
iWay Integration Tools Transformer
User’s Guide
Version 7.0.x and Higher

August 16, 2018

Active Technologies, EDA, EDA/SQL, FIDEL, FOCUS, Information Builders, the Information Builders logo, iWay, iWay
Software, Parlay, PC/FOCUS, RStat, Table Talk, Web390, WebFOCUS, WebFOCUS Active Technologies, and WebFOCUS
Magnify are registered trademarks, and DataMigrator and Hyperstage are trademarks of Information Builders, Inc.

Adobe, the Adobe logo, Acrobat, Adobe Reader, Flash, Adobe Flash Builder, Flex, and PostScript are either registered
trademarks or trademarks of Adobe Systems Incorporated in the United States and/or other countries.

Due to the nature of this material, this document refers to numerous hardware and software products by their
trademarks. In most, if not all cases, these designations are claimed as trademarks or registered trademarks by their
respective companies. It is not this publisher's intent to use any of these names generically. The reader is therefore
cautioned to investigate all claimed trademark rights before using any of these names other than to refer to the product
described.

Copyright © 2018, by Information Builders, Inc. and iWay Software. All rights reserved. Patent Pending. This manual, or
parts thereof, may not be reproduced in any form without the written permission of Information Builders, Inc.

Contents

Preface . 11

Documentation Conventions . 11

Related Publications . 12

Customer Support . 12

Help Us to Serve You Better . 13

User Feedback . 15

Information Builders Consulting and Training . 15

1. iWay Transformer Overview . 17

About iWay Transformer . 17

Mapping Builder. 17

Dictionary Builder. 18

Template Viewer. 21

Test Results. 22

2. Getting Started With iWay Transformer . 23

iWay Transformer Basic Tutorial . 23

Transformer Workbench Basics. 23

About the Transformer Workbench. 23

About iWay Transformer Editors. .24

Setting iWay Transformer Preferences. 24

Transformer Workbench Toolbar and Shortcuts. 28

Navigating the Transformer Workbench Toolbar. 29

Navigating the Mapping Builder. .30

Mappings Tab. 30

View Template Tab. 31

Test Results Tab. 32

Using Keyboard Shortcuts. 33

Preparing iWay Integration Tools Suite. 33

Creating a Transform Component. 34

Navigating Resources. 40

Browsing Mappings. 40

Editing Mappings. 42

iWay Integration Tools Transformer User’s Guide 3

Using the Mapping Builder. 51

Renaming Mappings. 53

Copying and Moving Mappings. .55

Running a Transform Component. .58

Debugging a Transform Component. .62

Working With Other Editors . 62

Project Configuration Tutorial .62

Configuring a New Transform Component. .62

Configuring Transform Component Properties. 68

Resource. 71

Run/Debug Settings. 72

Transform Properties. 72

@REPLACE Function. .73

Custom Functions. 74

Input. .75

JDBC Data Source. 76

Output. 77

Variables. 78

XML Namespaces. 79

Dictionary Builder Tutorial .80

Overview. .80

Metadata Management Facility. 82

Ebix Management Facility. 83

Navigating Dictionary Builder. 83

3. iWay Transformer Concepts . 93

Transformation Process . 94

Transform Component. 94

Transform Template. 94

Configuration of a Transform Component. 95

Dictionary. .95

iWay Transformer Mappings .96

Mapping Rules. 96

Contents

4 Information Builders

Mapping Structure. 97

iWay Transformer Supported Data Formats .97

Transform Component Dependencies . 98

Using Namespaces in iWay Transformer . 99

Transform Functions . 101

Predefined Functions. 102

EDI Functions. 102

Numerical Functions. 103

Processing Functions. 112

Run-Time Functions. 118

Security Functions. 120

String Functions. 121

Time Functions. .134

Numeric Pictures. 140

Date Pictures. 142

Time Pictures. 143

Custom Functions. 144

Invisible Group . 144

What Is It?. .144

Where Is It Used?. .144

What Is It Used for?. .145

Where Is the Visible Property Located?. 145

4. iWay Transformer Tasks . 147

Creating a Transform Component . 147

Configuring a Transform Component . 164

Resource. 167

Run/Debug Settings. 168

Transform Properties. 169

@REPLACE Function. .170

Custom Functions. 171

Input. .172

Input Structure. 173

Contents

iWay Integration Tools Transformer User’s Guide 5

Configuring the Input Structure. 173

Viewing the Input Structure. 175

Input Data. 175

Configuring the Input Data. 176

Viewing the Input Data. 177

Input Validation. 177

Input Format Reference. 179

CDF Input Properties. .182

CSV Input Properties. .183

EDI Input Properties. 184

Fixed Width Input Properties. 187

IDOC Input Properties. 189

SWIFT Input Properties. 190

XML and iWay XML Response Input Properties. 191

JDBC Data Source. 193

Output. 193

Output Structure. 194

Configuring the Output Structure. .194

Viewing the Output Structure. .195

Output Data. 196

Configuring the Output Data. 196

Output Validation. 196

Output Format Reference. 197

CDF Output Properties. 197

CSV Output Properties. 199

EDI Output Properties. 200

Fixed Width Output Properties. 203

HTML Output Properties. 205

IDOC Output Properties. 206

SWIFT Output Properties. 207

XML, iWay XML Embedded Request, and iWay XML Request Output

Properties. 207

Variables. 210

Contents

6 Information Builders

XML Namespaces. 219

Testing a Transform Component .219

Working With a Transform Component .220

Design-Time Mode (Transform Test Run). 220

Run-Time Mode (Run on Server). 221

Opening a Transform Component. 221

Saving a Transform Component. .221

Publishing a Transform Component. .223

Working With the Mapping Builder . 224

Mappings Tab. 224

Input Node Workspace Menu. .226

Output Node Workspace Menu. 228

Input Structure. 231

Output Structure. 235

Mapping Types. 236

Adding New Output Nodes. 237

Group. .238

Group Properties. 241

General Tab. 242

Looping. .242

Context. 244

Filter Tab. .245

Unique Keys Tab. 248

Sorting Tab. 249

XML Namespace Tab. 249

Element. 250

Element Properties. 250

General Tab. 250

Filter Tab. .251

XML Namespace Tab. 252

Attribute. .252

Attribute Properties. 252

General Tab. 253

Contents

iWay Integration Tools Transformer User’s Guide 7

Filter Tab. .253

XML Namespace Tab. 254

Comment. .255

Content. 255

CDATA. 255

Variable. 255

Additional Key Terms. .256

Mapping Values. 256

Input Node (Context). 259

Function. .261

Constant. 262

Expression. 262

Building and Altering Output Structures. 265

Working With Namespaces . 265

Working With Functions . 269

Using the Mapping Builder. 269

Setting Function Parameters. 270

Predefined Functions. .271

Customizing @CONCAT Functions. 280

Configuring Properties for JDBC. .281

JDBC Replace Functions as Input Data Sources. .282

Using the @JDBCLOOKUP Function. .286

Configuring Properties for Replace. 292

Custom Functions. 297

Writing Custom Functions. .297

Import Statement. 298

Class Declaration. 299

Constructor. .299

execute(). .299

Getting Arguments. .300

getReturnType(). 300

Associated Object Map. .301

Sample Custom Function. 301

Contents

8 Information Builders

Defining Custom Functions. 303

Compiling Your .java File. 309

Migrating Custom Functions. 310

Using Custom Functions at Run Time. 311

5. iWay Transformer Tips and Tricks .313

XSLT Runtime Processing . 313

Option 1: Running iWay Service Manager as a Service. 315

Option 2: Running iWay Service Manager as an Application. 316

Contents

iWay Integration Tools Transformer User’s Guide 9

Contents

10 Information Builders

Preface

This document is written for system integrators who require data transformations and have the
need to define and edit the structure of metadata. It describes how to use iWay Integration
Tools (iIT) Transformer.

Note: This Release 7.0.x content is currently being updated to support iWay Release 8.0.x
software. In the meantime, it can serve as a reference for your use of iWay Release 8. If you
have any questions, please contact Customer_Success@ibi.com.

How This Manual Is Organized

This manual includes the following chapters:

Chapter/Appendix Contents

1 iWay Transformer Overview Provides an overview of the major facilities, tools,
and data formats supported by iWay Transformer.

2 Getting Started With iWay
Transformer

Provides getting started information for iWay
Transformer, including three tutorials.

3 iWay Transformer Concepts Describes concepts related to iWay Transformer,
such as transformation and mappings.

4 iWay Transformer Tasks Describes the basic menus and options available in
iWay Transformer.

5 iWay Transformer Tips and
Tricks

Provides useful tips and tricks that are related to
iWay Transformer.

Documentation Conventions

The following table describes the documentation conventions that are used in this manual.

Convention Description

THIS TYPEFACE or
this typeface

Denotes syntax that you must enter exactly as shown.

this typeface Represents a placeholder (or variable), a cross-reference, or an
important term. It may also indicate a button, menu item, or dialog
box option that you can click or select.

iWay Integration Tools Transformer User’s Guide 11

mailto:Customer_Success@ibi.com

Convention Description

underscore Indicates a default setting.

Key + Key Indicates keys that you must press simultaneously.

{ } Indicates two or three choices. Type one of them, not the braces.

| Separates mutually exclusive choices in syntax. Type one of them,
not the symbol.

... Indicates that you can enter a parameter multiple times. Type only
the parameter, not the ellipsis (...).

.

.

.

Indicates that there are (or could be) intervening or additional
commands.

Related Publications

Visit our Technical Documentation Library at http://documentation.informationbuilders.com. You
can also contact the Publications Order Department at (800) 969-4636.

Customer Support

Do you have any questions about this product?

Join the Focal Point community. Focal Point is our online developer center and more than a
message board. It is an interactive network of more than 3,000 developers from almost every
profession and industry, collaborating on solutions and sharing tips and techniques. Access
Focal Point at http://forums.informationbuilders.com/eve/forums.

