared with different qualifying properties. Contrast this with Example 2:
Optional Qualifying Properties on page 169 where the qualifying properties applied to the
signature itself or all the references at once.

This table lists the parameter values for this example. Other parameters that are not listed
have their default value.

Parameter Value

KeyStore Provider ksprov

Signing Key Alias alias1

Signing Key Password secret

Reference 1 URI #id1

Reference 1 MimeType audio/mpeg

Reference 1 Encoding base64

Reference 1 Description MP3 file encoded in base64

Reference 1 Documentation URI http://iwaysoftware.com/xades/audio.html

Reference 1 Identifier http://iwaysoftware.com/xades#mp3

Reference 2 URI #id2

Reference 2 Commitment http://uri.etsi.org/01903/v1.2.2#ProofOfApproval

Reference 2 Commitment
Description

Signer has approved the content

Reference 2 Time Stamp true

6. Security Services

Security Guide 177

http://uri.etsi.org/01903/v1.2.2#ProofOfApproval

A sample input document is shown as follows (indented for display purposes only):

XAdES Digital Signature Create Service

178

A sample output of the service is shown as follows (indented for display purposes only):

6. Security Services

Security Guide 179

The signature contains three references: two configured in the service and one added
automatically for the SignedProperties. The Reference specific qualifying properties are found
within the SignedDataObjectProperties element. The DataObjectFormat property qualifies the
first reference as can be seen by the URI in the ObjectReference attribute. The
CommitmentTypeIndication qualifies the second reference as can be seen by the URI in the
ObjectReference element. The commitment is described by a custom commitment description.
Finally, the IndividualDataObjectsTimeStamp contains a type stamp for the second reference
as can be seen in the URI attribute.

Example 6: Electronic Signature With Time

This example demonstrates the XAdES-T form.

This table lists the parameter values for this example. Other parameters that are not listed
have their default value.

Parameter Value

XAdES Form XAdES-T

KeyStore Provider ksprov

Signing Key Alias alias1

Signing Key Password secret

Reference 1 URI #myid

A sample input document is shown as follows (indented for display purposes only):

XAdES Digital Signature Create Service

180

A sample output of the service is shown as follows (indented for display purposes only):

6. Security Services

Security Guide 181

The XAdES-T form is a superset of the XAdES-EPES form. Since the Signature Policy Identifier
and the Signature Policy Document parameters are unspecified, this produces an implied
policy.

The SignatureTimeStamp mandated by the XAdES-T form appears as an unsigned property
within the QualifyingProperties.

Example 7: Complete Validation Data References

This example demonstrates the XAdES-C form.

This table lists the parameter values for this example. Other parameters that are not listed
have their default value.

Parameter Value

XAdES Form XAdES-C

KeyStore Provider ksprov

Signing Key Alias alias1

Signing Key Password secret

Signing Key Password secret

Signing Key Password secret

Reference 1 URI #myid

A sample input document is shown as follows (indented for display purposes only):

XAdES Digital Signature Create Service

182

A sample output of the service is shown as follows (indented for display purposes only):

6. Security Services

Security Guide 183

The XAdES-C form is a superset of the XAdES-T form. Therefore, the signature contains an
implied policy and a SignatureTimeStamp, like Example 6: Electronic Signature With Time on
page 180.

XAdES Digital Signature Verify Service

Syntax:

com.ibi.agents.XDXAdESVerifyAgent

Description:

This service is used to validate an XML Advanced Electronic Signature. Refer to the XAdES
Digital Signature Create service for some background information on XAdES. This guide
assumes the reader is familiar with the XAdES specification.

Parameters:

The following tables describe the parameters for the XAdES Digital Signature Verify service.
Each table is followed by a discussion of that parameter group.

Signature Location

XML Namespace Provider Provider for the mapping between XML namespace
prefix and namespace URI. If left blank, the XPath
expression in the Element Path and Required Signature
Coverage parameters cannot contain namespaces.

XPath Syntax Determines which syntax level of XPath should be used.
You can select the iWay abbreviated syntax or the
XPath 1.0 full syntax. The default option selects the
syntax level as set in the General Settings area of the
iSM Administration Console.

Signature Element Path Path to the signature XML element. If left blank, the
service will search throughout the document for an
element named Signature in the namespace http://
www.w3.org/2000/09/xmldsig#.

Remove Security Parent Element If set to True, the WSSE Security parent element is
removed from the document after the verification is
successful.

XAdES Digital Signature Verify Service

184

The Signature Element Path parameter is an XPath expression that evaluates to the Signature
node. For example, for a SOAP message, the XPath expression would be a path somewhere
within the SOAP Headers. The XPath expression can be the union of two paths if the
application is expecting signatures in one of two locations. An XML Namespace Provider is
needed if the XPath expression contains namespaces.

The Remove Security Parent Element boolean parameter is a way to remove a SOAP header
after it has been processed.

Signature Criteria

TrustStore Provider Provider for the keystore containing the
Certificate Authorities.

Certificate Store Providers Comma-separated List of Keystore, Directory
CertStore or LDAP providers for the certificate
stores used to complete the certificate chain
and to retrieve revocation material.

Enable Certificate Revocation If set to true, use the CRLs from the CertStores
to check whether the certificate of the signer
has been revoked.

Maximum Path Length Maximum number of non-self-issued
intermediate certificates that may exist in a
certification path. The last certificate in a
certification path is not included in this limit. 0
implies that the path can only contain a single
certificate. -1 implies that there is no maximum.
If any of the CA certificates contain the
BasicConstraintsExtension, the value of the
pathLenConstraint field of the extension
overrides the Maximum Path Length parameter.

Enforce KeyUsage Extension Determines how the KeyUsage Extension is
verified when present in the signer certificate.
The options are Not Enforced, digitalSignature,
nonRepudiation, digitalSignature OR
nonRepudiation, digitalSignature AND
nonRepudiation.

6. Security Services

Security Guide 185

Signature Criteria

Message Digest JCE Provider JCE Provider for the MessageDigest service. If
left blank, the default JCE provider for the
MessageDigest service will be used.

Required Signature Coverage An XPath expression that returns a node-set,
where each node in the set must have been
signed by the Signature to be considered valid.

Unsigned Attachment Action to perform when a document contains an
unsigned attachment. Select one of the following
values from the drop-down list:

Keep Unsigned Attachment {keep} (default)

Remove Unsigned Attachment {remove}

Fail Validation {fail}

The TrustStore parameter gives the name of the KeyStore provider that declares a KeyStore
file containing the certificates of the Trusted CAs. It is highly recommended to use this
KeyStore exclusively as a TrustStore. It should not contain private keys or any other unrelated
certificates. The JRE includes a sample TrustStore, which is located in the following directory:

<java-home>/lib/security/cacerts

This file is convenient to retrieve the certificates of some well known CAs. It is not
recommended to use the JRE sample TrustStore directly. It is better to restrict the contents of
the TrustStore to the small list of Trusted CAs the application is willing to trust.

A signature can be valid and still be useless. The application must also verify that all sensitive
information in the document has been covered by the signature. Otherwise, the information
could be modified after the fact without affecting the signature. The service can verify the
signature has appropriate coverage.

The Required Signature Coverage parameter is an XPath expression that returns a NodeSet.
Each node in the NodeSet must have been signed to consider the signature valid. For every
sensitive node, the XPath expression should return that node or one of its ancestors. Notice
that the parameter does not demand the presence of a node. If a node is missing in the
document, then it does not matter whether that node has been signed or not because there is
no possibility the application could use that node anyway. The application can reject the
incomplete message at a later time, but that is unrelated to the signature.

XAdES Digital Signature Verify Service

186

For example, if the application expects a SOAP message with a BinarySecurityToken in a SOAP
Header, it can specify the union of the path to the security token and the SOAP Body in the
XPath expression. Since a Signature never covers itself, the Signature element should never
be returned by the XPath expression.

To avoid the dual evaluation of the transforms, that feature assumes the transforms are
hierarchical starting at the node pointed to by the Reference URI. The inclusive and exclusive
XML canonical transforms are supported, but the XPath Filter and XSLT transforms are not.

If the application accesses the attachments, then it should ensure they have been covered by
the signature. The Unsigned Attachment parameter determines what action to perform when
there are unsigned attachments. The service can keep the unsigned attachments and accept
the signature, remove the unsigned attachments and accept the signature, or fail validation.
There is no option to demand the presence of an attachment since there is no possibility the
application could use an unsigned attachment if that attachment is absent. Again, the
application can reject incomplete messages at a later time.

XAdES Criteria

Minimum XAdES Form Specifies the minimum acceptable XAdES form.
Signatures simpler than this form will cause a validation
failure.

Signature Policy Provider The name of a Signature Policy Provider. This specifies
the mapping from ObjectIdentifier (URI or OID) to policy
file. The policy file is needed to verify signatures with an
explicit policy. If left blank, only absent or implied
policies can be validated.

Accept Implied Policy Indicates whether the verifier should accept an implied
signature policy.

Accept Unknown Properties Indicates whether the verifier should accept unknown
properties. This only affects the unsigned properties.

A XAdES signature is a regular XML Digital Signature with extra signed and unsigned
properties. The specification is organized in a handful of signature forms that define strictly
increasing set of properties from the simplest form to the most complex one.

6. Security Services

Security Guide 187

The Minimum XAdES Form parameter is a convenient way to require some qualifying properties
be present in the signature. The XAdES-BES form is the simplest form, therefore this value
accepts every XAdES signature. The XAdES-EPES form demands the presence of a signature
policy. The XAdES-T form requires the XAdES-EPES properties plus the presence of a Signature
time stamp. Finally, the XAdES-C form demands the XAdES-T properties plus the complete
certificate and revocation references.

A signature policy is a document in human readable form. It is an agreement between the
signer and verifier describing the rules to follow to produce and verify the signature, and what
claims can be made given the rules are satisfied. For example, the policy may demand a
certain signing key size, or that certification revocation must be checked. The policy may say
the signer agrees to consider his electronic signature legally binding in the context of sending
purchase orders to his supplier, provided the policy rules are followed, of course.

The Policy can be absent, implied or explicit in the Signature. An absent policy is not
mentioned at all, so the verifier can make no assumptions whether a policy is effectively in
use. An implied policy specifies that a policy is in use, but it does not say which one. It is
assumed that the applicable policy is clear from context. One would assume the policy itself
explains in which context it applies. Finally, an explicit policy has a reference embedded in the
signature to uniquely identify the version of the policy document in use. The reference consists
of a unique ObjectIdentifier (URI or OID) and a hash computed over the document.

To compute the policy hash, the service needs a mapping from ObjectIdentifier to the policy
file. This is done outside the service in a Signature Policy Provider. This type of provider can be
configured on the same console page as the other security providers (like KeyStores). Many
Signature Policy Providers can be created. The Signature Policy Provider parameter determines
which one to use. The same provider can be shared by many XAdES Signature Verify Services,
making it convenient to declare the mapping only once for multiple use.

An explicit policy is valid if the Signature Policy Provider can determine the path to the policy
file and the hash of the contents of the file is equal to the hash that appears in the Signature.
The hash guarantees the signer and verifier have the exact same document in their
possession. Since the policy is not in machine readable form, no further checking is done.

The Signature Policy Provider should only map the policies that are deemed acceptable.

The policy document is not needed to verify an implied policy. Since the Signature Policy
Provider is not involved, the service relies on the Accept Implied Policy boolean parameter to
determine whether an implied policy is acceptable.

Finally, the Accept Unknown Properties boolean parameter indicates whether the verifier should
accept unknown properties. This only affects the unsigned properties since the schema of
signed properties is closed.

XAdES Digital Signature Verify Service

188

Edges:

The following table lists and describes the edges that are returned by the XAdES Digital
Signature Verify service.

Edge Description

success The Signature is valid.

fail_parse An iFL or XPath expression could not be evaluated.

fail_operation The validation could not be performed.

fail_unsigned The XML document is not signed.

fail_verify The Signature is invalid.

fail_coverage The application specified a node or attachment that
should have been signed but was not covered by the
Signature.

If the signature validates, the service will continue on the success edge. If validation fails
because of Unsigned Attachments or incomplete Required Signature Coverage, the service will
follow the fail_coverage edge. If validation fails for other reasons, the service will follow the
fail_verify edge. If there is no signature, the flow will continue on the fail_unsigned edge.

Special Registers:

The following table lists and describes the special registers assigned upon successful
validation of the signature.

Special Register Description

xmldsig_signer Holds the signer Distinguished Name

xmldsig_signer_cn Holds the signer Common Name found in the signer
Distinguished Name

xades_form The XAdES Signature form. Possible values are XAdES-BES,
XAdES-EPES, XAdES-T, XAdES-C.

6. Security Services

Security Guide 189

Examples

For more information on related examples of XML Digital Signatures, see XML Digital Signature
Verify Service on page 130. In particular, Example 3 on Certificate Revocation, Example 4 on
Signature Coverage and Example 5 on Reducing Risks are directly applicable. The following
examples cover topics specific to XAdES Signature verification.

Note: The examples in this section are specific to the XAdES Digital Signature Verify service
(com.ibi.agents.XDXAdESVerifyAgent). For your convenience, the sample input and output
documents are attached to the PDF in unabbreviated and unindented form.

For PDF-compatibility purposes, the file extension of the XAdESVerify.zip file is temporarily
renamed to .zap. After saving this file to your file system, you must rename this extension back
to .zip before the file can be used.

Example 1: Minimum XAdES Form

This example shows how to demand the presence of a signature policy by requesting the
XAdES-EPES minimum form.

The following table lists the parameter values for the XDXAdESVerifyAgent. Other parameters
that are not listed have their default value.

Parameter Value

TrustStore Provider trustprov

Minimum XAdES Form XAdES-EPES

This assumes trustprov is the name of a KeyStore provider that contains the certificates of the
Trusted CAs.

The XAdES-EPES form requires a signature policy. Since we did not configure a Signature Policy
Provider, the service will only accept signatures with an implied policy. Refer to Example 2:
Explicit Signature Policy on page 194 for an example with an explicit signature policy.

XAdES Digital Signature Verify Service

190

The first sample input document is shown as follows (indented for display purposes only).

6. Security Services

Security Guide 191

A sample output of the service is shown as follows (indented for display purposes only):

This signature is in XAdES-BES form and will be rejected because it lacks a Signature Policy.
An error document will be produced and the flow will continue on the fail_verify edge.

XAdES Digital Signature Verify Service

192

The second sample input document is shown as follows (indented for display purposes only).

6. Security Services

Security Guide 193

This signature is in XAdES-EPES form and will be accepted. The output document is the same
as the input document. The flow will continue on the success edge. The special register
xmldsig_signer will be equal to CN=Partner SMIME Signature, O=Partner, C=US. The special
register xmldsig_signer_cn will be equal to Partner SMIME Signature. Finally, the special
register xades_form will be equal to XAdES-EPES.

Example 2: Explicit Signature Policy

This example shows how to require an explicit signature policy.

The following table lists the parameter values for the XDXAdESVerifyAgent. Other parameters
that are not listed have their default value.

Parameter Value

TrustStore Provider trustprov

Minimum XAdES Form XAdES-EPES

Signature Policy Provider policyprov

Accept Implied Policy false

This assumes trustprov is the name of a KeyStore provider that contains the certificates of the
Trusted CAs.

The minimum XAdES form chosen requires a signature policy. Since the Accept Implied Policy
parameter is false, this will require an explicit policy. The mapping between policy
ObjectIdentifier (URI or OID) to the policy file must be configured in a Signature Policy Provider.
Assume the provider policyprov has a mapping from the URI http://iwaysoftware.com/
xades#policy1.0 to the policy file policies/policy-1.0.doc. Assume that file contains the policy
document.

The second input document in Example 1 will now be rejected because the policy is not
explicit. A sample output of the service is shown as follows (indented for display purposes
only):

XAdES Digital Signature Verify Service

194

http://iwaysoftware.com/xades#policy1.0
http://iwaysoftware.com/xades#policy1.0

Another sample input document is shown as follows (indented for display purposes only).

6. Security Services

Security Guide 195

This signature will be accepted if the policy-1.0.doc file contains the same policy document
used by the signer. The output document will be the same as the input. The flow will continue
on the success edge.

If the contents of the policy-1.0.doc file is modified, the hash will no longer agree and the
signature will be rejected. The flow would continue on the fail_verify edge with an error
document.

Authenticate/Impersonate Service

Syntax:

com.ibi.agents.XDPrincipalAgent

Description:

This service allows a process to authenticate and/or impersonate a user based on credentials
in a message or message context.

Parameters:

The following table lists and describes the parameters for the Authenticate/Impersonate
service.

Parameter Name Description

Action Determines what action this service performs.
The following actions are available:

Authenticate. Authenticates this user against
the configured authentication realm.

Impersonate. Push the principal, if authorized,
to the channel (impersonate).

Pop. Pop back one principal (cease
impersonation). The limit is the initial
principal.

Realm The security realm to be used to validate this
user.

User User identity to be validated.

Authenticate/Impersonate Service

196

Parameter Name Description

Credential Credential (password) used to authenticate this
user.

Edges:

The following table lists and describes the edges that are returned by the Authenticate/
Impersonate service.

Edge Description

success The operation was successful.

fail_security The credentials could not be authenticated when the
selected action is set to Authenticate or Impersonate.

fail_parse An iFL or XPath expression could not be evaluated.

6. Security Services

Security Guide 197

Authenticate/Impersonate Service

198

AppendixA
Security Tools

This section provides information regarding security tools.

In this appendix:

Security Tools Overview

Signing Files

Keeping Values Secret

Security Tools Overview

A common requirement is the development of a secured application. During the application
development process, artifacts such as configuration files and process flows are produced.
These artifacts must be protected to avoid tampering at the installation site.

Distributing the application requires that the flows, dictionary, and configuration files be
signed, and that the policies distributed to the customer require that these file signatures be
verified on use. This can be done by specifying the appropriate policies and then distributing
the security file (in the configuration directory) with the application. If the distributed
application does not grant administrative authority to any users, then the policy cannot be
changed.

Management of the dictionary signature is automatic. A validly signed dictionary must be
distributed to customers. Doing this simply means taking the dictionary to be run from the
development system. No further preparation or action is necessary.

Process flows need to be signed individually before they are packaged for distribution.

The server manages signing keys. It considers two types of files, dictionaries and process
flows. Each type uses a unique key pair. The server automatically selects the proper key for
signing and validating configuration files based upon the type of file.

Signing Files

The Security Developers Tools extension (iwdevkit) includes a utility program for signing and
verifying files. To run this utility, use the following server tool command:

>tool SignTree [-s|-v] <input file> [<output file>]

Security Guide 199

If the output file is omitted, the input file is rewritten with an XML signature. Use –s to sign
(this is the default) and –v to verify.

Files that require manipulation can be located anywhere on the file system. For a given
configuration, the dictionary is:

<iwayhome>\config\<configname>\<configname>.xml

As a convenience, the .xml suffix will be added by the utility if it is omitted. iWay home is the
base of the iWay server installation.

Process flows are carried in the configuration processes subdirectory. They are named
<name>_compiled_date.xml, and it is these that must be signed. The _gui and _image files
are used for design time only, and are not needed at runtime.

The SignTree utility is also available as an Operating System command under the bin directory
of the installation directory. On Windows, the batch file is called signtree.cmd. On Unix, the
script is called signtree.sh. The command line options are the same as described in this
section for the SignTree utility. This file should be placed into the iWay home directory. The
command will only operate if the iwdevkit extension is in the extensions area. Naturally, the
iwdevkit extension should not be distributed to customers.

Keeping Values Secret

All passwords that are required by iWay Service Manager (iSM), such as FTP login passwords,
are stored within configuration files in masked format. Sometimes it is required to store
application values in a secure manner. iSM tools provide the ability to store and hold property
values using Advanced Encryption Standard (AES). The value is encoded using base64 as the
encryption produces a binary encrypted value. Using a combination of techniques, no key or
value ever needs to appear in clear form.

AES is a specification for the encryption of electronic data established by the U.S. National
Institute of Standards and Technology (NIST) in 2001. AES has been adopted by the U.S.
government and is now used worldwide for non-secure and secure data. It supersedes the
Data Encryption Standard (DES), which was published in 1977. The algorithm described by AES
is a symmetric-key algorithm, meaning the same key is used to encrypt and decrypt the data.

The AES encryption used for storing and retrieving property values uses a 128-bit key. Methods
exist to use longer keys and more complex operations, but for general purposes AES128
provides a strong and reliable encryption operation. It is not required that the iSM set property
command be used to store the value. This command is provided as a convenience for users
but any tool that stores an AES value can be used.

Keeping Values Secret

200

The iSM set property command is a common means of adding an encrypted value to a property
file. Later, the _aes() iFL function can be used to retrieve this value for use in a process flow.
The set property command is described in the iWay Service Manager User's Guide, while the
use of _aes() is described in the iWay Functional Language Reference Guide.

The -aes keyword uses the provided key to encrypt the value. Advanced Encryption Standard
(AES) is a strong encryption standard. The key must be 16 characters or less, as it becomes a
128-bit key.

For example:

set property testproperty userpswd mypassword -aes iwaykey1

If the key value is stored in a Special Register (SREG), which is the usual practice, named for
the secretkey sample, the command would be structured as follows:

set property testproperty userpswd mypassword -aes _sreg(secretkey)

Either method would generate a properties file called testproperty.properties. A common
practice is to load the key into a server-level configuration register. That register might itself be
loaded from a property file or database encrypted with the -encrypt keyword that uses a built-in
masking facility. Thus, the actual key never needs to appear in clear (legible) format. The key
should, or course, not be stored in the same property file as the AES-encrypted values. For
example, the following key line could be loaded into the secretkey SREG during iSM startup by
its own _property() function:

mysecret=ENCR(3237310127231613138296)

The AES-encoded value might appear as follows:

#Saved by set property command
#Fri Jan 24 14:52:29 EST 2014
userpswd=A8vRBNezksAtoySgaFbOygkuMeYqmIy6v9GsIwU6K60\=

This value can be read using standard iFL functions in the specific operand or command. For
example:

_aes('decrypt',_sreg(secretkey),_property('testproperty','userpswd'))

This example generates mypassword for use in the process execution.

iWay Service Manager (iSM) automatically handles base64 encoding and decoding as required.

A. Security Tools

Security Guide 201

Keeping Values Secret

202

AppendixB
nCipher Configuration

nCipher is a third-party provider of enterprise level hardware and software data protection
and security solutions.

This section describes the nCipher configuration. The information is included solely to
assist customers that are using their equipment.

Note: iWay does not endorse this equipment. Any questions concerning this equipment
should be directed to the supplier.

In this appendix:

Provider Initialization (Validating Signatures)

Java Configuration

Softcard for nCipher

Key Creation Using Keytool

Cryptography Provider

Troubleshooting (PKCS11 RSA Private Key Exception)

Provider Initialization (Validating Signatures)

By default, the SunPKCS11 provider only specifies mandatory PKCS#11 attributes when
creating objects. The PKCS#11 library you are using will assign implementation specific default
values to the other attributes. For example, when the SunPKCS11 provider imports a public
key in the security token to validate a signature, the CKA_VERIFY attribute is absent and the
nCipher default is false.

When this public key is passed to the C_VerifyInit() function, the public key is rejected with the
error CKR_KEY_FUNCTION_NOT_PERMITTED as shown in the nCipher log. In Java, this can
cause the following obscure error message:

ProviderException: initialization failed

The Sun PKCS11 Provider reference guide explains how to set specific attributes for various
kinds of keys and cryptography operations. The simplest solution is to add the following line to
the configuration file:

Security Guide 203

attributes = compatibility

The following is a relevant paragraph from the Sun PKCS#11 reference guide:

There is also a special form of the attributes option. You can write attributes = compatibility in
the configuration file. That is a shortcut for a whole set of attribute statements. They are
designed to provide maximum compatibility with existing Java applications, which may expect, for
example, all key components to be accessible and secret keys to be useable for both encryption
and decryption.

A sample configuration file using the attributes statement is shown in the following example:

name=nShield
library=D:/nfast/bin/cknfast.dll
description=nShield_PCI_500
slotListIndex=1
attributes = compatibility

SlotListIndex 0 is the HSM accelerator slot where MODULE protected keys are stored. A
module protected key requires no password or user input. To use a softcard to protect your
keys, you must define slotListIndex=1.

Java Configuration

On all machines with an nCipher card you must define a system environment variable, for
example, CKNFAST_LOADSHARING=1. This allows the use of softcards to protect keys. After
you have added the new variable you must reboot. For more information, refer to the nCipher
documentation.

To configure SunPKCS11 insert the following line into the java.security file:

security.provider.3=sun.security.pkcs11.SunPKCS11 /nfast/sunpkcs11.cfg

Move all other providers up the numeric ordering list.

#
List of providers and their preference orders (see above):
#
security.provider.1=sun.security.provider.Sun
security.provider.2=sun.security.rsa.SunRsaSign
security.provider.3=sun.security.pkcs11.SunPKCS11 /nfast/sunpkcs11.cfg
security.provider.4=org.bouncycastle.jce.provider.BouncyCastleProvider
security.provider.5=com.sun.net.ssl.internal.ssl.Provider
security.provider.6=com.sun.crypto.provider.SunJCE
security.provider.7=sun.security.jgss.SunProvider
security.provider.8=com.sun.security.sasl.Provider

Make sure the number you choose for SunPKCS11 is lower than bouncy castle and SunJCE.

Java Configuration

204

Note: The PKCS11 driver is used to interact with the nCipher hardware. However, there is a
Java limitation that effects the interaction. This limitation allows only a single PKCS11 driver to
be defined. As a result, only a single instance of the PKCS11-based provider is supported in
any given configuration.

Softcard for nCipher

FIPS 140-2 level 3 requires user authentication to access functions that use keys in the HSM.
nCipher supports this by requiring you to present an operator smart card each time you ran an
application that wanted to access some application keys. This may seem secure, but it is not
the case when you are using an application, which runs continuously and without any
intervention. Recently nCipher addressed this issue with the concept of a softcard. A softcard
appears just like an operator smart card but is instead a file on the hard disk. A PIN is also
associated with this softcard just like a normal smart card, but the advantage is that an
application can run unattended.

Creating a Softcard

Assuming you have nCipher card installed as well as the software, you can run KeySafe to
create a softcard:

Select Start, All Programs, KeySafe. On the left pane you will see a menu option for softcards.
Select this option and then create a softcard.

You will be prompted for a name plus a PIN. You can list the slots using \nfast\bin\ckinfo to
make sure you have your softcard installed as slot 1. You can list your softcards and you can
run ckinfo from within \nfast\bin to show the slot configuration.

Multiple Softcards

If you create more than one softcard, it appears that the slot numbers are allocated
incrementally from 1 and higher, based on the alphabetic listing of the softcard names. This
will not be a problem if you have only one softcard. However, if you plan to use multiple
softcards, you must make sure that you have the correct slotListIndex configured in the
nCipher configuration file for the SUN PKCS11.

Key Creation Using Keytool

You can use the following command to create an RSA key using keytool:

keytool -storetype PKCS11 -keystore NONE -storepass clientcard -genkey
-keyalg RSA -alias myKey

B. nCipher Configuration

Security Guide 205

where:

clientcard

Is a password for the softcard.

myKey

Is a private key alias that we are creating.

After you execute this command, you are prompted to provide your information to create the
private key.

You can use the following command to view your keystore:

keytool -v -list -keystore NONE -storepass clientcard -storetype PKCS11

The following shows the sample output:

Keystore type: PKCS11
Keystore provider: SunPKCS11-nShield
Your keystore contains 1 entry
Alias name: maria
Entry type: keyEntry
Certificate chain length: 1
Certificate[1]:
Owner: CN=Maria, OU=iway, O=ibi, L=ny, ST=ny, C=US
Issuer: CN=Maria, OU=iway, O=ibi, L=ny, ST=ny, C=US
Serial number: 45face41
Valid from: Fri Mar 16 13:05:05 EDT 2007 until: Thu Jun 14 13:05:05 EDT
2007
Certificate fingerprints:
MD5: B3:1B:56:79:4A:45:AD:44:B2:F3:47:AF:ED:48:03:E4
SHA1: F8:BE:CD:85:A1:83:A9:10:FD:51:30:39:00:E0:83:9D:9B:4A:29:1C

Cryptography Provider

When you use an nCipher based keystore in your NAS2 configuration, you must select
SunPKCS11-nShield as your cryptography provider. Also, it is recommended to select BC as
your S/MIME PKIX JCE Provider.

Troubleshooting (PKCS11 RSA Private Key Exception)

Problem:

When using a PKCS11 device as a keystore within an NAS2 Sender configuration to sign a
message, the following error message is displayed:

DEBUG (W.SmartSend.1) {com.ibi.agents.XDNAS2EmitAgent} Error emitting
NAS2: XD[FAIL] cause: 0 subcause: 0 message: java.io.IOException:
java.security.InvalidKeyException: Supplied key (sun.security.