You can also access support services electronically, 24 hours a day, with InfoResponse
Online. InfoResponse Online is accessible through our website, http://
www.informationbuilders.com. It connects you to the tracking system and known-problem
database at the Information Builders support center. Registered users can open, update, and
view the status of cases in the tracking system and read descriptions of reported software
issues. New users can register immediately for this service. The technical support section of
http://www.informationbuilders.com also provides usage techniques, diagnostic tips, and
answers to frequently asked questions.

Related Publications

12 Information Builders

http://documentation.informationbuilders.com
http://forums.informationbuilders.com/eve/forums
http://www.informationbuilders.com
http://www.informationbuilders.com
http://www.informationbuilders.com

Call Information Builders Customer Support Services (CSS) at (800) 736-6130 or (212)
736-6130. Customer Support Consultants are available Monday through Friday between 8:00
a.m. and 8:00 p.m. EST to address all your questions. Information Builders consultants can
also give you general guidance regarding product capabilities and documentation. Please be
ready to provide your six-digit site code number (xxxx.xx) when you call.

To learn about the full range of available support services, ask your Information Builders
representative about InfoResponse Online, or call (800) 969-INFO.

Help Us to Serve You Better

To help our consultants answer your questions effectively, be prepared to provide
specifications and sample files and to answer questions about errors and problems.

The following tables list the environment information our consultants require.

Platform

Operating System

OS Version

JVM Vendor

JVM Version

The following table lists the deployment information our consultants require.

Adapter Deployment For example, JCA, Business Services Provider, iWay
Service Manager

Container For example, WebSphere

Version

Enterprise Information System
(EIS) - if any

EIS Release Level

EIS Service Pack

EIS Platform

Preface

iWay Integration Tools Transformer User’s Guide 13

The following table lists iWay-related information needed by our consultants.

iWay Adapter

iWay Release Level

iWay Patch

The following table lists additional questions to help us serve you better.

Request/Question Error/Problem Details or Information

Did the problem arise through
a service or event?

Provide usage scenarios or
summarize the application that
produces the problem.

When did the problem start?

Can you reproduce this
problem consistently?

Describe the problem.

Describe the steps to
reproduce the problem.

Specify the error message(s).

Any change in the application
environment: software
configuration, EIS/database
configuration, application, and
so forth?

Under what circumstance does
the problem not occur?

Help Us to Serve You Better

14 Information Builders

The following is a list of error/problem files that might be applicable.

Input documents (XML instance, XML schema, non-XML documents)

Transformation files

Error screen shots

Error output files

Trace files

Service Manager package to reproduce problem

Custom functions and agents in use

Diagnostic Zip

Transaction log

For information on tracing, see the iWay Service Manager User's Guide.

User Feedback

In an effort to produce effective documentation, the Technical Content Management staff
welcomes your opinions regarding this document. Please use the Reader Comments form at
the end of this document to communicate your feedback to us or to suggest changes that will
support improvements to our documentation. You can also contact us through our website,
http://documentation.informationbuilders.com/connections.asp.

Thank you, in advance, for your comments.

Information Builders Consulting and Training

Interested in training? Information Builders Education Department offers a wide variety of
training courses for this and other Information Builders products.

For information on course descriptions, locations, and dates, or to register for classes, visit
our website (http://education.informationbuilders.com) or call (800) 969-INFO to speak to an
Education Representative.

Preface

iWay Integration Tools Transformer User’s Guide 15

http://documentation.informationbuilders.com/connections.asp
http://education.informationbuilders.com

Information Builders Consulting and Training

16 Information Builders

Chapter1
iWay Transformer Overview

This section provides an overview of the major facilities, tools, and data formats
supported by iWay Transformer.

In this chapter:

About iWay Transformer

About iWay Transformer

iWay Transformer offers integrated data transformation services within iWay Service Manager.
It provides support for creating, modifying, and publishing Transform components.

A graphical tool called Mapping Builder provides design services for specifying and defining
transformations. It establishes mapping rules and relationships within your output document,
based on the input structure if required. You can test the Transform by executing it with an
actual input document to see the results. When you confirm that the Transform is stable, you
can publish it, making it available to iWay Service Manager.

The main facilities within iWay Transformer are Mapping Builder, Dictionary Builder, Template
Viewer, and Test Results.

Mapping Builder

Mapping Builder is a graphical editor that enables you to manage the rules or mappings of your
transformations. It is identified by the Mappings tab and allows you to navigate through the
input and output side of a transformation, and design mapping rules for it using an extensive
set of customizable tools.

You can quickly and easily accomplish mappings between individual structure nodes of the
input (incoming) document and the output (outgoing) document using drag and drop
operations. The Mapping Builder interface supports one-to-one, one-to-many, and many-to-one
mapping relationships, referring to the fields in the input and output documents, respectively.
It also supports a set of functions that enable various forms of data manipulation.

iWay Integration Tools Transformer User’s Guide 17

The following image shows the Mapping Builder.

For more information, see Working With the Mapping Builder on page 224.

Dictionary Builder

Dictionary Builder is a graphical editor that is integrated with iWay Transformer. Dictionary
Builder provides an interface for creating and modifying e-business metadata currently
supported by the iWay framework as a data dictionary component of a Transform project and
by stand-alone Ebixes.

A dictionary is a metadata representation that describes the structure of a transaction or a
document that is used in EDI, SWIFT, or proprietary formatted message.

About iWay Transformer

18 Information Builders

Dictionary Builder is an efficient interface that you can use in EDI, SWIFT, or proprietary format
message solutions for composing, editing, and distributing e-business metadata in the form of
Ebixes or Transform data dictionary components. Dictionary Builder in iWay Transformer
contains the following management facilities:

Data Dictionaries (Metadata Management Facility)

Ebixes or Ebix Entry Projects (Ebix Management Facility)

You can use the Dictionary Builder interface to browse, in a structured way, all the components
of e-business data dictionaries. You can access the Dictionary Builder interface in iWay
Transformer, as follows.

Procedure: How to Access Dictionary Builder

1. Open a Transform project (.gxp) that uses a dictionary of supported data formats for its
input or output, as shown in the following image.

1. iWay Transformer Overview

iWay Integration Tools Transformer User’s Guide 19

2. Open an Ebix Entry project (.ebx), as shown in the following image.

About iWay Transformer

20 Information Builders

Template Viewer

Template Viewer provides a read-only view of a Transform template, as an XML representation
of a Transform component. It is identified by the View Template tab, as shown in the following
image.

1. iWay Transformer Overview

iWay Integration Tools Transformer User’s Guide 21

Test Results

Test Results displays the output document that is generated by a transformation. It is
identified by the Test Results tab, as shown in the following image.

About iWay Transformer

22 Information Builders

Chapter2
Getting Started With iWay Transformer

This section provides getting started information for iWay Transformer, including three
tutorials.

In this chapter:

iWay Transformer Basic Tutorial

Project Configuration Tutorial

Dictionary Builder Tutorial

iWay Transformer Basic Tutorial

This topic provides a basic tutorial for iWay Transformer.

Transformer Workbench Basics

The Transformer workbench is an Eclipse-based, end-to-end, integrated development
environment (IDE) for data transformation design, testing, and management within iWay
Service Manager (iSM). It uses a collection of visual layout, build, and debugging tools. Some
of the basic functionality of the Transformer IDE comes from Eclipse. For example, managing,
searching, and navigating resources are inherited from the core features.

About the Transformer Workbench

The Transformer workbench is a full-featured environment that is tailored to assist you in
developing data transformations for iSM.

Unless you are using other Eclipse plug-ins, you do not need to be concerned with the
underlying Eclipse framework.

Workbench. The workbench refers to the iWay Transformer development environment, which
contains three primary facilities:

Perspective. A perspective is a group of views and editors in the workbench. Essentially, it
is a special work environment that helps you accomplish a specific type of task. The
Transformer workbench is located within the Integration Explorer perspective of iWay
Integration Tools (iIT).

Editor. An editor allows you to edit various file types. iWay Transformer contains editors for
creating transform (.gxp) and dictionary (structure) files.

iWay Integration Tools Transformer User’s Guide 23

View. A view typically supports an editor. For example, when you are editing a Transform
component, Output, Input, Mapping Builder, Mapping Properties, and Template views are
also displayed in the Transform editor.

You use all three facilities in various combinations and at various points during the
transformation development process. The workbench is the container of all the tools that are
used to develop transformations, which are also called Transform components in iSM.

About iWay Transformer Editors

iWay Transformer contains editors that allow you to edit Transform project (.gxp) files, as well
as its metadata, such as structure (dictionary) files. Editors are associated with resource
types. As resources are opened in the workbench, the appropriate editor is opened:

Transform Editor. The Transform editor is used to edit transformations. It has two modes:
Mappings and Template. You use Mappings mode to visually design and structure your
transformation. Template mode allows you to view an XML representation of your
transformation. The two modes are synchronized, and changes in one mode are
immediately reflected in the other.

Dictionary Builder. The Dictionary Builder is used to edit dictionary (structure) files or ebix
metadata for e-business and proprietary data formats (for example, FWF, CDF, and X12).

Setting iWay Transformer Preferences

When you start iWay Transformer for the first time, the iWay home directory must be set. We
also recommend that you verify the iWay Transformer preferences that are in use. For more
information on how to set the iWay home directory, see the iWay Integration Tools Suite User's
Guide.

iWay Transformer Basic Tutorial

24 Information Builders

Procedure: How to Verify iWay Transformer Preferences

To verify iWay Transformer preferences:

1. From the menu bar, click Window, and select Preferences, as shown in the following
image.

2. Getting Started With iWay Transformer

iWay Integration Tools Transformer User’s Guide 25

The Preferences dialog box opens, as shown in the next image.

2. Expand Transformer.

The Encoding and JDBC Driver categories are listed.

iWay Transformer Basic Tutorial

26 Information Builders

The following image shows the Encoding preference options that are currently set for iWay
Transformer.

The Encoding category provides the option of customizing project and template encoding.
The following options are available:

Character encoding. You can select the type of encoding to use for the characters in a
file. By default, the character encoding in iWay Transformer is set to UTF-8.