Cryptography Provider

206

pkcs11.P11Key$P11PrivateKey) is not a RSAPrivateKey instance

 at
org.bouncycastle.mail.smime.SMIMESignedGenerator$ContentSigner.write(Unkn
own Source)

 at
org.bouncycastle.mail.smime.handlers.PKCS7ContentHandler.writeTo(Unknown
Source)

 at
javax.activation.ObjectDataContentHandler.writeTo(DataHandler.java:883)

Solution:

The problem usually results from an incorrect configuration on the NAS2 Sender side for the
S/MIME JCE Cryptography Provider. Confirm that you have selected a correct provider that
corresponds to your device and are not using the default "BC" provider as your selection. The
following are some examples:

Device: G&D Smart Card USB Key

Provider: SunPKCS11-StarSign

Device: nCipher HSM module

Provider: SunPKCS11-nShield

Note that each PKCS11 Device will have its own corresponding S/MIME JCE Cryptography
Provider. However, all of the PKCS11 based provider names start with the SunPKCS11.

B. nCipher Configuration

Security Guide 207

Troubleshooting (PKCS11 RSA Private Key Exception)

208

AppendixC Authenticating an HTTP Client Using
Kerberos

This section describes how to authenticate an HTTP client using Kerberos.

In this appendix:

Kerberos Overview

Kerberos Authentication

Sample Kerberos Configuration File

Sample JAAS Configuration File

Kerberos Troubleshooting

Kerberos Overview

Kerberos is an authentication protocol that allows nodes communicating over a non-secure
network to verify their identity in a secure manner. An HTTP client provider can be configured
for Kerberos and later referred by name in an HTTP Emit service (XDNHttpEmitAgent) or an AS2
Nonblocking Emit service (XDNAS2EmitAgent).

When a server requires HTTP authentication, it returns one or more WWW-Authenticate headers
listing the authentication schemes it can accept. The Authentication Preference parameter of
the HTTP client provider defines which schemes take precedence over others. The value is a
comma-separated list of authentication scheme names with the most preferred scheme listed
first. The default value is:

negotiate,NTLM,Digest,Basic

where:

negotiate

Means SPNEGO and the only SPNEGO scheme implemented is Kerberos.

To disable all of the schemes except Kerberos, set the Authentication Preference parameter to
negotiate.

Security Guide 209

The Kerberos Login Entry parameter of the HTTP client provider specifies the application logon
entry in the JAAS configuration file that will be used to logon to Kerberos. This logon entry
configures a Kerberos logon module (Krb5LoginModule). The Krb5LoginModule contains
numerous options that can be configured in the JAAS configuration file. For more information
about the available options for the Krb5LoginModule, see the Javadoc.

Kerberos Authentication

Kerberos authentication requires the following system properties to be set:

java.security.krb5.conf

The path to the Kerberos configuration file (usually named krb5.conf).

java.security.auth.login.config

The path to the JAAS configuration file (usually named login.conf).

The following system property can also be set to true to enable Kerberos debugging:

sun.security.krb5.debug

Sample Kerberos Configuration File

The following is a sample Kerberos configuration file:

[libdefaults]
 default_realm = IBI.COM
 udp_preference_limit = 1
[realms]
 IBI.COM = {
 kdc = ADSERVER.IBI.COM
 }
[domain_realms]
.ibi.com=IBI.COM
ibi.com=IBI.COM

Sample JAAS Configuration File

The following is a sample JAAS configuration file:

iWayHttpClient {
 com.sun.security.auth.module.Krb5LoginModule
 required
 // debug=true
 useKeyTab=true
 storeKey=true
 doNotPrompt=false;
};

Kerberos Authentication

210

The debug option of the Krb5LoginModule can be used in conjunction with the
sun.security.krb5.debug system property to offer maximum debugging information. In this
sample file, the debug option is commented out.

The doNotPrompt property is set to false to allow the HTTP client provider to provide the user
name and password through a JAAS Callback. The user will not be prompted.

Kerberos Troubleshooting

This section provides several troubleshooting tips for Kerberos.

Ensure that you have properly configured the krb5.conf file.

The krb5.conf file is used to describe the Kerberos realm to be used for authentication and
the location of the Key Distribution Center (KDC). This file has the following structure:

[libdefaults]
 default_realm = MYCOMPANY.COM
 udp_preference_limit = 1
[realms]
 MYCOMPANY.COM = {
 kdc = MYREALM.MYCOMPANY.COM
}
[domain_realms]
.MYCOMPANY.com=MYCOMPANY.COM
MYCOMPANY.com=MYCOMPANY.COM

In this example, the Kerberos realm is MYCOMPANY.com and the KDC is located at
MYREALM.MYCOMPANY.COM. Additional mapping information is provided in the
[domain_realms} section.

Ensure that you have a properly configured the login.conf file.

The login.conf file is used to configure the authentication mechanism used by Java
Authentication and Authorization Service (JAAS). This file has the following structure:

iWayHttpClient { com.sun.security.auth.module.Krb5LoginModule
 required
 // debug=true
 useKeyTab=true
 storeKey=true
 doNotPrompt=false;
};

In this example, iWayHttpClient is the name to be used by all iWay applications (for
example, iSM). The com.sun.security.auth.module.Krb5LoginMobile entry instructs iSM to
use the Kerberos 5 login module. If you want to debug the Kerberos authentication
process, then uncomment the debug=true statement.

C. Authenticating an HTTP Client Using Kerberos

Security Guide 211

Ensure that you specify the location of the krb5.conf and login.conf files for your instance
of iSM. You must provide the location of the krb5.conf and login.conf files in the Additional
Java System Runtime Properties section of the iSM console.

Ensure to specify which entry to use in the login.conf file. You must specify which entry to
use for the HTTP Pooling Provider in login.conf, even if there is only one entry present. This
is configured in the HTTP Pooling Provider properties section of the iSM console.

Resolving the Unable to Load Configuration File Error

You may encounter a "Could not load configuration file c:\Windows\krb5.ini (the system
cannot find the file specified)" error message. For example:

[2011-11-16T12:37:40.998Z] ERROR (W.Retrieve_CRMChannel.1)
W.Retrieve_CRMChannel.1: [RequestTargetAuthentication - process()] -
Authentication error: Invalid name provided (Mechanism level: Could not
load configuration file C:\Windows\krb5.ini (The system cannot find the
file specified))

The following workarounds are available to resolve this error:

1. Ensure that you properly configured the krb5.conf and login.conf files as described in this
appendix. Also, ensure that you have properly specified their location in the Additional Java
System Runtime Properties and pointed to the correct login.conf entry in the HTTP Pooling
Provider properties.

Kerberos Troubleshooting

212

2. If this error is still generated after you have checked the properties described in step 1,
then you must copy the krb5.conf and login.conf files to the <Java Home>\libs\security
directory (on Windows) or <JavaHome>\etc (on Linux). Java looks for the krb5.conf and
login.conf files by first checking if the location of these files has been explicitly listed. If for
some reason (such as file permissions) Java cannot read the files in the location specified,
Java then looks in the <Java Home>\libs\security directory. If the files are not found in this
location, Java then defaults to c:\Windows\krb5.ini (for Windows), which results in the error
message described above.

C. Authenticating an HTTP Client Using Kerberos

Security Guide 213

Kerberos Troubleshooting

214

AppendixD Configuring Kerberos With Microsoft
SQL Server

This section describes how to configure Kerberos with Microsoft SQL (MS SQL) Server.

In this appendix:

Hardening the Java Virtual Machine Cryptography

Using the Java Authentication and Authorization Service

Creating a JAAS File for the SQL Server Driver for Kerberos

Configuring iWay Service Manager Run Time for Kerberos

Hardening the Java Virtual Machine Cryptography

Encrypting Kerberos requires you to replace the default encryption .jar files in your Java Virtual
Machine (JVM) with the unlimited strength editions. To harden the JVM cryptography:

1. Obtain a copy of the following archive:

Java Cryptography Extension (JCE) Unlimited Strength Jurisdiction Policy Files 8.

2. Unzip this archive and extract the following .jar files to the location of the JVM runtime
folder:

local_policy.jar

US_export_policy.jar

Note: You can move or replace the current jar files in the folder.

On Windows, the JVM runtime folder location is:

{jre folder}/lib/security

On Linux, the JVM runtime folder location is:

{jre}\lib\security

3. Ensure that the correct runtime JVM folder is copied, as there may be multiple versions of
java on a machine.

If the jar files are not correct, the following error will appear when connecting to Kerberos:

Integrated Authentication Failed{guid number}

Security Guide 215

Using the Java Authentication and Authorization Service

The Java Authentication and Authorization Service (JAAS) is one of several Java plug in
modules for security. This allows applications to use security services without having to hard-
code values in the source code of a program. One of the plug in modules is for Kerberos. A
subject is a set of credentials representing a single entity. For a given subject, a principal,
representing the specifics of the type of subject, such as KRB_NT_PRINCIPAL, describes the
formatting and representation of the credentials. A subject when passed to the Login module
goes through the following states:

Initialization (any error is initialized)

Login

Commit for success, or abort with logout (the final stage for both)

There are multiple checks during Kerberos initialization. The Subject is usually the complete
FQDN (Fully Qualified Domain Name) of the user ID and the Kerberos TGT ticket attached to it.
The Principal is the FQDN of the user ID in user principal name format:
domainuser@REAL.COM

The JAAS service uses different modules and parameters for pluggable security. The Kerberos
module is called K5b5LoginModule and has the property required (there are properties for
usage such as optional and so on). The JAAS is used here solely for authentication purposes.

Creating a JAAS File for the SQL Server Driver for Kerberos

In this sample configuration file, the SQL Server Driver is being configured to use the
Krb5LoginModule, requiring its use and failing to start the driver if the login module fails. The
debug mode is currently set to:

ON "debug=True"

The login modules are called in a callback. Using the following syntax ensures that no screen
texts appear asking for credentials, and fails if the credentials are not found:

doNotPrompt=true

The following Kerberos default ticket cache will not be used.

useTicketCache=false

The Kerberos authentication key should be imported and stored in memory, while the
credentials come from the keyTab. Optionally, the user principal can be typed in the JAAS file
as user@REALM1.REALM2.COM, overriding the keyTab. The following term is required:

SQLJDBCDriver

Using the Java Authentication and Authorization Service

216

On Linux, the term must be in lowercase letters.

You can save iwjaas.conf on either Windows or Linux.

SQLJDBCDriver
{
com.sun.security.auth.module.Krb5LoginModule required
// refreshKrb5Config=false
debug=true
doNotPrompt=true
useTicketCache=false
useKeyTab=true
keyTab="sqls6.keytab"
// principal="user@REALM.COM";
};

Note: On Linux, sqljdbc must by in lowercase letters.

Each login module configuration file entry consists of a name followed by one or more
LoginModule-specific entries, where each LoginModule-specific entry is terminated by a
semicolon, and the entire group of LoginModule-specific entries is enclosed in braces. Each
configuration file entry is terminated by a semicolon.

Uncomment refreshKrb5Config to start off with a clean configuration only when debugging.

The following table lists and describes the entries.

Entry Description

debug=true Turns on debug mode.

doNotPrompt=true Do not prompt user for credentials.

useTicketCache=false Do not use the Kerberos default cache.

useKeyTab=true Use a keytab instead of the cache.

keyTab Keytab name. Paths in this name do not always work.

principal Override the principal in the keytab with this value debug
only.

Note: All names in the principal name must exist.

Configuring iWay Service Manager Run Time for Kerberos

This section describes how to configure iWay Service Manager (iSM) runtime for Kerberos.

D. Configuring Kerberos With Microsoft SQL Server

Security Guide 217

Procedure: How to Configure iSM Runtime for Kerberos

1. Start iSM using he appropriate command file on Windows or Linux.

2. Using a web browser, access the iSM Administration Console.

3. Click Java Settings in the left pane, as shown in the following image.

4. In the Java Settings page that appears, under the Additional Java System Runtime
Properties section, enter and/or select the property names and the appropriate values.

Configuring iWay Service Manager Run Time for Kerberos

218

The following table lists and describes the required properties.

Property Description

java.security.krb5.conf The path and file name of the Kerberos
configuration file.

sun.security.krb5.debug Enables Kerberos debugging, disable after
initial testing.

java.security.auth.login.config The JAAS configuration file, for example,
iwjaas.conf.

sun.security.jgss.debug Debugging for the JAAS.

5. If you wish to add a property and value, enter the property and value next to the Add
button, and then click Add after each entry combination.

6. When you are complete, click Update.

7. When you are finished, return to the iSM Administration Console, completely stop and
then restart iSM.

D. Configuring Kerberos With Microsoft SQL Server

Security Guide 219

Configuring iWay Service Manager Run Time for Kerberos

220

AppendixE Configuring Microsoft SQL Server JDBC
Driver Version 6 with Kerberos

This section describes how to configure Microsoft SQL (MS SQL) Server JDBC Driver
version 6 with Kerberos on Windows and Linux.

In this appendix:

Prerequisites for Windows Active
Directory

Configuring Microsoft SQL Server JDBC
Driver Version 6 With Kerberos Using
Windows 2008/Windows 2012

Setting Up Accounts for the SQL Server

Connection Rule for NTLM and Kerberos

Using Kerberos Authentication With SQL
Server

Preparing for the Client

Ticket-Granting Tickets for Kerberos

Using JAAS

Configuring Kerberos for Windows

Configuring Kerberos for Linux

Joining the Samba Server to the PDC
Domain

Kerberos Configuration File (krb5.conf)

SQL Server Clustered Server Warning

Prerequisites for Windows Active Directory

Before configuring Microsoft SQL Server JDBC Driver Version 6 with Kerberos, ensure that the
following prerequisites are configured on your environment.

Servers:

Active Directory Domain Services

Windows Domain on Windows Server 2008

Windows Server 2012

Kerberos authentication enabled Windows Server 2012R2 (one Primary Domain Controller,
and at least one Secondary Controller)

Clients Joined to the Domain:

SQL Server servers running Windows 2012R2

client workstations

Security Guide 221

Configuring Microsoft SQL Server JDBC Driver Version 6 With Kerberos Using Windows
2008/Windows 2012

To configure Microsoft SQL Server JDBC Driver Version 6 with Kerberos, using Windows 2008
or Windows 2012, in the Domain Controller, open Active Directory Domains and Trusts, then
right-click the active domain and select raise domain functional level.

This enables the domain to support delegation and SPNs (Service Principal Names), as well as
higher encryption levels.

If there is more than one domain controller, you will have to wait until the changes are
propagated to the other domain controllers. You can confirm this by examining the Windows
Event Log on the primary domain controller, and opening the Windows Event log. Scroll down
and expand Applications and Services Logs, select DFS Replication and ensure no error
messages have occurred. Additionally, check the information messages for a time stamp near
your changes. Look for Event ID 1206, the text should have the name of the PDC (Primary
Domain Controller) and a success message.

For more information, see the Raise the Domain Functional Level section in the Microsoft
Developer Network website at https://msdn.microsoft.com/en-us/library/cc753104(v=ws.
11).aspx, or see the Kerberos Enhancements section at https://technet.microsoft.com/library/
cc749438(ws.10).aspx

Setting Up Accounts for the SQL Server

You can use Active Directory Users and Computers to create two domain user accounts for
SQL Server in Active Directory: one for the SQL Server database account, and one (if needed)
for the SQL Serve Reporting services.

Configuring User Account Attributes

Perform the following tasks for each of these accounts created for SQL and Kerberos:

In the User Account property page, in the Active Directory Users and Computers section,
ensure that the property check box for Account is sensitive and cannot be delegated is
cleared.

Configuring Microsoft SQL Server JDBC Driver Version 6 With Kerberos Using Windows 2008/Windows 2012

222

https://msdn.microsoft.com/en-us/library/cc753104(v=ws.11).aspx
https://msdn.microsoft.com/en-us/library/cc753104(v=ws.11).aspx
https://technet.microsoft.com/library/cc749438(ws.10).aspx
https://technet.microsoft.com/library/cc749438(ws.10).aspx

For the encryption types, make sure only the AES encryption types are selected, as shown
in the following image.

Procedure: How to Configure the Active Directory Domain Controller for Delegation

1. On the primary Domain controller, log on and start the server manager.

2. From the Tools menu, select Active Directory Users and Computers, then right-click the
computer you wish to set up for delegation (the SQL Server computer), and select Trust
this computer for delegation.

If the computer that is running SQL Server is the last computer contacted, but that
computer has a linked server, it must also be granted delegation permissions. If it is not
the last computer in the chain, all the computers that are intermediaries must be trusted
for delegation.

3. Perform the following steps to grant delegation permission to the SQL Server service
account domain user account. You must have a domain user account for clustered SQL
Server installations (this step is not required for computers that are running SQL Server
and using a local system account).

a. In the Users folder, right-click the user account, and then click Properties.

b. In the user account properties dialog box, click the Account tab.

c. Under Account Options, select the Account is Trusted for Delegation check box, and
ensure that the check box for Account is sensitive and cannot be delegated, is cleared
for this account.

Configuring User Account Security Attributes

After installing and configuring SQL Server, you are returned to the Active Directory Domain
Controller where you will need to configure the account properties of the MSSQL user.

Procedure: How to SQL Server on a Linux Machine

Procedure: How to Install SQL Server on Windows

1. Install the SQL Server (Enterprise, Developer, Evaluation, Business Intelligence, or
Standard editions only) on a server in the same domain as the domain controller.

E. Configuring Microsoft SQL Server JDBC Driver Version 6 with Kerberos

Security Guide 223

For more information, see the Microsoft support matrix for additional features at https://
msdn.microsoft.com/en-us/library/cc645993(v=sql.120).aspx#Enterprise_security.

You can also see the Microsoft Quick Start Installation guide at https://
msdn.microsoft.com/en-us/library/bb500433(v=sql.120).aspx.

2. Supply the domain accounts for the SQL Server service that you created in the previous
steps on the domain controller, and for the SQL Server Analysis Services (if used).

The SQL server must be installed on a Windows or Integrated authentication only. It is not
possible to have a secure Kerberos connection mode when there can be a backdoor
through a a native mode account. In Integrated mode the SA account is present but
disabled.

Procedure: How to Configure SQL Server After Installation

1. When the installation is complete, expand the SQL Server Configuration Manager, expand
SQL Server Network Configuration, then select TCP/IP under Protocol Name on the right
pane, as shown in the following image.

The TCP/IP Properties dialog opens.

Setting Up Accounts for the SQL Server

224

https://msdn.microsoft.com/en-us/library/cc645993(v=sql.120).aspx#Enterprise_security
https://msdn.microsoft.com/en-us/library/cc645993(v=sql.120).aspx#Enterprise_security
https://msdn.microsoft.com/en-us/library/bb500433(v=sql.120).aspx.
https://msdn.microsoft.com/en-us/library/bb500433(v=sql.120).aspx.

2. Click the IP Addresses tab and ensure that the TCP Dynamic Ports property is blank for all
entries, then enter 1433 in the TCP Port field of the IPALL section, as shown in the
following image.

3. Click OK.

E. Configuring Microsoft SQL Server JDBC Driver Version 6 with Kerberos

Security Guide 225

4. Click on the SQL Server Services in the same SQL Server Configuration Window and
ensure that the domain account is the account selected for the SQL Server service, as
shown in the following image.

5. If a change is made in this property, click Apply then click OK, and restart the service to
accept the change in the server.

Procedure: How to Add the SQL Server Domain Account to SQL Server Management Studio

1. Log on as an Administrator to the server with SQL Server installed.

2. Open the SQL Server Management Studio application and select the current server when
prompted for the database engine, as shown in the following image.

Setting Up Accounts for the SQL Server

226

The Object Explorer opens, as shown in the following image.

3. Expand the Logins folder.

4. Right-click on Logins and select New Login.

The Login New dialog opens.

5. Select the Windows Authentication radio button, then click Search, as shown in the
following image.

The Select Window or Group dialog opens, with the current machine name already
indicated in the From this location field, as shown in the following image.

6. Click the Locations button, and expand it until the domain of the machine and all of the
built-in objects of the domain appear.

7. Click Users, and then click OK.

E. Configuring Microsoft SQL Server JDBC Driver Version 6 with Kerberos

Security Guide 227

The Select User or Group dialog returns, but the From this location field now shows Users
instead of the local machine name, as shown in the following image.

8. Click the Advanced button at the lower left of the dialog.

The Select User, Service Account, or Group dialog opens, as shown in the following image.

9. Click the Find now button.

The list box fills with the users of the domain.

10. Select the User ID that is running an instance of SQL Server on the current machine.

11. Click on the name of the SQL Server domain account name and click OK.

The Find property page closes and the list box of the Select User, Service Account, or Group
dialog now displays the selected account in user principal name format.

Setting Up Accounts for the SQL Server

228

12. Click OK to close the dialog, as shown in the following image.

The Login New dialog now shows the SQL server user in Windows 2000 format Domain
\User, as shown in the following image.

On the left side of the dialog, the Select a page section is positioned on General.

13. Click User Mapping and select the database or databases to be used with the ID on
remote connection.

14. Use the Select a page to move to Securables.

15.

16. Click the Search button.

E. Configuring Microsoft SQL Server JDBC Driver Version 6 with Kerberos

Security Guide 229

The Add Objects dialog appears, as shown in the following image.

17. Select All objects of the types… and then click OK.

The Select Object types dialog opens, as shown in the following image.

18. Select the following check boxes, and then click OK.

Endpoints

Logins

Servers

Setting Up Accounts for the SQL Server

230

Server roles

19. In the object selections, ensure that the Permissions for Authenticate Server, Connect SQL,
View database, and any other relevant permissions are selected.

20. Use the Select a Page tool to move to Status and make sure that certain options in the
Settings section, shown in the image below, are enabled.

This must be done for the User for SQL Server connection and may be done for additional
regular SQL Server users.

Procedure: How to Create Service Principal Names

1. Using your web browser, search for and download the Microsoft Kerberos Configuration
Manager for SQL Server, and then install it to your machine with administrator
permissions.

You can install it into the following drive:

C:\Program Files\Microsoft\Kerberos Configuration Manager for SQL Server

No shortcuts or entries are added to the windows Start menu.

E. Configuring Microsoft SQL Server JDBC Driver Version 6 with Kerberos

Security Guide 231

2. Navigate to the location using the windows File Explorer, right-click on the
KerberosConfigMgr.exe, and select Run as Administrator.

The Configuration Manager window opens.

3. Click Connect from the menu bar.

A dialog window opens with the connection parameter credential fields. Do not enter
anything into the fields, as shown in the following image.

4. Click Connect.

The following tabs appear:

System

SPN

Delegation

The System tab shows the connection information on the machine with SQL Server
installed.

Setting Up Accounts for the SQL Server

232

The SPN tab allows you to see the Instance Name and the associated Service Account.
You can scroll to the far right to see the Required SPN. If the SPN is not present in the
Active Directory, then the two buttons Fix and Generate will be enabled. The Generate
option will dynamically create the SPNs on the system and link them to the account. You
can perform this action for as many SPNs as are listed in red (if Fix is selected, the
changes are written to a file to be executed at a later time). It can be useful to keep a
record of the changes, since the will be generated anyway.

When finished, the Status column will have a green check box and the word Good for all
SPNs and accounts.

5. Click Exit on the menu bar (the changes that were made can be saved as an XML
document by selecting Save from the menu bar and providing a file name) to end the
utility.

Registering Manual SPN

Enter the following syntax as a template on the Domain controller:

setspn -A MSSQLSvc/myhost.redmond.microsoft.com:1433 accountname

Your host and domain name should be specified. The account name is the domain user
account, which uses the principal name format.

For named instances, use the following format:

setspn -A MSSQLSvc/myhost.redmond.microsoft.com:1433 accountname

Procedure: How to Configure Security to the SQL Server Service to Delegate Using SPN

1. From the main domain controller in Active Directory Users and Computers, right-click the
computer that you wish to set up for delegation, and then click Trust this computer for
delegation.

E. Configuring Microsoft SQL Server JDBC Driver Version 6 with Kerberos

Security Guide 233

If the computer that is running SQL Server is the last computer contacted (and the
computer has a linked server), the it must also be granted delegation permissions. If it is
not the last computer in the chain, then all the computers that are intermediaries must be
trusted for delegation.

2. Grant delegation permission to the SQL Server service account domain user account.

You must have a domain user account for clustered SQL Server installations.

Note: This step is not required for computers that are running SQL Server and using a
local system account.

3. In the Users folder, right-click the user account, and then click Properties.

4. In the user account properties dialog box, click the Account tab.

5. Under Account Options, select the Account is Trusted for Delegation check box and make
sure that the Account is sensitive and cannot be delegated check box is cleared for this
account.

6. In the Delegation tab, select the Trust this user to specified Services only check box, and
then underneath, select Use Kerberos only.

7. In the Services to which Account can present Delegation list, click Add, and then click the
Users or Computers button.

8. In the Select Computers or Users Dialog, click the Object Types button to show the list of
object types to select.

The following object types are selected by default.

9. In the From this location field, ensure that the current domain (and not the current
machine) is selected.

10. Click Advanced.

11. In the Select Users or Computers dialog that appears, click Find Now to display a list of
computers and users.

Setting Up Accounts for the SQL Server

234

12. Select the user name that was used to run SQL Server, to map the Service Principal Name
to the user object, and complete the Delegation process.

You are returned to the Delegation page of the Account properties, with one or more
entries in the service principal name list.

You can select all or as many entries as you wish, and then click Add to register the
selection in Active Directory.

Procedure: How to Configure the SQL Server Service to Create SPNs Dynamically

The JDBC driver needs these permissions. Do not perform step 12 unless dynamic SPNs are
enabled throughout the enterprise.

To enable the enterprise, you must grant the following access control settings for the SQL
Server service account in the Active Directory directory service:

Read servicePrincipalName

Write servicePrincipalName

Important:

If you use the Active Directory Service Interfaces (ADSI) Edit snap-in, and you incorrectly
modify the attributes of Active Directory objects, serious problems can occur. To resolve
these problems, you may have to reinstall Microsoft Windows Server and Active
Directory. It cannot be guaranteed that these problems can be resolved. Modify these
attributes at your own risk.

You must be logged on as a domain administrator. Alternatively, you must ask your
domain administrator to grant the appropriate permissions and the appropriate user
rights to the SQL Server startup account.

Perform the following steps to configure the SQL Server service to create SPNs dynamically
when the SQL Server service starts:

1. Click Start, select Run, then type Adsiedit.msc in the field, and click OK.

2. In the ADSI Edit pane, expand Domain [DomainName], expand DC= RootDomainName,
expand CN=Users, right-click CN= AccountName, and then click Properties.

Notes:

DomainName is a placeholder for the name of the domain.

RootDomainName is a placeholder for the name of the root domain.

AccountName is a placeholder for the account that you specify to start the SQL Server
service.

E. Configuring Microsoft SQL Server JDBC Driver Version 6 with Kerberos

Security Guide 235

If you specify the Local System account to start the SQL Server service, then the
AccountName is a placeholder for the account that you use to log on to Microsoft
Windows.

If you specify a domain user account to start the SQL Server service, then the
AccountName is a placeholder for the domain user account.

3. In the CN= AccountName Properties dialog box, click the Security tab.

4. On the Security tab, click Advanced.

5. In the Advanced Security Settings dialog box, make sure that SELF is listed under
Permission entries. If SELF is not listed, click Add, and then add SELF.

6. Under Permission entries, click SELF, and then click Edit.

7. In the Permission Entry dialog box, click the Properties tab.

8. On the Properties tab, select This object only in the Apply onto list, and then select the
following check boxes under Permissions:

Read servicePrincipalName

Setting Up Accounts for the SQL Server

236

Write servicePrincipalName

Important: There are many properties and each must be searched for in the list. If they do
not appear, the wrong object is selected or delegation is not enabled on the account.

9. Click OK.

10. In the next dialog that appears, click OK again.

11. In the CN= AccountName Properties dialog box, click Attribute Editor.

12. Under Attributes, click servicePrincipalName in the Attribute column, and then click Edit.

13. This step is for Dynamic SPNs only: In the Multi-valued String Editor dialog box, remove
the service principle names (SPNs) for the instances of SQL Server that use this SQL
Server service account.

Important: You should only delete the SPNs for the instances of SQL Server that you are
currently working on. The other instances of SQL Server that use this service account will
be able to remove the SPNs that are related to these instances the next time that you
start these instances.

14. Exit the ADSI Edit snap-in.

Dynamic SPNs eliminate problems if you change the TCP/IP port or the domain name for
new installations of SQL Server, or for existing instances of SQL Server (though they are
harder to diagnose). For more information, see SQL Server Clustered Server Warning on
page 248.