File encoding. You can select the type of file encoding to use when saving or deploying
project and template files to a system that uses a different language format. By
default, the file encoding is set to the same value that is used by your operating
system.

2. Getting Started With iWay Transformer

iWay Integration Tools Transformer User’s Guide 27

The following image shows the JDBC drivers that are currently used by iWay Transformer.

The JDBC Drivers category allows you to specify JDBC driver configurations that can be
shared between applications and used by the @JDBCLOOKUP function and other
database-related Transform functions.

3. Verify or modify the iWay Transformer preferences according to your requirements, and
click OK.

Transformer Workbench Toolbar and Shortcuts

This topic provides an overview of the Transformer workbench toolbar and shortcuts.

iWay Transformer Basic Tutorial

28 Information Builders

Navigating the Transformer Workbench Toolbar

When you start iWay Transformer, the main toolbar is displayed at the top of the window, as
shown in the following image. Some of the toolbar buttons are disabled until you open or
create a Transform component.

The following table includes an image of each toolbar button that is related to the Transformer
workbench and describes its function.

Button Function

Creates a new Transform component.

Saves a Transform component.

Prints Transform component test results.

Starts iWay Service Manager.

Stops iWay Service Manager.

Launches the XPath Builder.

Debugs the Transform component.

Runs the Transform component.

Configures external tools to run the Transform component.

Searches across Transform component mappings and nodes.

Maps the input structure as a root of the output structure. A confirmation
dialog box is displayed when you select this option. This option is available
only in the Mapping Builder.

2. Getting Started With iWay Transformer

iWay Integration Tools Transformer User’s Guide 29

Button Function

Optimizes mappings by removing all unmapped output nodes including groups
with unmapped children. This option is available only in the Mapping Builder.

Toggles between showing and hiding the mapping lines between the input and
output nodes. The mappings signify the relationships between the input and
output nodes, where the particular input value is used to construct the value
of the output node.

Moves the selected node up the output structure tree, under the same parent
node.

Moves the selected node down the output structure tree, under the same
parent node.

Navigating the Mapping Builder

The Mapping Builder uses mapping types to specify how records and fields of one document
structure relate to another.

Mappings Tab

The Mappings tab allows you to design mapping rules for Transform components. You can
quickly and easily accomplish mappings between individual nodes contained in structures of
incoming and outgoing data, using drag and drop operations. The Mapping Builder interface
supports one-to-one, one-to-many, and many-to-one mapping relationships, referring to the
fields in the input and output documents, respectively.

iWay Transformer Basic Tutorial

30 Information Builders

The following image shows sample input and output structures on the Mappings tab.

For more information on how to define mappings for Transform components using the
Mappings tab, see Working With the Mapping Builder on page 224.

View Template Tab

The View Template tab provides a read-only view of a Transform template, as an XML
representation, or a serialized view of a Transform component.

2. Getting Started With iWay Transformer

iWay Integration Tools Transformer User’s Guide 31

The following image shows a read-only view of a Transform template on the View Template tab.

Test Results Tab

The Test Results tab displays the output document that is generated by your Transform
component, as shown in the following image.

iWay Transformer Basic Tutorial

32 Information Builders

Using Keyboard Shortcuts

This following table lists keyboard shortcuts for commonly used tasks and functions.

Task or Function Keyboard Shortcut

New Alt+Shift+N

Close Ctrl+W

Close All Ctrl+Shift+W

Save Ctrl+S

Save All Ctrl+Shift+S

Undo Ctrl+Z

Redo Ctrl+Y

Cut Ctrl+X

Copy Ctrl+C

Paste Ctrl+V

Delete Delete

Select All Ctrl+A

Find and Replace Ctrl+F

Search Ctrl+H

Run Ctrl+F11

Debug F11

Help F1

Preparing iWay Integration Tools Suite

For more information on installing, configuring, and starting iWay Integration Tools (iIT) Suite,
see the iWay Integration Tools Suite User's Guide.

2. Getting Started With iWay Transformer

iWay Integration Tools Transformer User’s Guide 33

Creating a Transform Component

This topic describes how to create a Transform component using the File menu, Integration
Project context menu, or New button.

Procedure: How to Create a Transform Component Using the File Menu

To create a Transform component using the File menu:

Click File, select New, and then click Transform from the context menu, as shown in the
following image.

iWay Transformer Basic Tutorial

34 Information Builders

The New iWay Transform wizard opens, as shown in the next image.

For more information on creating a Transform component using the New iWay Transform
wizard, see Configuring a New Transform Component on page 62.

2. Getting Started With iWay Transformer

iWay Integration Tools Transformer User’s Guide 35

Procedure: How to Create a Transform Component Using the Integration Project Context Menu

To create a Transform component using the Integration Project context menu:

Right-click the Transforms folder in your Integration Project, select New, and then click
Transform, as shown in the following image.

iWay Transformer Basic Tutorial

36 Information Builders

The New iWay Transform wizard opens, as shown in the next image.

For more information on creating a Transform component using the New iWay Transform
wizard, see Configuring a New Transform Component on page 62.

Procedure: How to Create a Transform Component Using the New Button

To create a Transform component using the New button:

1. Click the New button in the toolbar, as shown in the following image.

2. Getting Started With iWay Transformer

iWay Integration Tools Transformer User’s Guide 37

The New dialog box opens, as shown in the following image.

2. Expand iWay Integration, and then select Transform.

iWay Transformer Basic Tutorial

38 Information Builders

The New iWay Transform wizard opens, as shown in the next image.

You can skip the New iWay Transform wizard steps by clicking the Finish button once it is
enabled. You can then manually alter the Transform project properties at your
convenience.

For more information on creating a Transform component using the New iWay Transform
wizard, see Configuring a New Transform Component on page 62.

2. Getting Started With iWay Transformer

iWay Integration Tools Transformer User’s Guide 39

Navigating Resources

You can navigate Transform project resources in the Integration Explorer tab, as shown in the
following image.

Browsing Mappings

This topic describes how to browse the mappings for a Transform project.

iWay Transformer Basic Tutorial

40 Information Builders

Procedure: How to Browse Mappings

To browse the mappings for a Transform project:

1. Click the Mappings tab for your Transform project (for example, Computer_Parts_Sales), as
shown in the following image.

2. Select an output node in the Output pane (for example, the allTimeSales attribute).
Properties of the selected output node are displayed in the Properties tab, as shown in the
following image.

3. Click the ellipsis button to the right of the Mapping field.

2. Getting Started With iWay Transformer

iWay Integration Tools Transformer User’s Guide 41

The Mapping Builder opens, as shown in the following image.

Editing Mappings

The example in this topic demonstrates how to edit output mappings to add a Summary node
at the end of the root subtree to summarize the quantity and the amount of a sale. If you
review the test results for the sample Computer_Parts_Sales Transform component, the filter
set on the Product node ensures that the document contains only information on the Cheapies
manufacturing brand. As a result, the summaries will reflect only Cheapies brand information.

iWay Transformer Basic Tutorial

42 Information Builders

The following image shows the filter that is set.

Procedure: How to Edit Mappings

To edit mappings for a Transform component:

1. Click the Mappings tab, as shown in the following image.

2. In the Output pane, right-click the Sales_Totals root group, select Add, and then click Group
from the context menu.

2. Getting Started With iWay Transformer

iWay Integration Tools Transformer User’s Guide 43

A new group node is added to the output structure, as shown in the following image.

3. Change the default name for the group node to Summary, as shown in the following image.

4. Add two elements to the Summary group, using the following names:

Cheapies_Total_Units

Cheapies_Total_Amount

The following image shows how the Summary group will look.

iWay Transformer Basic Tutorial

44 Information Builders

Now that the new output structure is configured, you need to configure variables to
calculate the total values of the new elements (Cheapies_Total_Units and
Cheapies_Total_Amount).

5. Right-click the Computer_Parts_Sales Transform component in the Integration Explorer tab,
and select Properties, as shown in the following image.

2. Getting Started With iWay Transformer

iWay Integration Tools Transformer User’s Guide 45

The Properties dialog box for the Computer_Parts_Sales Transform component opens, as
the next image shows.

6. Expand Transform Properties in the left pane, and select the Variables category.

7. Configure two numeric dynamic variables (total_amount and total_quantity). Ensure that
the value for both variables is 0.

You are now ready to add calculations within each product node, which will update the
variables appropriately as the document is parsed.

iWay Transformer Basic Tutorial

46 Information Builders

8. In the Output pane, right-click the Products group node, select Add, Variable, and then click
total_quantity, as shown in the following image.

The total_quantity variable is added to the Products group node, as shown in the next
image.

2. Getting Started With iWay Transformer

iWay Integration Tools Transformer User’s Guide 47

By default, the increment by 1 is the variable node that is created for the total_quantity
variable. To calculate the total_quantity variable, you need to change it to increment by the
quantity specified in a given node.

The following image shows the functions available in the Mapping Builder.

9. To calculate the total_amount variable, create a formula that multiplies the number of
units sold by the cost of each unit, and use the ADD function to create a sum for the total.

iWay Transformer Basic Tutorial

48 Information Builders

In the following image, the formula is shown, and the ADD function is selected from the
list of functions on the left.

2. Getting Started With iWay Transformer

iWay Integration Tools Transformer User’s Guide 49

10. Assign the final values for both variables to their respective total nodes at the bottom of
the output structure, as shown in the following image.

iWay Transformer Basic Tutorial

50 Information Builders

11. Test the updated Computer_Parts_Sales Transform component, and review the results,
which are shown in the following image.

Using the Mapping Builder

The Mapping Builder is a tool available in iWay Transformer as part of the Mapping Builder
facility. It allows you to construct an output node using various methods and formulas
implemented in iWay Transformer as functions. You can access the predefined functions and
the custom functions that you define, or build a statement containing several functions, if
needed.

2. Getting Started With iWay Transformer

iWay Integration Tools Transformer User’s Guide 51

Procedure: How to Open the Mapping Builder

To open the Mapping Builder:

1. In the Output pane of the Mappings tab, select an output node, as shown in the following
image.

2. Click the ellipsis button on the Properties tab.

iWay Transformer Basic Tutorial

52 Information Builders

The Mapping Builder opens, as shown in the following image.

For more information, see Using the Mapping Builder on page 269.

Renaming Mappings

To customize the output of your transform, you can rename an output structure node in your
Transform component, if required.

2. Getting Started With iWay Transformer

iWay Integration Tools Transformer User’s Guide 53

Procedure: How to Rename Mappings

To rename mappings:

1. Right-click an output structure node in the Output pane of the Mapping Builder, and select
Rename from the context menu, as shown in the following image.

iWay Transformer Basic Tutorial

54 Information Builders

2. Type a new name for the output structure node, as shown in the next image.

Tip: The rename operation is also available if you double-click the name of the output
structure node.

Copying and Moving Mappings

To modify the output structure of your transform, you can copy and move structure nodes in
your Transform component, if required.

2. Getting Started With iWay Transformer

iWay Integration Tools Transformer User’s Guide 55

Procedure: How to Copy Mappings

Perform the following steps to copy an input structure node and paste it to the output
structure:

1. Right-click an input structure node (for example, the Item element) in the Input pane of the
Mapping Builder, and select Copy from the context menu, as shown in the following image.

2. In the Output pane of the Mapping Builder, right-click an output structure node (for
example, the Products group node) to which you want to add the copied input, and select
Paste from the context menu, as shown in the following image.

iWay Transformer Basic Tutorial

56 Information Builders

A copy of the input structure node (for example, the Item element) is added to the output
structure, as shown in the following image.

Procedure: How to Move Mappings

iWay Transformer provides a number of options for changing the order of output mappings.

Perform the following steps to rearrange an output node within the output structure:

Right-click an output structure node (for example, the Item element) in the Output pane of the
Mapping Builder, and select Move Up from the context menu, as shown in the following image.

2. Getting Started With iWay Transformer

iWay Integration Tools Transformer User’s Guide 57

The output structure node is repositioned up by one level, as shown in the following image.

To reposition a selected output structure node down by one level, right-click the node, and
select Move Down from the context menu. You can also click the Move Up and Move Down
buttons on the toolbar to reposition nodes accordingly.

Running a Transform Component

Running a Transform component allows you to analyze the results of the transform.

iWay Transformer Basic Tutorial

58 Information Builders

Procedure: How to Run a Transform Component

To run a Transform component:

1. Right-click the Transform component (for example, Computer_Parts_Sales) in the
Transforms folder of your integration project, select Run As, and then click Transform Test,
as shown in the following image.

2. Getting Started With iWay Transformer

iWay Integration Tools Transformer User’s Guide 59

The Edit Configuration dialog box opens, as shown in the next image.

2. Select the Server URL option in the Profile area, and then select an available URL that is
used by iWay Explorer from the drop-down list.

3. Click Apply.

When the Apply button is grayed out, the option is applied.

4. Click Run.

iWay Transformer Basic Tutorial

60 Information Builders

The results are displayed in the Test Results tab, as shown in the following image.

2. Getting Started With iWay Transformer

iWay Integration Tools Transformer User’s Guide 61

Debugging a Transform Component

The Runtime Options tab allows you to debug a Transform component, as shown in the
following image.

Working With Other Editors

For more information, see Dictionary Builder Tutorial on page 80.

Project Configuration Tutorial

This topic provides a project configuration tutorial for iWay Transformer.

Configuring a New Transform Component

This topic describes how to configure a new Transform component.

Project Configuration Tutorial

62 Information Builders

Procedure: How to Configure a New Transform Component

To configure a new Transform component:

1. Right-click the Transforms folder in your Integration Project, select New, and then click
Transform, as shown in the following image.

2. Getting Started With iWay Transformer

iWay Integration Tools Transformer User’s Guide 63

The New iWay Transform dialog box opens, as shown in the following image.

2. Type a name and a description (optional) for your new Transform component.

If required, you can change the preselected project folder by clicking Browse next to the
Project Folder field.

3. Select a target version of iWay Service Manager (iSM) from the Target Server Version drop-
down list.

4. Click Next.

Project Configuration Tutorial

64 Information Builders

The Transform Type Selection pane opens, as shown in the following image.

5. From the list in the Transform From section, select the format of your input, for example,
XML.

6. From the list in the Transform To section, select the format of your output data, for
example, XML.

7. Click Next.

2. Getting Started With iWay Transformer

iWay Integration Tools Transformer User’s Guide 65

The XML Input pane opens with the Structure tab selected, as shown in the following
image.

Tip: You can skip the remaining steps by clicking the Finish button if it is enabled. You can
then manually alter the Transform component properties at your convenience from the
Properties dialog box.

8. In the Structure File field, type the name of a DTD, XSD (schema), or XML file that
represents the input dictionary.

Click the ellipsis button to the right of the field to browse the Eclipse workspace for the
structure file.

Click the Import button to the right of the field to browse your file system for the
structure file.

9. Click Next.

Project Configuration Tutorial

66 Information Builders

The XML Output pane opens with the Structure tab selected, as shown in the following
image.

10. In the Structure File field, type the name of the data dictionary that represents the
structure of the output data (optional).

Click the ellipsis button to the right of the field to browse the Eclipse workspace for the
structure file.

Click the Import button to the right of the field to browse your file system for the
structure file.

11. Click Finish.

2. Getting Started With iWay Transformer

iWay Integration Tools Transformer User’s Guide 67

Your new Transform component is displayed in the iIT Eclipse workspace, as shown in the
following image.

The Transform component and any related resources (for example, structure files and
input data) exist in the workspace subdirectory that you named during the creation
process. For example:

iIT_Home\workspace\SampleProject\Transforms\Sample_Transform.gxp

Configuring Transform Component Properties

The Transform component Properties dialog box enables you to view or modify the set of
properties defined for a Transform component, such as project creation date and custom
functions.

Project Configuration Tutorial

68 Information Builders

To access the Transform component Properties dialog box, right-click a Transform component
project name in the Integration Explorer pane, and select Properties from the context menu, as
shown in the following image.

2. Getting Started With iWay Transformer

iWay Integration Tools Transformer User’s Guide 69

The Properties dialog box for the selected Transform component opens, as shown in the
following image.

The Properties dialog box includes the following categories:

Resource. For more information, see Resource on page 71.

Run/Debug Settings. For more information, see Run/Debug Settings on page 72.

Transform Properties. For more information, see Transform Properties on page 72.

@REPLACE Function. For more information, see @REPLACE Function on page 73.

Custom Functions. For more information, see Custom Functions on page 74.

Input. For more information, see Input on page 75.

JDBC Data Source. For more information, see JDBC Data Source on page 76.

Output. For more information, see Output on page 77.

Project Configuration Tutorial

70 Information Builders

Variables. For more information, see Variables on page 78.

XML Namespaces. For more information, see XML Namespaces on page 79.

Resource

The Resource category displays system-level information about the Transform component
resource file, as shown in the following image.

The following information is available:

Path

Type

Location

Size

Last Modified

You can set Read only, Archive, and Derived file access options for the resource if required. By
default, the Archive option is set.

2. Getting Started With iWay Transformer

iWay Integration Tools Transformer User’s Guide 71

The Text file encoding section allows you to specify the type of encoding that is used for the
characters in a file. By default, the character encoding is set to UTF-8.

Run/Debug Settings

The Run/Debug Settings category allows you to manage launch configurations that are
associated with the resource that is currently selected.

The following image shows the Run/Debug Settings pane.

Transform Properties

The Transform Properties category includes basic information about the Transform component.

Project Configuration Tutorial

72 Information Builders

The following image shows the Transform Properties pane.

The following properties are listed:

Name. Name of your Transform component.

Type. Input and output format of your Transform component. If the format of the input or
output is changed, the Type property will reflect those changes.

Description. Custom description for your Transform component.

Target Server Version. The target version of iWay Service Manager (iSM) that is selected
for this Transform component.

@REPLACE Function

The @REPLACE Function category provides a way to instantaneously match and replace certain
input data values. Each individually configured replace function works similarly to custom
functions, in that you must first define the function and then apply it in the output node
mapping value definition that you want to affect.

2. Getting Started With iWay Transformer

iWay Integration Tools Transformer User’s Guide 73

The following image shows the @REPLACE Function pane.

Custom Functions

The Custom Functions category enables you to manage the list of custom functions that you
can build on-demand, when a predefined iWay Transformer function does not exist to perform
the task that you require. You must write custom functions in Java and store them on your
system so that they are available for use with iWay Transformer during design time. You must
configure custom functions differently for use at run time.

Project Configuration Tutorial

74 Information Builders

The following image shows the Custom Functions pane.

Input

The Input category allows you to configure the input properties for the Transform component.

2. Getting Started With iWay Transformer

iWay Integration Tools Transformer User’s Guide 75

The following image shows the Input pane.

JDBC Data Source

The JDBC Data Source category enables you to manage the list of JDBC lookups used by the
@JDBCLOOKUP function during transformation mappings. You can define multiple JDBC
connections or add a connection from an existing project. In addition, you can specify any
predefined function (for example, @SREG) as the URL.

Project Configuration Tutorial

76 Information Builders

The following image shows the JDBC Data Source pane.

Output

The Output category allows you to configure the output properties for the Transform
component.

2. Getting Started With iWay Transformer

iWay Integration Tools Transformer User’s Guide 77

The following image shows the Output pane.

Variables

The Variables category enables you to manage the list of variables that can be used for your
output node values. Using variables improves readability and usability of the output. You can
use a defined variable in the output nodes mapping value through the @GETCONSTANT or
@VARIABLE function.

Project Configuration Tutorial

78 Information Builders

The following image shows the Variables pane.

XML Namespaces

The XML Namespaces category enables you to load XML namespaces from other projects or to
create your own.

2. Getting Started With iWay Transformer

iWay Integration Tools Transformer User’s Guide 79

The following image shows the XML Namespaces pane.