Connection Rule for NTLM and Kerberos

If a user logs on to SQL Server management studio with a domain account, and the SQL Server
database is installed on the same machine, then the NTLM authentication mode is always
used. If a user logs on with a domain account, and connects to a SQL Server database on
another machine, then Kerberos is used instead of NTLM. JDBC access should always be on a
separate machine from the SQL database and use Kerberos authentication.

For more information, see the Choosing an Authentication Mode section in the Microsoft Tech
Net website at: https://technet.microsoft.com/en-us/library/ms144284(v=sql.105).aspx.

Using Kerberos Authentication With SQL Server

The following conditions apply when using Kerberos authentication with SQL Server:

The client and server computers must be part of the same Windows domain, or in trusted
domains.

E. Configuring Microsoft SQL Server JDBC Driver Version 6 with Kerberos

Security Guide 237

https://technet.microsoft.com/en-us/library/ms144284(v=sql.105).aspx

A Service Principal Name (SPN) must be registered with Active Directory, which assumes
the role of the Key Distribution Center in a Windows domain. The SPN, after it is registered,
maps to the Windows account that started the SQL Server instance service. If the SPN
registration fails or has not been performed, then the Windows security layer cannot
determine the account associated with the SPN, and Kerberos authentication will not be
used.

Cross domain SQL Server usage and authentication does not apply in this use case. For more
information, see the appendix for where to go next on that topic.

You can test the authentication method within the SQL server Management Studio by running
the following syntax:

SELECT auth_scheme FROM sys.dm_exec_connections WHERE session_id = @@spid;

Preparing for the Client

This section describes how to prepare for the client.

Procedure: How to Harden the Java VM Cryptography

1. Obtain a copy of the Java Cryptography Extension (JCE) Unlimited Strength Jurisdiction
Policy Files 8.

2. Unzip the archive and extract the following jar files to the location of the Java Virtual
Machine runtime folder ({jre folder}/lib/security or {jre}\lib\security on linux, moving or
replacing the current jars in the folder):

local_policy.jar

US_export_policy.jar

Ensure that the correct runtime Java Virtual Machine folder is copied, as there may be
multiple versions of java on a machine.

If the jar files are not correct, the following error appears:

Integrated Authentication Failed{guid number}

Procedure: How to Download the SQL Server Driver

1. Download the SQL Server driver version 6 from the Microsoft website at: https://
www.microsoft.com/en-us/download/details.aspx?id=11774.

For Windows machines, the extension is exe. For linux, a gzip tgz.

2. Unpack or install the driver into an appropriate folder.

Preparing for the Client

238

https://www.microsoft.com/en-us/download/details.aspx?id=11774
https://www.microsoft.com/en-us/download/details.aspx?id=11774

Ticket-Granting Tickets for Kerberos

The KDC responds to an authentication service request of a client by returning a service ticket
for itself. This special service ticket is called a ticket-granting ticket (TGT). A TGT enables the
authentication service to safely transport the credentials of the requester to the ticket-granting
service. It is meant only for use by the ticket-granting service.

The following list describes the main uses of a TGT:

An initial ticket from the authentication service of the user.

Used to request service tickets.

A Ticket Granting Ticket is similar to going through airport security, where you are validated
that you are who you say you are. You can enter the secured area, but you will need something
more to get on an actual flight.

Service Tickets

A service ticket enables the ticket-granting service (TGS) to safely transport the credentials of
the requester to the target server or service. A service ticket is used to authenticate with
services other than the TGS and is meant only for the target service.

A service ticket is what gets the credentials the client is providing to the target, in an encrypted
format. The service ticket is a ticket to a particular computer or program.

A Ticket Granting Ticket is the very first thing needed, if this fails, nothing else happens. Once
a client has a TGT, then a service ticket for a particular service can be requested and issued.

Using JAAS

The Java Authentication and Authorization Service is one of several Java modules that can be
plugged for security. This allows applications to use security services without having to hard
code values in the source code of a program. One of the plug-in modules is for Kerberos. A
subject is a set of credentials representing a single entity. For a given subject, for example, a
principal, representing the specifics of the type of subject, such as KRB_NT_PRINCIPAL,
describes the formatting and representation of the credentials. A subject when passed to the
Login module goes through states, (either {initialize, login, commit for success}, or {any error is
initialized, login, abort, with logout the final stage for both}). There are multiple checks during
Kerberos initialization. The Subject is usually the complete FQDN (Fully Qualified Domain
Name) of the user ID and the Kerberos TGT ticket attached to it. The Principal is the FQDN of
the user ID in the following user principal name format:

domainuser@REAL.COM

E. Configuring Microsoft SQL Server JDBC Driver Version 6 with Kerberos

Security Guide 239

A keytab is a file containing pairs of Kerberos principals and encrypted keys (which are derived
from the Kerberos password). You can use a keytab file to authenticate to various remote
systems using Kerberos without entering a password. However, when you change your
Kerberos password, you will need to recreate all your keytabs.

Keytab files are commonly used to allow scripts to automatically authenticate using Kerberos,
without requiring human interaction or access to password stored in a plain-text file. The script
is then able to use the acquired credentials to access files stored on a remote system.

Keytabs are used by the Java Authentication and Authorization Service for login to Kerberos.

The JAAS service uses different modules and parameters for plug-in security. The Kerberos
module is called K5b5LoginModule and has the property required (there are properties for
usage such as optional and so on). The Java Authentication and Authorization Service (JAAS) is
used here solely for the purpose of authentication. For more information, see Using JAAS on
page 239.

Creating a JAAS File for SQL Server Driver for Kerberos

The following syntax shows how to configure the SQL Server Driver to use the
Krb5LoginModule, requiring its use and failing to start the driver if this login module fails. The
debug mode is currently ON debug=True.

The login modules are called in a callback. Using doNotPrompt=true ensures that no screen
texts appear asking for credentials, and fails if the credentials are not found. The Kerberos
default ticket cache will not be use, as shown in useTicketCache=false. The Kerberos
authentication key should be fetched and stored in memory, and the credentials are coming
from the keytab. Optionally, the user principal can be typed in the JAAS file as
user@REALM1.REALM2.COM, overriding the keytab. SQLJDBCDriver is a required term, on linux
in lower case letters

SQLJDBCDriver {
 com.sun.security.auth.module.Krb5LoginModule required
 debug=true
 doNotPrompt=true
 useTicketCache=false
 useKeyTab=true
 keyTab="domainuser.keytab"
};

Placing JAAS Files and Keytabs in iWay Home Root

The keytab file and iwjaas.conf should be put into the iWay Service Manager root folder where
the iWay7 or iWay8 command file is kept.

Using JAAS

240

Windows JAAS File

SQLJDBCDriver {
 com.sun.security.auth.module.Krb5LoginModule required
// refreshKrb5Config=false
 debug=true
 doNotPrompt=true
 useTicketCache=false
 useKeyTab=true
 keyTab="sqls6.keytab"
// principal="user@REALM.COM";

Note: On Linux, sqljdbc must be in lowercase letters.

where:

debug=true note that all values in the principalname MUST exist

Turns on debug mode.

doNotPrompt=true

Does not prompt user for credentials.

useTicketCache=false

Does not use the Kerberos default cache.

useKeyTab=true

Uses a keytab instead of the cache.

keyTab

Is the Keytab name. Paths in this name do not always work.

principal

Overrides the principal in the keytab with this value. Note that all values in the principal
name must exist.

Configuring Kerberos for Windows

The Windows machine must be located in the same domain where Kerberos is installed. The
machine must have delegation enabled in the Domain Controller.

Modifying Windows Registry for Client Machines

You can modify the Windows registry to obtain a ticket, otherwise goes to the Local Security
(LSA)

E. Configuring Microsoft SQL Server JDBC Driver Version 6 with Kerberos

Security Guide 241

HKEY_LOCAL_MACHINE\System\CurrentControlSet\Control\Lsa\Kerberos\Parameters
Value Name: allowtgtsessionkey
Value Type: REG_DWORD
Value: 0x01

Setting Up Environmental Variables

To access Environmental Variables, right-click the Windows 10 Start menu, click Control Panel,
select System, click Advanced system settings, and then click Environmental Variables.

You can set the following values as SYSTEM Variables:

KRB5_CONFIG = path to krb.ini
KRB5_TRACE = /dev/stdout

You must shut down and then start your Windows machine after making this change. Do not
restart your machine.

Configuring the Kerberos Client

Perform the following steps for easier connection confirmation during testing:

1. Download and install the MIT Kerberos client for Windows from the MIT website:

http://web.mit.edu/kerberos/dist/

2. When installation is complete, reboot your system.

A Kerberos icon will appear on your desktop after restarting your machine.

3. Double-click the Kerberos icon to open Kerberos.

If all server configurations are complete, a Kerberos ticket will be obtained and will appear
in the dialog windows as userid@domain.suffix (user principal name format).

Procedure: How to Create a Keytab on Windows

The ktpass command is used to create a keytab from the Domain Controller only. To create a
keytab:

1. Create a folder in a non-Windows namespace area.

2. Open a command shell and use the following syntax as a template:

ktpass /princ myuser@REALM1.REALM2.COM /pass pass /ptype
KRB5_NT_PRINCIPAL /crypto AES256-SHA1 /kvno 1 /out out.keytab

Note: The principal is the name of the user ID where the service principal name is
mapped.

Configuring Kerberos for Windows

242

http://web.mit.edu/kerberos/dist/

where:

myuser

Is a real user name that you can use.

REALM1

Can be renamed to a real realm name and must only be one level or multiple levels
deep.

pass

Is a real password that you can enter.

/out

The name of the keytab or name to use for the keytab. Do not use the /mapuser
switch because it will overwrite the user principal name in the user account with what
is entered after the switch. The principal name in the keytab must exactly match the
real account credential name. If you skip this flag and ignore the warning, the Service
Principal Name will carry the mapping between principal and user.

[-/] crytpo

Can be one of the following:

DES-CBC-CRC: for compatibility

DES-CBC-MD5: for compatibility

RC4-HMAC-NT: default 128-bit encryption

AES256-SHA1: AES256-CTS-HMAC-SHA1-96

AES128-SHA1: AES128-CTS-HMAC-SHA1-96

All: All supported types

Note: AES-128 or AES-256 are recommended for highest security. Check with the
Active Directory administrator for the highest level supported.

3. Enter a real user name for myuser from the syntax above.

Downloading a Keytab to a Client Machine

You can map a drive using Windows Explorer and download the keytab to the windows client
machine that will use the keytab. A keytab is not specific to a machine, but to a domain.

E. Configuring Microsoft SQL Server JDBC Driver Version 6 with Kerberos

Security Guide 243

Configuring Kerberos for Linux

This section describes how to install the Kerberos Workstation for Linux.

Procedure: How to Install Kerberos Workstation

1. Install the Kerberos Workstation files (not the server files) for the linux distribution using
yum, dnf, yast, or another tool.

The installation will install a krb5.conf file in the /etc folder. Some linux distros have a
graphical Kerberos connect tool similar to Windows.

2. Connect the workstation to Active Directory using Samba and Windbind on the Linux OS.

The Linux workstation must be connected to Active Directory, as shown in the following
image.

For more information on using Linux on Windows machines, see the Microsoft website at:
https://technet.microsoft.com/en-us/library/2008.12.linux.aspx.

For more information on configuring Samba, see the Samba website at: https://
www.samba.org/samba/docs/using_samba/ch03.html.

For more information on WinBind, see: https://www.samba.org/samba/docs/man/Samba-
HOWTO-Collection/winbind.html.

Joining the Samba Server to the PDC Domain

All machines participating in domain security should be members of the domain. This applies
also to the PDC and all BDCs.

Configuring Kerberos for Linux

244

https://technet.microsoft.com/en-us/library/2008.12.linux.aspx
https://www.samba.org/samba/docs/using_samba/ch03.html
https://www.samba.org/samba/docs/using_samba/ch03.html
https://www.samba.org/samba/docs/man/samba-howto-collection/winbind.html
https://www.samba.org/samba/docs/man/samba-howto-collection/winbind.html

The process of joining a domain requires using the Net RPC join command. This process
communicates with the domain controller it registers with (usually the PDC) through MS DCE
RPC. This means, of course, that the SMBD process must be running on the target domain
controller. It is therefore necessary to temporarily start Samba on a PDC so that it can join its
own domain.

Enter the following command to make the Samba server join the domain, where PDC is the
name of your PDC and Administrator is a domain user who has administrative privileges in the
domain.

Note Before attempting to join a machine to the domain, verify that Samba is running on the
target domain controller (usually PDC) and that it is capable of being reached via ports 137/
udp, 135/tcp, 139/tcp, and 445/tcp (if Samba or Windows Server 2Kx).

The following syntax shows the use of the Net RPC join facility:

root# /usr/local/samba/bin/net rpc join -S PDC -U Administrator

The proper response to the command is:

Joined the domain DOMAIN

where:

DOMAIN

Is your domain name.

Setting Environmental Variables as a Global Scope

The following syntax shows how to set the environmental variables as a global scope.

KRB5_CONFIG = path to /etc/krb5.conf
KRB5_TRACE = /dev/stdout

Creating a Keytab on Linux

To create a keytab:

type ktutil
ktutil: addent -password -p myuser@REALM1.REALM2.COM -k 1 -e aes256-cts-
hmac-sha1-96 (addentry)
ktutil: wkt /apps/kerberos/myuser.keytab (write keytab)
ktutil:quit

Procedure: How to Initialize a Keytab on Windows and Linux

Before initializing the keytab, make sure you are using Java Kerberos, since there are also MIT
Kerberos, Microsoft Kerberos, and Heimdal Kerberos that may be installed on the machine.
Ensure none of the others are in the PATH variable.

E. Configuring Microsoft SQL Server JDBC Driver Version 6 with Kerberos

Security Guide 245

The Kinit program of Java can be found in the jre/bin folder.

On Windows and Linux, the following command line is the same:

kinit -V exampleuser@INNERREALM.OUTERREALM.COM -k -t exmpleuser.keytab

1. On Linux and Windows, type klist tickets to see any ticket obtained.

2. Type klist tgt to see information about the key server.

3. To start over for the kinit on Windows, type klist purge.

4. To start over for the kinit on Linux, type kdestroy-A.

Usage: kinit [-A] [-f] [-p] [-c cachename] [[-k [-t keytab_file_name]]
[principal] [password]
 available options to Kerberos 5 ticket request:
 -A do not include addresses
 -f forwardable
 -p proxiable
 -c cache name (i.e., FILE:\d:\myProfiles\mykrb5cache)
 -k use keytab
 -t keytab file name
 principal the principal name (i.e., qweadf@ATHENA.MIT.EDU
qweadf)
 password the principal's Kerberos password
Since the keytab already has a principal and password via ktutil or
ktpass, there is no need to enter them.