Dictionary Builder Tutorial

This topic provides a Dictionary Builder tutorial for iWay Transformer. Dictionary Builder is a
tool within iWay Transformer, which provides a graphical interface for creating and modifying e-
business metadata.

Overview

Dictionary Builder provides metadata management in EDI, SWIFT, or proprietary projects within
iWay Transformer or iWay Service Manager (iSM). It allows composing, editing, and distributing
e-business metadata in the form of Ebix components containing data dictionaries, and certain
data dictionaries within Transform project components. Dictionary Builder is composed of two
major facilities:

Data Dictionary Editor (Metadata Management Facility)

Ebix Entry Projects (Ebix Management Facility)

A dictionary is a representation that describes the structure of a transaction or a document
that is used in EDI, SWIFT, or proprietary projects.

Dictionary Builder Tutorial

80 Information Builders

You can use the Dictionary Builder interface to visualize and browse, in an orderly way, all the
components of e-business data dictionaries. You can access the Dictionary Builder interface in
iWay Transformer in either of two ways:

Open a Transform project (.gxp) that uses a dictionary of supported data formats for its
input or output, as shown in the following image.

2. Getting Started With iWay Transformer

iWay Integration Tools Transformer User’s Guide 81

Open an Ebix Entry project (.ebx), as shown in the following image.

Metadata Management Facility

In iWay Transformer, you can build, browse, and edit standard or custom data dictionaries
through the Graphical User Interface (GUI) driven by the Metadata Management Facility. You
can export or publish these dictionaries afterwards as Ebix components on an iSM server, or
incorporate them as input or output structures for Transform projects. The purpose of a data
dictionary is to provide a single global source for custom business requirements for processing
your e-business message.

iWay Format Adapters are used to convert EDI or SWIFT formatted messages to XML and vice
versa. Data dictionaries are used to define the structure of e-business messages. Data
dictionaries contain structural and content information.

To ensure correct processing of the e-business message, the supporting e-business metadata
must be supplied in the form of data dictionaries. Data dictionaries are stored as entries
within the archives, known as Ebix components.

Currently, the Metadata Management Facility supports the following data formats:

EDI X12

Dictionary Builder Tutorial

82 Information Builders

EDIFACT

Fixed Width

SWIFT

Ebix Management Facility

The Ebix Management Facility enables you to create, update, and browse multiple Ebix entries
or export them to Ebix archives. Ebix archives provide a way to efficiently store multiple
dictionary components and other related metadata as one executable file. These archive files
have an extension of .ebx. In this guide, they are referred to as Ebix archives. The design of
Ebix archives advances the concept of iWay packages by providing seamless integration with
iSM components.

In design time, you can import each of the data dictionaries and its related metadata
components in iWay Transformer as one unit, called an Ebix Entry. An Ebix Entry is managed in
iWay Transformer through an Ebix Entry project, a type of project that supports Dictionary
Builder views. You can then export single or multiple Ebix Entry projects opened in iWay
Transformer as Ebix archives or publish them on the server as Ebix components.

The Ebix Management Facility supports the following data formats:

EDI HIPAA

EDI X12

EDIFACT

HL7

SWIFT

Navigating Dictionary Builder

This topic provides an overview of the supported iSM dictionary components and describes
how to navigate these components in Dictionary Builder.

Overview

A data dictionary is an iWay representation of e-business metadata that describes the layout
and grammar of a transaction or a document. The layout and grammar are stored in one or
more files that contain dictionary components, such as headers or structures.

2. Getting Started With iWay Transformer

iWay Integration Tools Transformer User’s Guide 83

Dictionaries are required when the input or output data is not structural, for example, in EDI or
SWIFT formats. Most dictionaries are converted into XML from the specifications of particular
message types, which are managed and published by organizations. iWay Transformer
supports the following dictionary component types:

Header. Provides the envelope details for the message, such as trading partner information
and message layout.

Structure. Contains the layout and grammar of the document contained in the message,
such as a transaction set of an EDI message.

Message. Represents a structural definition of an HL7 transaction set in XML format.
Messages consist of segments and segment groups in sequential order.

Field. Represents a basic building block of an HL7 message. A field consists of syntax or
data type.

Datatype. Represents a syntax rule for a field, for example, "ASCII String".

The following table lists the component types that are supported for each data format.

Format Header Structur
e

Message Segment Datatype Field

EDIFACT Yes Yes No No No No

EDI X12 Yes Yes No No No No

Fixed Width No Yes No No No No

IDOC No Yes No No No No

SWIFT No Yes No No No No

CSV No Yes No No No No

XML No Yes No No No No

In iWay Transformer, you typically use dictionaries as a starting point for designing your
mapping.

You can build, browse, and edit dictionary components of the supported formats using the
Dictionary Builder interface.

Navigating the Dictionary Builder Interface

Dictionary Builder Tutorial

84 Information Builders

You can access the workspace environment of the Dictionary Builder interface in three different
ways:

Select an Ebix Entry project name or any of its components in the Project Navigator pane,
as shown in the following image on the left.

Select the input or output dictionary of a Transform project, or any of the components
inside (for example, header or structure), in the Project Navigator pane, as shown in the
following image on the right.

The data format of the dictionary must be supported by the Metadata Management Facility.

Located on the left side of the iWay Transformer window in the default view, the Project
Navigator pane displays the references to Ebix Entry and Transform projects that are
currently open. Transform projects that are currently open can be found in the Transforms
category. When an Ebix Entry project is open, an Ebix Entry category is created per each
data format. For example, in the preceding image, all open EDI X12 Ebix Entry projects are
located in the X12 Ebix Entries subfolder.

However, if you open a SWIFT Ebix Entry, the new project category (SWIFT Ebix Entries) will
appear in the Project Navigator, containing the references to your SWIFT Ebix Entry project.

The Ebix Entry project name is displayed as a compilation of the data name format being
used, the format version it belongs to, and the message name that it describes. This
notation provides quick and easy resource organization, which is especially useful when you
are working with multiple Ebix Entry projects at once.

For example, the EDI X12 Ebix Entry project referred to in the preceding image is displayed
by the Dictionary Builder interface as

X12_4010.4010.850

2. Getting Started With iWay Transformer

iWay Integration Tools Transformer User’s Guide 85

where:

X12_4010

Is the naming convention for a standard Ebix that begins with Data
FormatName_Version.

4010

Is the name for a standard version within that data format.

850

Is the message type (Purchase Order) represented by the dictionary.

Navigate to the Dictionary tab for the project in the project workspace pane, as shown in
the following image.

The Dictionary Builder view consists of two panes:

Layout pane

Item Properties pane

Dictionary Builder Tutorial

86 Information Builders

The following image shows the two panes.

Layout pane

2. Getting Started With iWay Transformer

iWay Integration Tools Transformer User’s Guide 87

The following image shows the Layout pane.

The Layout pane is the core working area used by the Dictionary Builder interface. Each
dictionary component is displayed on its own tab, such as the Header or Structure. Dictionary
components are graphically presented in iWay Transformer as tree structures of the lesser
structure units that make up the dictionary, such as segments and loops.

Item descriptions are provided in square brackets next to each EDI dictionary structure
segment. For example, the ISA segment node in the preceding image (EDI X12 Version 2001
Message Type 830) includes the following description:

[Interchange Control Header]

Dictionary Builder Tutorial

88 Information Builders

Similarly, the 01 element node includes the following description:

[Authorization Information Qualifier]

These descriptions allow you to map and identify EDI segments more efficiently.

To quickly delete a dictionary component from the Layout pane, select the item and press the
Delete key. When the Confirm dialog box opens, press the Enter key, or click Yes.

The tree structure of the dictionary metadata on the Layout pane is easy to navigate. The
manipulation that is performed on the data on the Layout pane drives the editing and
processing of the dictionary data in the Item Properties pane. The Item Properties pane
displays the set of properties that belong to the item highlighted in the Layout pane.

If the dictionary has more than one component (for example, it is an EDI X12 dictionary that
consists of header and structure components), you can toggle between the tabs that are
labeled by component name (for example, Header and Structure). The tabs are located at the
bottom of the Layout pane. You can also select the components from the Dictionary category
in the Project Navigator pane, as shown in the following image.

2. Getting Started With iWay Transformer

iWay Integration Tools Transformer User’s Guide 89

The data format type, such as EDI, typically serves as the root of the component structure. You
can use this feature to look up the standard properties for this project from the Item Properties
pane when the root element of the dictionary component tree is highlighted on the Layout
pane, as shown in the following image.

Item Properties pane

Dictionary Builder Tutorial

90 Information Builders

The following image shows the Item Properties pane.

The default location of the Item Properties pane is at the bottom of the Dictionary Builder
workspace. It displays the set of properties for the structural item that is currently highlighted
in the Layout pane. You can edit item properties by double-clicking the value of the property, as
shown in the preceding image.

2. Getting Started With iWay Transformer

iWay Integration Tools Transformer User’s Guide 91

Dictionary Builder Tutorial

92 Information Builders

Chapter3
iWay Transformer Concepts

This section describes concepts related to iWay Transformer, such as transformation and
mappings.

In this chapter:

Transformation Process

iWay Transformer Mappings

iWay Transformer Supported Data Formats

Transform Component Dependencies

Using Namespaces in iWay Transformer

Transform Functions

Invisible Group

iWay Integration Tools Transformer User’s Guide 93

Transformation Process

Transformation is the means by which an incoming document is converted from one data
format or structure to another.

Transform Component

A Transform component represents one configured transformation. It contains information on
the dependencies and the rules of a particular transform. The iWay Transformation Engine
processes input data and builds the output data according to these rules. The serialized form
of a Transform component is called a Transform template.

Transform Template

A Transform template contains a blueprint of a transformation. It provides an XML
representation of a Transform component, referencing its various parameters and rules. It is
typically distinguished by a .gxp extension file format.

Transformation Process

94 Information Builders

Configuration of a Transform Component

The main modules within a Transform component are Dictionary and Mapping rules.