Creating Batch Jobs for Credential Expiration and Renewal on Windows and Linux

Depending on the Windows Domain settings, the credentials in a keytab expire in a short
period.

Run the kinit command in a cron job on linux or a regularly scheduled service on Windows.

When the credentials expire, there is no error indications, but dialogs such as Logging
Exception, User Principal Invalid, and several other messages may appear to mislead you.

Modifying the JAAS Configuration File

Modify the JAAS configuration file and enter the name of the current keytab in the filename.

Modifying the KRB5 Configuration File

Modify the krb5.conf file so it appears similar to the krb5.conf file found in Kerberos
Configuration File (krb5.conf) on page 248.

On Windows, it is good practice to put krb5.ini in the \Windows folder. On Linux, it should
be /etc/krb5.config.

Debugging Setup (optional)

Joining the Samba Server to the PDC Domain

246

For initial DEBUG setup, modify the logging.properties file in SQL Server driver installation
directory, and add the following syntax:

com.microsoft.sqlserver.jdbc.level = ALL

Procedure: How to Configure iWay Service Manager

1. Start iWay Service Manager.

2. From the iWay console, click Server and then select Java Settings.

3. In the Property field, enter the following syntax:

java.security.krb5.conf

4. In the Value field, enter the path and file name to the krb5.conf file, for example:

c:\krb\krb5.conf

5. Click Add.

6. In the Property field, enter the following syntax:

java.security.auth.login.config

7. In the Value field, enter the path and file name to the JAAS login configuration file, for
example:

C:\logon\logon.conf

8. Click Add.

9. In the Property field, enter the following syntax:

sun.security.krb.debug

10. In the Value field, enter the following:

true

11. Click Add.

12. After the setup is confirmed and working, come back and delete the last property.

13. In the iWay console, click Providers and then select Data Provider.

14. In the JDBC area, click New.

15. Enter the proper parameters for a SQL Server JDBC connection, with the proper JDBC
connection string, as shown in the following syntax:

jdbc:sqlserver://myserver/mydb.INNER.OUTER.COM:1433;databaseName=Fido;

16. You must end the connection string with the following syntax:

integrated Security=true;authenticationScheme=JavaKerberos

E. Configuring Microsoft SQL Server JDBC Driver Version 6 with Kerberos

Security Guide 247

17. Do not enter anything in the User or Password field.

18. Complete the rest of the form, and then click Update.

19. Stop and close iWay Service Manager, and then restart it.

20. Return to the JDBC driver screen, and then click the Test button to confirm that the
connection is working.

The Kerberos debug information will print in the iWay console window, You can find the
domain name and SPN in the debug information, but all other data other than the
Kerberos messages are encrypted.

If the connection is OK, a Success message will print in the driver window.

21. If everything is ok, return to the Java Settings and remove the Kerberos debug setting.

22. If there are any errors, debug the Kerberos issues until the issues are resolved.

Kerberos Configuration File (krb5.conf)

Create a krb5.conf file and enter or change the following properties:

[logging]
 default = FILE:{location}
[libdefaults]
 default_realm = MY.DOMAIN.SUFFIX (enter uppercase domain name)
 dns_lookup_realm = false
 dns_lookup_kdc = false
 ticket_lifetime = 24h
 renew_lifetime = 7d
 forwardable = true
 allow_weak_crypto = true
uncomment if compatibility problems arise
#default_tkt_enctypes = aes256-cts-hmac-sha1-96 aes128-cts des3-cbc-sha1
rc4-hmac #arcfour-hmac-md5 des-cbc-md5 des-cb
#c-crc
#default_tgs_enctypes = aes256-cts-hmac-sha1-96 aes128-cts des3-cbc-sha1
rc4-hmac #arcfour-hmac-md5 des-cbc-md5 des-cb
#c-crc
#permitted_enctypes = aes256-cts-hmac-sha1-96 aes128-cts rc4-hmac arcfour-
hmac-#md5
[realms]
MY.DOMAIN.SUFFIX { (enter uppercase domain name)
 kdc = my.domain.suffix (enter lowercase domain name)}

SQL Server Clustered Server Warning

It is recommended that you do not grant the WriteServicePrincipalName right to the SQL
service account when the following conditions are true:

There are multiple domain controllers.

Kerberos Configuration File (krb5.conf)

248

SQL Server is clustered.

In this scenario, the SPN for the SQL Server may be deleted because of latency in Active
Directory replication. This may cause connectivity issues to the SQL Server instance.

Assume that you have the following:

An SQL virtual instance named Sqlcluster with two nodes: Node A and Node B.

Node A is authenticated by domain controller A, and Node B is authenticated by domain
controller B.

The following may occur:

The Sqlcluster instance is active on Node A, and registered the SQL SPN in domain
controller A during start up.

The Sqlcluster instance fails over to Node B when Node A is shutdown normally.

The Sqlcluster instance deregistered its SPN from domain controller A during the shutdown
process on Node A.

The SPN is removed from domain controller A, but the change has not yet been replicated
to domain controller B.

When starting up on Node B, the Sqlcluster instance tries to register the SQL SPN with
domain controller B. Since the SPN still exists, Node B does not register the SPN.

After some time, domain controller A replicates the deletion of the SPN (from step 3) to
domain controller B as part of Active Directory replication. The end result is that no valid
SPN exists for the SQL instance in the domain and hence you see connection issues to the
Sqlcluster instance.

E. Configuring Microsoft SQL Server JDBC Driver Version 6 with Kerberos

Security Guide 249

SQL Server Clustered Server Warning

250

AppendixF
WSO2 Identity Server Support

This section describes how to configure support for WSO2 Identity Server through iWay
Service Manager (iSM).

In this appendix:

WSO2 Identity Server Introduction

Installing and Configuring WSO2 Identity Server

Configuring iWay Service Manager

Developer Notes

WSO2 Identity Server Introduction

The WSO2 Identity Server is an open source identity and entitlement management server with
support for eXtensible Access Control Markup Language (XACML). This server can be leveraged
by iWay Service Manager (iSM) to authenticate users and authorize access. For more
information about the XACML specification, refer to the following website:

http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html

The WSO2 realm can validate users against a user store in WSO2 Identity Server. The list of
roles is accessible in the principal returned by the realm.

The following iSM components can be used together to check whether access to a resource is
authorized:

XACML Provider

XACML Service (com.ibi.agents.XDXacmlAgent)

iSM acts as a Policy Enforcement Point (PEP) calling an external Policy Decision Point (PDP)
running in WSO2 Identity Server.

These two features can be used independently or together. For example, it is possible to use
the WSO2 realm and authorize access explicitly by testing the roles in the principal.
Conversely, it is possible to use any iSM user realm and authorize access with XACML.

Security Guide 251

http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html

Installing and Configuring WSO2 Identity Server

This section describes how to install and configure WSO2 Identity Server.

Procedure: How to Install WSO2 Identity Server

1. Download the WSO2 Identity Server binary distribution from the following website:

http://wso2.com/products/identity-server

The WSO2 Identity Server binary is packaged as a .zip file (wso2is-4.1.0.zip).

2. Unzip the wso2is-4.1.0.zip file to a directory on your file system.

3. To run WSO2 Identity Server, navigate to the <WSO2_Home>\bin directory and run the
wso2server.bat file.

Note: By default, WSO2 Identity Server uses port 9999 for the JMXServerManager. This
conflicts with the default console port that is used by the iSM base configuration. For a
quick workaround, you can start iSM before WSO2 Identity Server, which will start the
WSO2 Identity Server without JMX. For a more permanent solution, change the console
port of the iSM base configuration or can change the RMIRegistryPort setting in the
carbon.xml file, which is located in the <WSO2_Home>\repository\conf directory. For
example:

<RMIRegistryPort>9999</RMIRegistryPort>

4. To stop WSO2 Identity Server, type Control-C in the command prompt window and press
Enter.

5. To open the WSO2 Identity Server console, enter the following URL in your browser:

https://localhost:9443/carbon/

Note: The browser will generate a message, which indicates that the certificate is not
valid. You can ignore this message and continue. In addition, the menu might not appear
correctly if you are using a Microsoft Internet Explorer Version 10 browser. However, it
looks better using a Google Chrome browser.

6. Enter admin for the user name and password to log on as the default administrator
account.

Procedure: How to Extract and Import the SSL Certificate for WSO2 Identity Server

The Secure Sockets Layer (SSL) certificate of WSO2 Identity Server is stored in the KeyStore
defined by the <KeyStore> entry in the carbon.xml file, which is located in the <WSO2_Home>
\repository\conf directory. For example:

Installing and Configuring WSO2 Identity Server

252

http://wso2.com/products/identity-server

<KeyStore>
 <Location>${carbon.home}/repository/resources/security/wso2carbon.jks
 </Location>
 <Type>JKS</Type>
 <Password>wso2carbon</Password>
 <KeyAlias>wso2carbon</KeyAlias>
 <KeyPassword>wso2carbon</KeyPassword>
</KeyStore>

The default WSO2 SSL certificate is self-signed. Since there is no Certificate Authority (CA), you
need that certificate itself in your TrustStore to validate it. This explains the warning message
generated in the browser when accessing the console because the self-signed certificate is not
in the browser trust store.

For a quick test, you can use the wso2carbon.jks KeyStore itself as a TrustStore. However, a
better approach would be to extract the certificate by using the following command:

keytool -exportcert -alias wso2carbon -file wso2carbon.cert -keystore wso2carbon.jks -
storetype JKS -storepass wso2carbon

Then import the certificate within an empty KeyStore or an existing TrustStore by using the
following command:

keytool -importcert -trustcacerts -alias wso2carbon -file wso2carbon.cert -keystore
wso2ts.jks -storetype JKS -storepass wso2password

This is the technique that was used to produce the wso2ts.jks KeyStore. For example:

iwcore/test/data/providers/keystores/wso2ts.jks

The best solution is to create a real SSL server certificate for WSO2 Identify Server and
configure it in the carbon.xml file. Then you would put the CA of that certificate in our
TrustStore. This is only required for production environments.

Procedure: How to View WSDL Files of Web Services Implemented in WSO2 Identity Server

To view the WSDL files of web services implemented in WSO2 Identity Server, you must first
instruct the server to unhide these files.

1. Edit the carbon.xml file, which is located in the <WSO2_Home>\repository\conf directory.

2. Change the HideAdminServiceWSDLs setting to false. For example:

<HideAdminServiceWSDLs>false</HideAdminServiceWSDLs>

The description of the web services called by iSM can be viewed using the following URLs:

https://localhost:9443/services/RemoteUserStoreManagerService?wsdl

F. WSO2 Identity Server Support

Security Guide 253

https://localhost:9443/services/EntitlementService?wsdl

Procedure: How to Debug WSO2 Identity Server

To debug WSO2 Identity Server, you must enable log4j debugging by using one of the following
options:

1. Edit the log4j.properties file, which is located in the <WSO2_Home>\repository\conf
directory.

2. In the WSO2 Identity Server console, click Configure, select Logging, and change any
required loggers to the TRACE level.

Note: Modifying these logging settings using the WSO2 Identity Server console saves the
settings in the repository, but not in the log4j.properties file. The repository overrides what is
defined in the log4j.properties file.

Configuring WSO2 Users and Roles

If you use WSO2 Identify Server only to authorize access with XACML, then there is no need to
create users and roles. You can proceed directly to Configuring XACML Policies on page 254.

Procedure: How to Create a New User

1. Click Configure in the left pane, followed by Users and Roles, Users, and then Add New
User.

2. Enter a user name and password for the new user.

3. Click Next, select the existing roles you want to assign to the new user and then click
Finish.

Procedure: How to Create a New Role

1. Click Configure in the left pane, followed by Users and Roles, Roles, and then Add New
Role.

2. Enter a name for the new role and then click Next.

3. Since the WSO2 permissions are not relevant to iSM users, click Next.

4. Enter a regular expression to display a list of users.

5. Select which existing users belong to that role and then click Finish.

Configuring XACML Policies

If you use WSO2 Identify Server only to authenticate users, then there is no need to create
XACML policies.

Installing and Configuring WSO2 Identity Server

254

To create an XACML policy from scratch, use the simple editor or the advanced editor.

Procedure: How to Create XACML Policies

1. Click Main, followed by Administration, and then Add New Entitlement Policy.

2. You can import an XACML policy by clicking Main, followed by Administration, and then
Import New Entitlement Policy.

3. Choose File System.

4. Click Choose File to open the dialog that allows you to select the file.

5. Click Upload.

There are two policy files that can be imported for testing:

components\iwcore\test\data\providers\xacml\policy1.txt

components\iwcore\test\data\providers\xacml\policy2.txt

6. Once imported, click Promote to PDP next to each policy.

WSO2 Identity Server Version 4.1.0 accepts the XACML Version 3 schema. You will
receive an error if you try to import a policy written for the XACML Version 2 schema.
Ensure that you have the correct version if you experiment with a sample policy you found
on the web.

The XACML engine inside WSO2 Identity Server is called Balana.

Procedure: How to Debug XACML Policies

To debug an XACML policy, you must enable log4j debugging by using one of the following
options:

1. Edit the log4j.properties file, which is located in the <WSO2_Home>\repository\conf
directory.

2. In the WSO2 Identity Server console, click Configure in the left pane, select Logging.

You want to turn on TRACE level for loggers with the word entitlement and/or the word
balana in the name.

Configuring iWay Service Manager

The following list outlines the configuration steps that are required in iWay Service Manager
(iSM).

1. Configure a KeyStore Provider to serve as the TrustStore.

F. WSO2 Identity Server Support

Security Guide 255

The KeyStore file must contain the root Certificate Authority (CA) that signed the Secure
Sockets Layer (SSL) certificate used by WSO2 Identity Server. By default, the SSL
certificate is self-signed, so the root CA is the SSL certificate itself.

2. Configure an SSL Context Provider.

Select the KeyStore Provider that was configured in step 1 for the TrustStore. The KeyStore
can remain empty. The Security Protocol is TLS or higher.

3. Configure an HTTP Client Provider.

Select the SSL Context Provider that was configured in step 2 for the SSL Context

4. Continue the iSM configuration with the remaining topics in this section that are applicable.

For more information on how to configure a KeyStore Provider, SSL Context Provider, and HTTP
Client Provider, see the iWay Service Manager User’s Guide.