Dictionary

A data dictionary is an iWay representation of e-business metadata that describes the layout
and grammar of a transaction or a document. The layout and grammar are stored in one or
more files that contain dictionary components, such as headers or structures.

Dictionaries are required when the input or output data is not structural, for example, in EDI or
SWIFT formats. Most dictionaries are converted to XML from the specifications of particular
message types, which are managed and published by organizations. iWay Transformer
supports the following dictionary component types:

Header. Provides the envelope details for the message, such as trading partner information
and message layout.

Structure. Contains the layout and grammar of the document contained in the message,
such as a transaction set of an EDI message.

Message. Represents a structural definition of an HL7 transaction set in XML format.
Messages consist of segments and segment groups in sequential order.

Segment. Represents a business entity, for example, Patient Identifier, in an HL7
message. Segments consist of fields in sequential order, and are contained within the
message component.

Field. Represents a basic building block of an HL7 message. A field consists of syntax or
data type.

Datatype. Represents a syntax rule for a field, for example, "ASCII String".

The following table lists the component types that are supported for each data format.

Format Header Structur
e

Message Segment Datatype Field

EDIFACT Yes Yes No No No No

EDI HIPAA Yes Yes No No No No

EDI X12 Yes Yes No No No No

Fixed Width No Yes No No No No

3. iWay Transformer Concepts

iWay Integration Tools Transformer User’s Guide 95

Format Header Structur
e

Message Segment Datatype Field

IDOC No Yes No No No No

SWIFT No Yes No No No No

HL7 No No Yes Yes Yes Yes

CSV No Yes No No No No

XML No Yes No No No No

You can edit the majority of non-XML Transformer dictionaries using the Dictionary Builder.

In iWay Transformer, dictionaries are typically used as a starting point for designing your
mappings.

iWay Transformer Mappings

Mappings consist of rules that define how a transformation is performed for a project, based
on an input and output configuration. They are managed using Mapping Builder.

Mapping Rules

Mapping rules define a set of requirements performed in the course of a transformation, based
on particular input and output configurations. A mapping rule specifies how records and fields
of an output document structure are calculated in relation to the input structure. Each mapping
rule:

Points to a single node of an output structure.

Contains a formula for obtaining data for a value of an output node.

Can map one or more of the input structure items to an output structure item, depending
on the type of the mapping value used.

iWay Transformer Mappings

96 Information Builders

The following diagram shows the mapping rule process.

Mapping Structure

A mapping structure represents a structure (layout) of a document. It consists of
interconnected nodes. Each mapping node has:

A mapping type. For more information, see Mapping Types on page 236.

A mapping value. For more information, see Mapping Values on page 256.

A specific place in the structure that defines its mapping relationships.

For more information, see Working With the Mapping Builder on page 224.

iWay Transformer Supported Data Formats

Transform components support the following data formats:

CSV (Comma-separated Values).

EDI (Electronic Data Interchange).

EDI HIPAA.

EDI X12.

EDIFACT.

Fixed Width.

HTML.

3. iWay Transformer Concepts

iWay Integration Tools Transformer User’s Guide 97

IDOC (SAP Intermediate Document).

SWIFT (International Financial).

XML.

iWay XML Response.

iWay XML Embedded Request.

iWay XML Request.

CDF (Column-defined Format). CDF is deprecated. iWay Software recommends that you use
Fixed Width.

Transform Component Dependencies

There are a number of optional and required dependencies that you must define for a
Transform component to function properly. You can view and browse a project dependencies
using Integration Explorer.

A Transform component resides under the Transforms folder. It is identified by its name and
yellow f(x) icon. Typically, it contains a folder for Input Items and a folder for Output Items,
each containing respective dependencies.

The Input Structure file is required for the initiation of your project. The Output Structure file is
optional, depending on the specific requirements of the transformation. The Input Data file is
required when you wish to test the Transform component. You need a valid input document to
undergo the transformation.

Transform Component Dependencies

98 Information Builders

After you execute the test run, the Test Results folder containing the test data is displayed
with the dependencies, as shown in the following image.

Using Namespaces in iWay Transformer

An XML namespace is a collection of element types and attribute names. XML namespaces
provide a way to distinguish between duplicate element types and attribute names. A
duplication may occur, for example, in an XSLT stylesheet or in a document that contains
element types and attributes from two different Document Type Definitions (DTDs). In an XML
namespace, an element type or attribute name is uniquely identified by a two-part name
property: the name of its XML namespace and its local name.

You can configure XML namespaces globally or separately for each node. An individual XML
namespace configuration enables you to accomplish more advanced goals based on your
requirements.

Default namespaces are supported through the overwrite Default Namespace option.

iWay Transformer also supports the mapping of multiple namespaces to the same URI and the
application of a namespace prefix to a subtree.

The following example presents XML namespaces as a convenient solution to distinguish
between two different XML element types named Address.

3. iWay Transformer Concepts

iWay Integration Tools Transformer User’s Guide 99

<Department>
<Name>DVS1</Name>
<addr:Address xmlns:addr="http://www.tu-darmstadt.de/ito/addresses">
<addr:Street>Wilhelminenstr. 7</addr:Street> <addr:City>Darmstadt</
addr:City>
<addr:State>Hessen</addr:State>
<addr:Country>Germany</addr:Country>
<addr:PostalCode>D-64285</addr:PostalCode>
</addr:Address >
<serv:Server xmlns:serv="http://www.tu-darmstadt.de/ito/servers">
<serv:Name>OurWebServer</serv:Name> <serv:Address>123.45.67.8</
serv:Address>
</serv:Server>
</Department>

Note the first Address element type. Its name belongs to the http://www.tu-darmstadt.de/ito/
addresses XML namespace. It has a universal (two-part) name of “http://www.tu-
darmstadt.de/ito/addresses” and “Address”. The second element type with the same first
name “Address” belongs to the http://www.tu-darmstadt.de/ito/servers XML namespace. It
has a universal name of {http://www.tu-darmstadt.de/ito/servers}Address. Thus, each
universal name is preserved as unique, meeting the requirement that each element type in an
XML document needs to have a unique name.

You can also configure your Transform component to use XML namespaces by loading a set of
namespaces from an existing Transform component. Alternatively, you can opt to create your
own set. Either way, ensure that you select the Contains Namespace check box when
configuring the input.

In addition, ensure that all namespaces from your input data file are described in your XML or
schema structure, and that the prefixes are consistent (that is, they contain the same URI).

To better understand namespace mapping rules, you can draw the parallel between
namespace mapping in iWay Transformer and long distance telephone calling using your land
line.

As an example, imagine that you need to phone your aunt, who currently resides in France,
from New York, USA. In order to complete the call to your aunt, your long distance calling plan
must first have the country code for France on the calling plan list of permitted country codes.
Otherwise, the call to France will not be completed.

In the same manner, the namespaces from the input data file can be compared to a list of
country codes to be dialed. You cannot map the namespace from your input data file
successfully, unless it is included in your schema or XML structure namespace list, which in
this example, is similar to a long distance calling plan.

Using Namespaces in iWay Transformer

100 Information Builders

While designing projects with namespaces, check the schema and input data for consistency.
Your mapping values will not appear in the output if the same namespace prefix from the
incoming data has a different URI in your structure file.

The namespaces with different prefixes that have the same URI are treated as the same
namespace, according to the rules outlined in XML Namespace Specifications.

For example, the following namespaces are described in your dictionary:

<a1:getMessages xmlns:a1="uri:wsdl:org.iway.sp2.customer.v1"
xmlns:internal="uri:wsdl:org.iway.sp2.internal.v1">
.
.
.

In addition, your input data has the following namespaces:

<customer:getMessages xmlns:customer="uri:wsdl:org.iway.sp2.customer.v1"
xmlns:internal="uri:wsdl:org.iway.sp2.internal.v1">
.
.
.

The namespaces customer and a1 are treated as the same namespace while mapping the
output values.

If you are dealing with dynamic namespaces for incoming data, for which their URIs cannot be
determined during design time, we recommend that you deselect the Contains Namespace
check box. This will ensure that incoming data values appear in the output. For more
information, see Working With Namespaces on page 265.

Transform Functions

Functions provide various algorithms that calculate output mapping values in iWay
Transformer.

iWay Transformer provides numerous predefined functions in the following major categories:

EDI Functions. For more information, see EDI Functions on page 102.

Numerical Functions. For more information, see Numerical Functions on page 103.

Processing Functions. For more information, see Processing Functions on page 112.

Run-Time Functions. For more information, see Run-Time Functions on page 118.

Security Functions. For more information, see Security Functions on page 120.

String Functions. For more information, see String Functions on page 121.

3. iWay Transformer Concepts

iWay Integration Tools Transformer User’s Guide 101

Time Functions. For more information, see Time Functions on page 134.

Predefined Functions

To find more information about a function or its parameters, navigate to an appropriate
function category within this topic. Functions and categories are arranged in alphabetical order.

EDI Functions

The EDI functions available in iWay Transformer are described in the following table.

Format-specific functions, such as EDI, do not appear in the Functions pane of the Mapping
Builder unless the output is using the exact format.

EDI Function Description

@COUNT_GROUP() Returns the occurrences of the group within an EDI
message.

Parameters: None.

@COUNT_SEGMENT() Returns the occurrences of the segment within a
transaction set.

Parameters: None.

@COUNT_SEGMENT
(param1)

Returns the occurrences of the specified segment within
a transaction set.

Parameter: param1. Name of the segment. It must be a
constant.

@COUNT_TRANSACTION() Returns the occurrences of the transaction within a
group.

Parameters: None.

@CRC16() Is specific to the UCS 4010 894 document. It is used on
the 866 element (CRC 16 checksum) of the G8501
segment. The value of this function is generated using a
Cyclic Redundancy Code (CRC) algorithm. It has a fixed
length of four characters with no zero suppression. It
applies to the contents of the entire transaction that is
configured for segments ST through G86, inclusive.

Transform Functions

102 Information Builders

EDI Function Description

@LINE_COUNTER
(param1)

Returns the occurrences of the specified segment within
the same loop instance. The counter is reset when a new
loop starts.