Configuring an Authentication Realm for WSO2 Identity Server

If you use WSO2 Identify Server only to authorize access with eXtensible Access Control
Markup Language (XACML), then there is no need to create a WSO2 realm. You can proceed
directly to Configuring the XACML Provider and XACML Service on page 263.

Configuring iWay Service Manager

256

Procedure: How to Configure an Authentication Realm for WSO2 Identity Server

1. In the iWay Service Manager Administration Console, click Server in the top pane, and
then click Authentication Realms in the left pane, as shown in the following image.

F. WSO2 Identity Server Support

Security Guide 257

The Authentication Realms pane opens, as shown in the following image.

2. Click New.

The Authentication Realm pane opens, as shown in the following image.

3. From the Realm Type drop-down list, select wso2realm.

Configuring iWay Service Manager

258

The Authentication Realm pane is refreshed for the specific type of realm (in this case,
WSO2), as shown in the following image.

4. Enter a name for the new realm you are creating (for example, wso2realm_test).

5. Enter the name of the Provider and the location of the WSO2 Identity Server.

6. Enter the URL where WSO2 Identity Server can be accessed.

7. Specify the user name and password for the administrator account in WSO2 Identity
Server.

The default user name and password is admin.

This account is used to login to WSO2 Identity Server through HTTP Basic Authentication.
The password is sent essentially in clear text, but the connection is using SSL.

8. From the HTTP Client Provider drop-down list, select the HTTP Client Provider that you
defined earlier for the HTTP Client.

9. Click Add.

F. WSO2 Identity Server Support

Security Guide 259

Procedure: How to Configure a Listener

Configure a listener that is realm-aware (for example, the NHTTP listener).

1. In the iWay Service Manager Administration Console, click Registry in the top pane, and
then click Listeners in the left pane, as shown in the following image.

Configuring iWay Service Manager

260

The Listeners pane opens, as shown in the following image.

2. Click Add.

The Select listener type pane opens, as shown in the following image.

3. Select HTTP 1.1 [nonblocking] (nhttp) from the Type drop-down list and click Next.

F. WSO2 Identity Server Support

Security Guide 261

The configuration parameters for the NHTTP listener are displayed.

4. Specify a port where HTTP requests will be received.

5. Scroll down to the Authentication Realm parameter and enter the name of the WSO2
realm that was configured in the iSM Administration Console.

6. From the Authentication Scheme drop-down list, select Basic Auth {httpbasic}.

Note: Basic Auth is insecure unless it operates under HTTPS.

7. Click Next at the bottom of the page to continue.

Configuring iWay Service Manager

262

A listener name and description pane opens, as shown in the following image.

8. Enter a name for the selected listener and a brief description (optional).

9. Click Finish.

When this listener is deployed as part of a channel, it will ask for a user name and password,
which will be checked against the user store within WSO2 Identity Server.

Configuring the XACML Provider and XACML Service

If you use WSO2 Identify Server only to authenticate users, then there is no need to create an
XACML Provider or an XACML service.

F. WSO2 Identity Server Support

Security Guide 263

Procedure: How to Configure the XACML Provider

The XACML Provider helps centralize the XACML Policy Decision Point (PDP) configuration. It
can also be used later as the site of a future XACML cache.

1. In the iWay Service Manager Administration Console, click Server in the top pane, and
then click Authorization Provider in the left pane, as shown in the following image.

Configuring iWay Service Manager

264

The Authorization Provider pane opens, as shown in the following image.

2. Click New.

The XACML Provider pane opens, as shown in the following image.

3. Enter a name for the new XACML Provider you are creating (for example,
xacml_provider_test).

4. In the PDP URL field, the default service location for the server is entered as follows:

https://localhost:9443/services/
EntitlementService.EntitlementServiceHttpsSoap11Endpoint/

F. WSO2 Identity Server Support

Security Guide 265

Currently, the XACML provider assumes that the service location accepts SOAP 1.1.

5. Specify the user name and password for the administrator account in WSO2 Identity
Server.

The default user name and password is admin.

6. From the HTTP Client Provider drop-down list, select the HTTP Client Provider that you
defined earlier for the HTTP Client.

7. Click Add.

Procedure: How to Configure the XACML Service

1. Create a process flow and add a Service object that points to XACML Service
(com.ibi.agents.XDXacmlAgent).

2. Enter values for the XACML Service parameters as listed and described in the following
table.

Parameter Description

Subject Determines who is requesting access to the resource. Enter
the following:

enter _getprin('user')

This assumes the process flow is running under a listener
configured with an authentication realm. This function returns
the name of the logged in user, which is taken from the
current principal.

Resource Enter the name of the resource for which you wish to authorize
access.

Action Enter the type of action you wish to authorize (for example,
read).

Note: The Resource name and the Action is arbitrary, but it
must be agreed with the XACML policy author.

XACML Provider The name of the XACML Provider you configured earlier (for
example, xacml_provider_test), which is used to send the
XACML request.

3. Save the settings for the Service object for XACML Service (com.ibi.agents.XDXacmlAgent).

Configuring iWay Service Manager

266

The XACML Service returns as success if the Policy Decision Point (PDP) returns Permit
and fail_security otherwise. The actual decision from the PDP is available in the
xacml_decision Special Register (SREG) if there is a need to distinguish Deny,
NotApplicable, or Indeterminate.

The XACML Service calls the EntitlementService of the WSO2 Identity Server.

A sample request document can have the following structure:

<env:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ws="http://org.apache.axis2/xsd">
 <env:Body>
 <ws:getDecisionByAttributes>
 <ws:subject>user1</ws:subject>
 <ws:resource>http://localhost:9999/resource1</ws:resource>
 <ws:action>read</ws:action>
 </ws:getDecisionByAttributes>
 </env:Body>
 </env:Envelope>

Within WSO2 Identity Server, this is mapped to an XACML request document, which has the
following structure:

<Request xmlns="urn:oasis:names:tc:xacml:3.0:core:schema:wd-17"
ReturnPolicyIdList="false" CombinedDecision="false">
 <Attributes Category="urn:oasis:names:tc:xacml:1.0:subject-
category:access-subject">
 <Attribute IncludeInResult="false"
AttributeId="urn:oasis:names:tc:xacml:1.0:subject:subject-id">
 <AttributeValue DataType="http://www.w3.org/2001/
XMLSchema#string">user1</AttributeValue>
 </Attribute>
 </Attributes>
 <Attributes Category="urn:oasis:names:tc:xacml:3.0:attribute-
category:resource">
 <Attribute IncludeInResult="false"
AttributeId="urn:oasis:names:tc:xacml:1.0:resource:resource-id">
 <AttributeValue DataType="http://www.w3.org/2001/
XMLSchema#string">http://localhost:9999/resource1
 </AttributeValue>
 </Attribute>
 </Attributes>
 <Attributes Category="urn:oasis:names:tc:xacml:3.0:attribute-
category:action">
 <Attribute IncludeInResult="false"
AttributeId="urn:oasis:names:tc:xacml:1.0:action:action-id">
 <AttributeValue DataType="http://www.w3.org/2001/
XMLSchema#string">read</AttributeValue>
 </Attribute>
 </Attributes>
 </Request>

A sample response document from the EntitlementService can have the following structure:

F. WSO2 Identity Server Support

Security Guide 267

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">
 <soapenv:Body>
 <ns:getDecisionByAttributesResponse xmlns:ns="http://
org.apache.axis2/xsd">
 <ns:return><![CDATA[<Response xmlns="urn:oasis:names:tc:xacml:
3.0:core:schema:wd-17">
 <Result>
 <Decision>Deny</Decision>
 <Status>
 <StatusCode Value="urn:oasis:names:tc:xacml:1.0:status:ok"/>
 </Status>
 </Result>
 </Response>]]></ns:return>
 </ns:getDecisionByAttributesResponse>
 </soapenv:Body>
 </soapenv:Envelope>

Notice the XACML response is returned as a string, and not as embedded XML.

Developer Notes

To view the names of all web service names implemented by WSO2 Identity Server, enter the
following command to start the server with the OSGi console enabled:

wso2server.bat –DosgiConsole

The black console will now show a prompt and accept commands. Type help to see a list of
supported commands. To view the list of web services, type listAdminServices.

A long list of web service names is displayed.

Developer Notes

268

AppendixG
User-Defined Permissions and Roles

This section describes how to configure the user-defined permissions and roles.

User-defined permissions enable an application to validate authority to perform an action
in a flow. In a process flow or an agent configuration, an iFL statement can check for the
presence of the named permission and take action accordingly.

For example, permissions can be assigned to a role that allows a specific source of
message (which contains its own credentials that are validated through the XDPrincipal
agent) to take action in the flow depending on the permission assigned to the
credentials.

In this appendix:

Using Realms, Roles, and Permissions

Server Roles

Security Guide 269

Using Realms, Roles, and Permissions

Used in conjunction with the Authentication Realm and console settings of Service Manager,
the Security officer can allocate and restrict access of the user to the Service Manager
toolsets based on roles and role assignment to users. The following example uses the
simplest propsrealm for illustration.

Using Propsrealm

The propsrealm is short for the properties realm. It is a properties file that contains the
security information that the Security Officer sets up to control access to iWay Service
Manager.

Using Realms, Roles, and Permissions

270

The following image shows the realm parameters for propsrealm.

Enter the name and location of the security properties file, and a brief description of the realm.

Using the Security Property File

The security properties file is used by propsrealm to authenticate users and grant those users
access to iWay Service Manager functions.

The following image is an example of a security properties file.

The file contains the following users:

WebSphere_service@ibi.com
pgmtst2@ibi.com
pgmtst4@ibi.com
kc05418
kc05418.role0
aw01@ibi.com
cw01@ibi.com

G. User-Defined Permissions and Roles

Security Guide 271

Each user in the properties file has a password followed by any number of roles (labeled role0
through roleN) that the Security Officer assigns.

For more information on roles, see Server Roles [XREF].

Using the Realm

Do not change the console realm if your Security Officer has not set up all roles and
permissions before this point. If everything is in place (all roles and permissions assigned),
you will be ready to replace the Authentication Realm of the console.

To use the newly created propsrealm, it will have to be configured in the Console Settings.

1. Under Settings on the left pane of Service Manager, click Console Settings, as shown in the
following image.

2. From the Authentication Realm drop-down list, select the propsrealm that you created, as
shown in the following image.

3. Stop and restart Service Manager for the changes to take effect.

Procedure: How to Create User-Defined Permissions

To create user-defined Permissions:

1. Click Management on the Service Manager home page, as shown in the following image.

Using Realms, Roles, and Permissions

272

2. Under Server Management on the left menu pane, click User Defined Permissions, as
shown in the following image.

A list of all currently defined User Permissions appears.

The following image shows no permissions defined.

Procedure: How to Add a User-Defined Permission

To add a User Defined Permission to iWay Service Manager:

1. Click the Add button.

G. User-Defined Permissions and Roles

Security Guide 273

The new permission is added to the end of the current listing. The following image shows
only the new permission added. No other permissions have been defined.

The following table lists and describes the field parameters.

Parameter Description

Permission Name The Permission Name field must consist
of a lower case string of characters that
should not contain any imbedded
whitespace characters (for example,
spaces, tab, and so on). The name does
not necessarily need to describe the
permission (for example, allowview,
accessforma, viewemppayroll).

Permission Description The Permission Description field allows
you to provide a detailed explanation of
the permission. This explanation will be
displayed later in the Server Roles
management page. The Permission
Description can be phrases such as Allow
view of payroll, Allow update of payroll, or
View profit report. However, the
Permission description must be detailed
enough to get the permissions scope
understood.

Using Realms, Roles, and Permissions

274

Parameter Description

Enter help for this Permission The Enter help for this Permission field
allows you to provide a more detailed
description of the scope of the
permission. This description will be
displayed later in the Server Roles
management page when the mouse
cursor is hovered over the permission
description.

The following image shows the Permission Description.

The following image shows the Server Role page displaying the Enter Help for this
Permission tool tip.

G. User-Defined Permissions and Roles

Security Guide 275

2. Click Apply Changes when you are satisfied that the permission name, description, and
help text are complete, as shown in the following image.

If you do not click the Apply Changes button, or exit the screen by selecting another menu
option or clicking Back, any changes made will be lost.

Updating Permissions

When the changes have been applied to iWay Service Manager, you will no longer be able to
change the name of the permission. The only fields that may be changed are the Permission
Description and the Enter help for this Permission, as shown in the following image.

Once you have completed entering the permission description and the permission help text,
click Apply Changes.

Similar to adding a permission, if you do not click the Apply Changes button and instead exit
the screen either by selecting another menu option or by clicking the Back button, any changes
made will be lost.

Using Realms, Roles, and Permissions

276

Deleting a Permission

In general, you can click the Delete button to delete permissions permanently from Service
Manager if a single permission or several permissions become obsolete.

You can delete a single permission by selecting the check box preceding the permission name.
For example, the Delete the employee information(deleteempinfo) is no longer a stand-alone
permission, but has been combined into the Edit the employee Information (deleteempinfo)
permission.

To delete the deleteempinfo permission:

1. Select the deleteempinfo permission check box, as shown in the following image.

2. Click the Delete button.

The following confirmation dialog box appears:

3. Click OK to confirm the deletion of the permission from the list.

G. User-Defined Permissions and Roles

Security Guide 277

The permission no longer appears in the list of permissions, as shown in the following
image.

Similar to the Add and Update functions, any deletions are not finalized until you click Apply
Changes. When a permission is deleted, any roll with that permission granted will have that
permission removed.

Note: Selecting the check box at the top of the list in the heading row of the table either
selects all check boxes or clears them from the permission list. The following image shows the
heading check box selected, in order to select all permissions from the list.

Using Realms, Roles, and Permissions

278

Server Roles

Under the Server Management section on the left pane, click Server Roles, as shown in the
following image.

The Server Roles page appears, displaying a list of all currently crated roles for iWay Service
Manager, as shown in the following image.

G. User-Defined Permissions and Roles

Security Guide 279

Procedure: How to Add Roles

To add a new Server Role to iWay Service Manager:

1. From the Server Roles page, click Add.

The Server Roles maintenance pane appears, as shown in the following image.

The following table lists and describes the parameters of the maintenance pane.

Parameter Description

Name Enter a name for this role. This name can
be used in the following iFL function to
verify that the user has this specific role:

_hasrole(name)

Description Enter a description that will allow you to
know what the role is used for while
viewing the list of Server Roles. Be as
descriptive as possible.