Parameter: param1. Name of the segment. It must be a
constant. It is based on the LN segment description.

Numerical Functions

The numerical functions available in iWay Transformer are described in the following table.

Numerical
Function

Description

@ADD
(param1,
param2)

Returns the result of adding the two numbers specified as parameters.

Parameters:

param1. Number to add to param2.

param2. Number to add to param1.

Example: @ADD(24.01, 12.02) returns 36.03.

@AVERAGE
(param1)

Returns the average of the specified parameter values within the same
parent instance. This function is used within the group in combination
with the Agg looping property.

You must carefully set the looping settings of the parent and
grandparent of the attribute or element that uses the @AVERAGE
function. For more information, see Group Properties on page 241.

Parameter: param1. Number that represents the value to average.
Usually, it is mapped from the ancestor node to the input document
node.

3. iWay Transformer Concepts

iWay Integration Tools Transformer User’s Guide 103

Numerical
Function

Description

Example:

In the following example, the output node ValueAverage has the value
@AVERAGE(Sales/Company/Year/Quarter/Product/Item@value), where
the output obtained is:

<Sales_Totals>
 <companyName>Video and Sound Card
Express</companyName>
 <Statistics>
 <itemValueAverage>139.7407</itemValueAverage>
 <allTimeSales>95022.02</allTimeSales>
 </Statistics>
</Sales_Totals>

In this XML-to-XML transformation example, the Sales_Totals output
group has the looping property set to False. The Statistics group has
the looping property set to Agg. The desired output value is also
obtained with the Sales_Totals looping property set to Agg, but not
when it is set to True.

@CHKNUM
(param1)

Returns the string true if the specified parameter is a valid number. Use
this function to determine if the parameter is a number (either integer
or decimal). Returns true or false.

Parameter: param1. Number to validate.

Examples:

@CHKNUM('1.1') returns true.

@CHKNUM('abcd') or @CHKNUM('1,234.55') returns false.

@COUNT Counts the input items processed and returns the next sequential
value. The first loop through @COUNT initializes the counter to 1.
Subsequent passes increment the counter to the next integer number.

Parameters: None.

Transform Functions

104 Information Builders

Numerical
Function

Description

@DIVIDE
(param1,
param2)

Returns the decimal result of dividing two numbers specified as
parameters.

Parameters:

param1. Number that represents the dividend.

param2. Number that represents the divisor.

Example: @DIVIDE('24.02', '12.01') returns 2.0.

@INT
(param1)

Returns the first occurrence of the integer value found in the specified
parameter. If the integer value cannot be found, the number 0 (zero) is
returned.

Parameter: param1. String to be checked.

Examples:

@INT('45.60 or 65.60') returns 45.

@INT('in the summer of 1998 and 1999') returns 1998.

@INT('time is 23:11:56') returns 23.

@INT('last year') returns 0.

@INTVAL
(param1)

Returns the specified parameter value if it is a valid integer. Otherwise,
it returns the number 0 (zero).

Parameter: param1. String to be checked.

Examples:

@INTVAL('45') returns 45.

@INTVAL('45.12') or @INTVAL('dollars 1.23') returns 0.

3. iWay Transformer Concepts

iWay Integration Tools Transformer User’s Guide 105

Numerical
Function

Description

@MULTIPLY
(param1,
param2)

Returns the decimal result of multiplying two members specified as
parameters.

Parameters:

param1. Number to multiply by param2.

param2. Number to multiply by param1.

Example: @MULT(12.01, 2.00) returns 24.02.

@NUM
(param1)

Converts an integer string to a numeric value. Use this function to
determine if a parameter is an integer (whole number). The function
returns the parameter or an error.

Parameter: param1. Numeric string to be converted to an integer value.

Example: @NUM('45') returns 45.

@NUM_CHR
(param1)

Returns the ASCII character that corresponds to a number.

Parameter: param1. Integer number between 1 and 127 that
represents the order of an ASCII character.

Example: @NUM_CHR ('66') returns 'B'.

@RANDOM
(param1)

Returns a pseudo random number.

Parameter: param1. Number used to seed the random number
generator.

If param1 = -1, the seed is initialized randomly.

If param1 = n (where n is not 0 or -1), the seed is initialized to n.

If param1 = 0, the same random number value that is generated for the
previous output item is used as the result for the next output item.

For example, if the @RANDOM value of an output element is '-12345',
and you use @RANDOM('0') for the next element, the same '-12345'
value is returned for this element.

Transform Functions

106 Information Builders

Numerical
Function

Description

@RANGE
(param1,
param2,
param3)

Determines if a number falls within a range, and returns the string
value "true" or "false". The range is given by param2 to param3,
inclusive.

Parameters:

param1. Value that is checked.

param2. Value that represents the lower limit of the range.

param3. Value that represents the upper limit of the range.

Example: @RANGE('10', '5', '15') evaluates to true.

@ROUND
(param1,
param2,
param3)

Extracts a specified part of a number and rounds the result to an
integer.

Parameters:

param1. Number subjected to the operation.

param2. Number of digits to be extracted from the integer part of
param1. Digits are counted from the left of the decimal separator.

param3. Number of digits to be extracted from the decimal part of
param1. Digits are counted from the right of the decimal separator.

Example: @ROUND(345.995, 2, 2) returns 46.00.

3. iWay Transformer Concepts

iWay Integration Tools Transformer User’s Guide 107

Numerical
Function

Description

@SCALE_ROUND
(param1,
param2,
param3)

Returns the specified parameter rounded in a specified fashion.
Enables you to scale a number and specify the way that it is rounded
during scaling.

Parameters:

param1. Number subjected to the operation.

param2. Number of digits to the right of the decimal place to keep. The
value must be a non-negative integer.

param3. Type of rounding required.

The following are possible values:

ROUND_CEILING: Round towards positive infinity.

ROUND_DOWN: Round towards zero.

ROUND_FLOOR: Round towards negative infinity.

ROUND_HALF_DOWN: Round towards nearest number. If equidistant to
two numbers, round down.

ROUND_HALF_EVEN: Round towards nearest number. If equidistant to
two numbers, round towards even number.

ROUND_HALF_UP: Round towards nearest number. If equidistant to two
numbers, round up.

ROUND_UNNECESSARY: No rounding is necessary. Use this rounding
mode to make sure that the output value has the exact number of
decimals specified in param2. If the number of decimals is different, an
error is returned.

ROUND_UP: Round away from zero.

Example: @SCALE_ROUND(5.111, 2, ROUND_UP) returns 5.12.

Transform Functions

108 Information Builders

Numerical
Function

Description

@STR
(param1,
param2)

Converts a number to an alpha string according to a picture mask. Use
this function to format numbers.

Parameters:

param1. Number to be converted into an alpha string.

param2. Picture mask format for the string. For more information, see
Numeric Pictures on page 140.

Examples: @STR('45.12', '##.#') returns '45.1'.

@STR('75','#.00') returns 75.00.

@STR('567.1', '#.00') returns 567.10.

Since a picture mask is used, the function may cause rounding. For
example, @STR(39.999,'#.00') returns '40.00'.

@SUBTRACT
(param1,
param2)

Returns the result of subtracting two numbers specified as parameters.

Parameters:

param1. Float number from which to subtract param2.

param2. Float number to subtract from param1.

Example: @SUBTRACT(24.02, 11.01) returns 13.01.

3. iWay Transformer Concepts

iWay Integration Tools Transformer User’s Guide 109

Numerical
Function

Description

@SUM
(param1)

Returns the sum of the numeric values of a specified input node.

You must carefully set the looping settings of the parent and
grandparent of the node that uses the @SUM function. For more
information, see Group Properties on page 241.

Parameter: param1. Input node that has a numeric value.

Example: In the following example, the output node allTimeSales has
the value @SUM(@MULTIPLY(Sales/Company/Year/Quarter/Product/
Item @value, Sales/Company/Year/Quarter/Product/Item@sold)),
where the output obtained is:

<Sales_Totals>
<companyName>Video and Sound Card
Express</companyName>
 <Statistics>
 <itemValueAverage>139.7407</itemValueAverage>
 <allTimeSales>95022.02</allTimeSales>
 </Statistics>
</Sales_Totals>

In this XML-to-XML transformation example, the Sales_Totals output
group has the looping property set to False. The Statistics group has
the looping property set to Agg. The desired output value is also
obtained with the Sales_Totals looping property set to Agg, but not
when it is set to True.

Transform Functions

110 Information Builders

Numerical
Function

Description

@VAL
(param1,
param2)

Returns the number that matches the specified picture mask. This
function returns a value only if the picture mask matches the input
format. For example, if the picture mask is # and the input is 7.3, the
function returns an error, not 7 as might be expected.

Use this function to retrieve the numeric value from a string.

Do not use this function to format a number. To format a number, use
the @STR function.

Parameters:

param1. String that contains the number to be retrieved.

param2. Format in which the number is stored in the string. Must be
specified as a constant in the Mapping Builder. For more information,
see Numeric Pictures on page 140.

Examples:

@VAL('30.11 dollars plus a fee of 40 dollars','##') returns 40.

@VAL('30.11 dollars plus a fee of 40 dollars','##.##') returns 30.11.

To format a number with commas, such as <X>123,456,789</X>, you
can remove the commas by using the @CONCAT and @SUBSTR
functions. For example:

@CONCAT(@SUBSTR(X,'1','3'),@SUBSTR(X,'5','3'),@SUBSTR(X,'9','3'))

3. iWay Transformer Concepts

iWay Integration Tools Transformer User’s Guide 111

Processing Functions

The processing functions available in iWay Transformer are described in the following table.

Processing Function Description

@CONDITION

(param1)

The @CONDITION function is a new processing function that
supports embedded conditions. This function also includes
support for AND / OR operators.

Note: The @CONDITION function is designed to be used within
the @IF function to support a more refined handling of multiple
conditions instead of a series of nested @IF statements.