Server Roles

280

Parameter Description

Apply To This field is used to identify the scope of
the role. It is further subdivided into the
following sections:

Applications or Configurations list.
This section allows the Security officer
to select a value from scopes currently
defined in the Security file, or select a
value from current configurations and
applications.

Selecting the Current Security File
radio button loads the Applications or
Configuration drop-down list with
values that currently have been
implemented in the Security file.

Selecting the Current Configuration
radio button loads the Applications or
Configuration drop-down list with
Configurations and Applications that
this instance on the Service Manager
controls.

Application or Configuration. This
field defines the scope of influence of
the role. A blank entry in this field
indicates that the scope of the roll is
general. The general scope is applied
to a role if the role does not have a
specific permission within the scope
that it was defined. You can either
select an entry from the drop-down list
of values which contain the currently
defined Service Manager
configurations, applications, and
patterns, or enter a new Regular
Expression pattern for this role to use.

G. User-Defined Permissions and Roles

Security Guide 281

Parameter Description

Apply To (continued) A regular expression is a special
sequence of characters that use a
specialized syntax to develop the
matching pattern.

For example, if role1 is general (blank
field in Application or Configurations), then
role1 has the Can use Stop Command
permission granted. Any user that has
role1 assigned, can use the console stop
command on any instance of iWay Service
Manager. If however the Application or
Configuration field contains a value for
role1, for example base1, then that
scoping prevents the user from using the
console stop command on any instance
other than base1.

If you have five Service Manager
instances (for example, base, base001,
baseA, base2, and baseB), you can
create a regular expression patterned for
the role to use. This role would have the
Application or Configuration value of base
\d{0,3} to limit the scope of the role to
the instances with the names base,
base001, and base2. The instance
labeled baseA and baseB will not be
included because neither baseA nor
baseB match the regular expression
pattern.

Note: The Application or Configuration
name of general is prohibited. Leave the
field blank if you are creating a role with a
general scope.

Server Roles

282

Parameter Description

Service Manager Permissions The Service Manager Permissions section
contains permissions that grant the role
holder access to functions and utilities,
as well as viewing permissions defined by
the administrator.

The following image shows the Management tab, that contains permissions that are used
to grant the role holder access to functions that manage the iWay Service Manager
instance.

G. User-Defined Permissions and Roles

Security Guide 283

The following image shows the Console tab, that contains permissions that are used to
grand the role holder access to various iWay Service Manager tools.

The following image shows the User Defined Permissions tab, that show permissions that
the administrator created.

2. Once you are satisfied that the name, description, scope of the role, and permissions are
correct, click Add.

If you do not click the Add button, and instead exit the screen either by selecting another
menu option or by clicking the Back button, any changes made will be lost.

Server Roles

284

Procedure: How to Update a Server Role

To update a server role:

1. Click on the link containing the name of the role that you wish to update.

The Service Manager Role maintenance pane appears, as shown in the following image.

The pane is similar to the pane used to Add a Service Manager role, with the difference of
the Name field, which is write-protected.

2. Update all the fields and permissions as necessary.

3. Click Apply Changes, as shown in the following image.

If you do not click the Apply Changes button, and instead exit the screen either by
selecting another menu option or by clicking the Back button, any changes made will be
lost.

G. User-Defined Permissions and Roles

Security Guide 285

Procedure: How to Delete a Server Role

When a role is no longer needed, it can be deleted from iWay Service Manager. To delete a
role from iWay Service Manager:

1. In the Server Roles list, select the check box of the role that you wish to delete, as shown
in the following image.

2. Click Delete.

A confirmation dialog box appears, asking you if you are sure that you want to delete the
operation, as shown in the following image.

3. Click OK to confirm deletion of the permission and have it removed from the permissions
list.

Note: Selecting the check box at the top of the list in the heading row of the table either
selects all check boxes or clears them from the permission list.

Server Roles

286

Legal and Third-Party Notices

SOME TIBCO SOFTWARE EMBEDS OR BUNDLES OTHER TIBCO SOFTWARE. USE OF SUCH
EMBEDDED OR BUNDLED TIBCO SOFTWARE IS SOLELY TO ENABLE THE FUNCTIONALITY (OR
PROVIDE LIMITED ADD-ON FUNCTIONALITY) OF THE LICENSED TIBCO SOFTWARE. THE
EMBEDDED OR BUNDLED SOFTWARE IS NOT LICENSED TO BE USED OR ACCESSED BY ANY
OTHER TIBCO SOFTWARE OR FOR ANY OTHER PURPOSE.

USE OF TIBCO SOFTWARE AND THIS DOCUMENT IS SUBJECT TO THE TERMS AND CONDITIONS
OF A LICENSE AGREEMENT FOUND IN EITHER A SEPARATELY EXECUTED SOFTWARE LICENSE
AGREEMENT, OR, IF THERE IS NO SUCH SEPARATE AGREEMENT, THE CLICKWRAP END USER
LICENSE AGREEMENT WHICH IS DISPLAYED DURING DOWNLOAD OR INSTALLATION OF THE
SOFTWARE (AND WHICH IS DUPLICATED IN THE LICENSE FILE) OR IF THERE IS NO SUCH
SOFTWARE LICENSE AGREEMENT OR CLICKWRAP END USER LICENSE AGREEMENT, THE
LICENSE(S) LOCATED IN THE "LICENSE" FILE(S) OF THE SOFTWARE. USE OF THIS DOCUMENT
IS SUBJECT TO THOSE TERMS AND CONDITIONS, AND YOUR USE HEREOF SHALL CONSTITUTE
ACCEPTANCE OF AND AN AGREEMENT TO BE BOUND BY THE SAME.

This document is subject to U.S. and international copyright laws and treaties. No part of this
document may be reproduced in any form without the written authorization of TIBCO Software
Inc.

TIBCO, the TIBCO logo, the TIBCO O logo, FOCUS, iWay, Omni-Gen, Omni-HealthData, and
WebFOCUS are either registered trademarks or trademarks of TIBCO Software Inc. in the
United States and/or other countries.

Java and all Java based trademarks and logos are trademarks or registered trademarks of
Oracle Corporation and/or its affiliates.

All other product and company names and marks mentioned in this document are the property
of their respective owners and are mentioned for identification purposes only.

This software may be available on multiple operating systems. However, not all operating
system platforms for a specific software version are released at the same time. See the
readme file for the availability of this software version on a specific operating system platform.

THIS DOCUMENT IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

THIS DOCUMENT COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS.
CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL
BE INCORPORATED IN NEW EDITIONS OF THIS DOCUMENT. TIBCO SOFTWARE INC. MAY MAKE
IMPROVEMENTS AND/OR CHANGES IN THE PRODUCT(S) AND/OR THE PROGRAM(S)
DESCRIBED IN THIS DOCUMENT AT ANY TIME.

 287

THE CONTENTS OF THIS DOCUMENT MAY BE MODIFIED AND/OR QUALIFIED, DIRECTLY OR
INDIRECTLY, BY OTHER DOCUMENTATION WHICH ACCOMPANIES THIS SOFTWARE, INCLUDING
BUT NOT LIMITED TO ANY RELEASE NOTES AND "READ ME" FILES.

This and other products of TIBCO Software Inc. may be covered by registered patents. Please
refer to TIBCO's Virtual Patent Marking document (https://www.tibco.com/patents) for details.

Copyright © 2021. TIBCO Software Inc. All Rights Reserved.

288

	Contents
	1. Introducing Security
	Confidentiality
	Integrity
	Authentication

	2. Security in iWay Service Manager
	Introducing Security Components
	Areas of Responsibility
	Message Acquisition and Disposition
	Rejection of Spurious Messages
	Secure Multi-Purpose Internet Mail Extension (S/MIME)
	XML Digital Signature
	Authentication and Authorization
	Using Policies
	Password Masking
	Security Related iFL Functions
	Restricted XPath Expressions

	3. Security Providers
	Keystore Provider
	Directory CertStore Provider
	SSL Context Provider
	LDAP Certstore Provider
	OCSP Responder Provider

	4. Configuring Runtime Security Using Access Control
	Runtime Security Overview
	Logon Schemes
	Configuring Credential Requirements
	iSM Commands and Corresponding ACL Names

	Realm Based Authentication
	LDAP Configuration for iWay Service Manager Administration Console Authentication
	LDAP Setup and Configuration
	Procedure: How to Setup the LDAP Group
	Procedure: How to Setup and Configure iWay Service Manager
	Procedure: How to Add Additional Server Roles in iWay Service Manager
	Troubleshooting LDAP Authentication in iSM configuration log(tracing)

	Role Based Authentication
	Impersonation

	5. Realm-based Security in the iSM Administration Console
	Realm-based Security Overview
	Creating or Editing a Role in the Management Section of the Console
	Configuring Authentication for a Base Configuration Using a Properties File Realm
	Managing User Accounts
	Changing Passwords
	Accessing Configured Users
	Password Control Parameters
	Non-Administrative Users

	Locked Accounts

	6. Security Services
	OAuth 1.0 Authentication Service
	OAuth 2.0 Authentication Service
	Insert WSSE Timestamp Service
	Insert WSSE Token Service
	Insert SAML Assertion Service
	XML Digital Signature Create Service
	Examples
	Example 1: Enveloped Signature
	Example 2: Simple SOAP Message
	Example 3: WSSE SecurityTokenReference
	Example 4: Security Token Reference Transform
	Example 5: Signed Attachment
	Example 6: Signature Transform Parameters

	XML Digital Signature Verify Service
	Examples
	Example 1: Completing the Certificate Chain
	Example 2: Omitting the Certificate Chain
	Example 3: Certificate Revocation
	Example 4: Signature Coverage
	Example 5: Reducing Risks

	XAdES Digital Signature Create Service
	Examples
	Example 1: Enveloped Basic Electronic Signature
	Example 2: Optional Qualifying Properties
	Example 3: Implied Policy
	Example 4: Explicit Policy Identifier
	Example 5: Reference Specific Properties
	Example 6: Electronic Signature With Time
	Example 7: Complete Validation Data References

	XAdES Digital Signature Verify Service
	Examples
	Example 1: Minimum XAdES Form
	Example 2: Explicit Signature Policy

	Authenticate/Impersonate Service

	A. Security Tools
	Security Tools Overview
	Signing Files
	Keeping Values Secret

	B. nCipher Configuration
	Provider Initialization (Validating Signatures)
	Java Configuration
	Softcard for nCipher
	Creating a Softcard
	Multiple Softcards

	Key Creation Using Keytool
	Cryptography Provider
	Troubleshooting (PKCS11 RSA Private Key Exception)

	C. Authenticating an HTTP Client Using Kerberos
	Kerberos Overview
	Kerberos Authentication
	Sample Kerberos Configuration File
	Sample JAAS Configuration File
	Kerberos Troubleshooting
	Resolving the Unable to Load Configuration File Error

	D. Configuring Kerberos With Microsoft SQL Server
	Hardening the Java Virtual Machine Cryptography
	Using the Java Authentication and Authorization Service
	Creating a JAAS File for the SQL Server Driver for Kerberos
	Configuring iWay Service Manager Run Time for Kerberos
	Procedure: How to Configure iSM Runtime for Kerberos

	E. Configuring Microsoft SQL Server JDBC Driver Version 6 with Kerberos
	Prerequisites for Windows Active Directory
	Configuring Microsoft SQL Server JDBC Driver Version 6 With Kerberos Using Windows 2008/Windows 2012
	Setting Up Accounts for the SQL Server
	Configuring User Account Attributes
	Procedure: How to Configure the Active Directory Domain Controller for Delegation
	Configuring User Account Security Attributes
	Procedure: How to SQL Server on a Linux Machine
	Procedure: How to Install SQL Server on Windows
	Procedure: How to Configure SQL Server After Installation
	Procedure: How to Add the SQL Server Domain Account to SQL Server Management Studio
	Procedure: How to Create Service Principal Names
	Registering Manual SPN
	Procedure: How to Configure Security to the SQL Server Service to Delegate Using SPN
	Procedure: How to Configure the SQL Server Service to Create SPNs Dynamically

	Connection Rule for NTLM and Kerberos
	Using Kerberos Authentication With SQL Server
	Preparing for the Client
	Procedure: How to Harden the Java VM Cryptography
	Procedure: How to Download the SQL Server Driver

	Ticket-Granting Tickets for Kerberos
	Service Tickets

	Using JAAS
	Creating a JAAS File for SQL Server Driver for Kerberos
	Placing JAAS Files and Keytabs in iWay Home Root
	Windows JAAS File

	Configuring Kerberos for Windows
	Modifying Windows Registry for Client Machines
	Setting Up Environmental Variables
	Configuring the Kerberos Client
	Procedure: How to Create a Keytab on Windows
	Downloading a Keytab to a Client Machine

	Configuring Kerberos for Linux
	Procedure: How to Install Kerberos Workstation

	Joining the Samba Server to the PDC Domain
	Procedure: How to Initialize a Keytab on Windows and Linux
	Creating Batch Jobs for Credential Expiration and Renewal on Windows and Linux
	Procedure: How to Configure iWay Service Manager

	Kerberos Configuration File (krb5.conf)
	SQL Server Clustered Server Warning

	F. WSO2 Identity Server Support
	WSO2 Identity Server Introduction
	Installing and Configuring WSO2 Identity Server
	Procedure: How to Install WSO2 Identity Server
	Procedure: How to Extract and Import the SSL Certificate for WSO2 Identity Server
	Procedure: How to View WSDL Files of Web Services Implemented in WSO2 Identity Server
	Procedure: How to Debug WSO2 Identity Server
	Configuring WSO2 Users and Roles
	Procedure: How to Create a New User
	Procedure: How to Create a New Role

	Configuring XACML Policies
	Procedure: How to Create XACML Policies
	Procedure: How to Debug XACML Policies

	Configuring iWay Service Manager
	Configuring an Authentication Realm for WSO2 Identity Server
	Procedure: How to Configure an Authentication Realm for WSO2 Identity Server
	Procedure: How to Configure a Listener

	Configuring the XACML Provider and XACML Service
	Procedure: How to Configure the XACML Provider
	Procedure: How to Configure the XACML Service

	Developer Notes

	G. User-Defined Permissions and Roles
	Using Realms, Roles, and Permissions
	Using Propsrealm
	Using the Security Property File
	Using the Realm
	Procedure: How to Create User-Defined Permissions
	Procedure: How to Add a User-Defined Permission

	Updating Permissions
	Deleting a Permission

	Server Roles
	Procedure: How to Add Roles
	Procedure: How to Update a Server Role
	Procedure: How to Delete a Server Role

	Legal and Third-Party Notices