Parameters:

Param1: A boolean expression of a defined syntax
(<left_operand><operator><right_operand>). The left_operand
and right_operand can be any supported mapped values.
Supported arguments for the operator include all arguments of
the current @IF processing function (for example: ==, !=, <, >,
<=, >=, AND, OR). By default, the operator is set to AND in the
Output Node Mapping Builder.

For AND or OR operators, if the left or right operands are
mapped to an input context, it will be assumed that the
@EXISTS function is used. For example:

@CONDITION(a/b/c AND a/b/e)
@IF(a/b/c AND a/b/e,'true','false')

Will be the same as:

@CONDITION(@EXISTS(a/b/c) AND @EXISTS(a/b/e))
@IF (@EXISTS(a/b/c) AND @EXISTS(a/b/
e) ,'true','false')

The @CONDITION function returns a string:

true - If condition results to true, Boolean.TRUE is returned.

false - If condition results to false, Boolean.FALSE is
returned.

Transform Functions

112 Information Builders

Processing Function Description

@EDIT
(param1, param2,
param3)

Returns a value formatted using the specified picture mask and
formatter class name. For more information, see Numeric
Pictures on page 140.

Parameters:

param1. String representing the formatter class name. Supports
the DecimalFormat class.

param2. String representing the picture mask to be applied to
param3.

param3. Number to be formatted.

Examples:

@EDIT('DecimalFormat','#,###.##','123456.78) returns
123,456.78.

@EDIT('DecimalFormat','000','12') returns 012.

3. iWay Transformer Concepts

iWay Integration Tools Transformer User’s Guide 113

Processing Function Description

@EXISTS
(context_to_be_checked)

Returns a string with a Boolean value that indicates whether or
not the context is null.

Use this processing function to distinguish between an element
that is missing from a document structure from an element that
is present, but has a value of an empty string.

Examples:

<Statistics>
 <itemValueAverage>139.7407</itemValueAverage>
 <allTimeSales>95022.02</allTimeSales>
</Statistics>

@EXISTS (Statistics/ itemValueAverage) returns true.

<Statistics>
 <itemValueAverage></itemValueAverage>
 <allTimeSales>95022.02</allTimeSales>
</Statistics>

@EXISTS (Statistics/ itemValueAverage) returns true.

<Statistics>
 <allTimeSales>95022.02</allTimeSales>
</Statistics>

@EXISTS(Statistics/ itemValueAverage) returns false.

@GETCONSTANT
(param1)

Returns the value of the global constant specified by name in
the parameter.

Parameter: param1. Global constant defined in the Global
Constant section of the Project Properties pane.

Example: Assume that you defined the following global constant
in project properties:

Name: COMPANY_ADDRESS Value: 1234 1st Avenue

As a result, @GETCONSTANT('COMPANY_ADDRESS') returns
'1234 1st Avenue'.

Transform Functions

114 Information Builders

Processing Function Description

@IF
(param1, param2,
param3, param4,
param5)

Allows for a conditional selection statement defined by the first
three parameters. If the condition evaluates to true, it returns
the contents of the fourth parameter. Otherwise, it returns the
contents of the fifth parameter.

Parameters:

param1. Left operand of the condition statement.

param2. Conditional operator. The possible arguments are:

= = equal to

!= not equal to

>= equal to or greater than

<= equal to or less than

> greater than

< less than

param3. Right operand of the condition statement.

param4 (true_option). The string to be returned if the condition
statement is true.

param5 (false_option). The string to be returned if the condition
statement is false.

Example: The variable X has a value that fluctuates between 4
and 8. @IF(X<'10', 'ABC', 'DEF') always returns 'ABC'.

@INPUT_CONTENT Returns the contents of the entire input data file as a string.

Parameters: None.

3. iWay Transformer Concepts

iWay Integration Tools Transformer User’s Guide 115

Processing Function Description

@JDBCLOOKUP
(param1, param2)

Returns a value retrieved from a database using an SQL
statement. The SQL statement can be dynamically based on the
input from other transform functions. If more than one value is
retrieved by the SQL statement, the last value in the sequence
is returned.

Parameters:

param1. String that represents the name of a globally defined
JDBC connection configuration.

param2. SQL statement that is defined using SQL Builder.

Example:

@JDBCLOOKUP('LOOKUP_TEST', {'SELECT field1 FROM
LOOKUP_TABLE WHERE field2 ' = '+@QUOTE(Customer/
Person/Name)})

where:

LOOKUP_TEST

Is the name of the specific JDBC connection configuration.

{'SELECT field1 FROM LOOKUP_TABLEWHERE field2 '
= '+@QUOTE(Customer/Person/Name)}

Is the SQL statement that is constructed dynamically.

@NULL Returns a null output, that is, no output. Useful, for example, as
either the true_option or false_option in an @IF function.

Parameters: None.

Transform Functions

116 Information Builders

Processing Function Description

@REPLACE
(param1, param2)

Calls the predefined replace function specified by name in the
second parameter of @REPLACE, which replaces every matched
string specified in the first parameter. If the match is not found,
the first parameter is returned. For more information on how to
define replace functions, see Using the Mapping Builder on page
269.

Parameters:

param1. Input node, value, or constant in which to make
changes.

param2. Replace function name as defined.

The @REPLACE processing function supports spaces and
unprintable characters (for example, \t, \r, or \n) as parameter
values.

Example: @REPLACE('11009333009',
'REPLACE_009_WITH_Add') returns 11Add333Add.

@SIMPLE_REPLACE
(param1, param2)

Calls the predefined replace function, which replaces the first
string that matches the value of the first parameter of this
function. If a match is not found, the first parameter is returned.

Parameters:

param1. Input node value in which to make changes.

param2. Replace function name as defined.

Example: @SIMPLE_REPLACE('009',
'REPLACE_009_WITH_Add') returns Add.

3. iWay Transformer Concepts

iWay Integration Tools Transformer User’s Guide 117

Run-Time Functions

The run-time functions available in iWay Transformer are described in the following table.

Run-Time Function Description

@IWENCR
(param1)

Returns the encrypted value of the parameter, based on the iWay
Service Manager internal encryptor.

Parameter: param1. String to be encrypted.

Example:

@IWENCR('1234') returns the value in a format similar to:

@ENCR(32533101323532123122319631833137).

@SREG
(param1, param2)

Returns some of the iWay Service Manager special registers defined
by the specified parameter. This functionality is supported for run-
time purposes only. If the function is tested in design time, param2
is always returned.

Parameters:

param1. String that represents the name of the special register
whose value is returned.

param2. String that represents the default value to return if the
special register identified by param1 is not found.

The second parameter of the @SREG() function must consist of a
mapped dynamic value. A static default value as the second
parameter is not allowed. When you troubleshoot @SREG()
evaluation problems, we recommend that you map a dynamic value
to the second parameter instead of using a static default value.

Transform Functions

118 Information Builders

Run-Time Function Description

@SET_SREG
(param1, param2,
param3, param4)

Sets the specified iWay Service Manager special register to the
specified value, and returns param4. This functionality is supported
for run-time purposes only.

The special register name is specified in param1. The value to be
assigned is specified in param2. The type of the special register is
specified in param3. The last parameter, param4, contains the value
to be returned upon successful execution.

Parameters:

param1. String that represents the name of the special register.

param2. String that represents the new value of the special register.

param3. Number that represents the type of the special register.
Possible values include:

2: user-defined variable

3: user-defined emit header

param4. String that represents the expected return value of this
function.

Example: @SET_SREG ('custom_functions_location', 'tools/
transformer/custom_functions','2','custom functions location is
set') returns 'custom function location is set'.

@SREG_EXISTS
(param1)

Determines if an iWay Service Manager special register with the
name specified in the parameter is already defined, and returns a
true or false response. This functionality is supported for run-time
purposes only.

Parameters:

param1. String that represents the name of the special register.

Example: @SREG_EXISTS('custom_functions_location') returns true
if the register is already defined. Returns false if the register is not
defined.

3. iWay Transformer Concepts

iWay Integration Tools Transformer User’s Guide 119

Run-Time Function Description

@REMOVE_SREG
(param1, param2)

Removes the iWay Service Manager special register with the name
specified in param1, and returns param2. This functionality is
supported for run-time purposes only.

Parameters:

param1. String that represents the name of the special register.

param2. String that represents the expected return value of this
function.

Example: @REMOVE_SREG ('custom_functions_location','custom
functions location is removed') returns 'custom function location is
removed'.

Security Functions

The security functions available in iWay Transformer are described in the following table.

Security
Function

Description

@CHKDGT
(param1,
param2)

Determines if the alphanumeric character, at the specified position of the
string in param1, is a number or a letter. Returns 'true' if it is a number, or
'false' if it is a letter.

Parameters:

param1. Alpha string that represents the number to be checked.

param2. Position of the character in param1 to check. The position numbering
starts at 0 (zero) from the left. Supply this parameter as a constant in the
Mapping Builder.

Examples:

@CHKDGT('4abc', '0') returns 'true'.

@CHKDGT('6a89', '1') returns 'false'.

Transform Functions

120 Information Builders

String Functions

The string functions available in iWay Transformer are described in the following table.

String Function Description

@CONCAT
(param1, param2,
param3, param4)

Returns the string of concatenations of the specified parameters.

If required, you can add or remove parameters for the @CONCAT
function using the Mapping Builder. For more information, see
Customizing @CONCAT Functions on page 280.

The following signatures of the @CONCAT function are available:

@CONCAT(param1, param2)

@CONCAT(param1, param2, param3)

@CONCAT(param1, param2, param3, param4)

Parameters:

param1. String to be concatenated.

param2. String to be concatenated.

param3. String to be concatenated.

param4. String to be concatenated.

Example: @CONCAT('The cow ', 'jumped ', ' over ', ' the moon')
returns 'The cow jumped over the moon'.

@CRLF Returns the combination of the Carriage Return and new Line Feed
characters.

Parameters: None.

Example: @CONCAT('First line',@CRLF(),'Second line') returns 'First
line Second line'.

3. iWay Transformer Concepts

iWay Integration Tools Transformer User’s Guide 121

String Function Description

@DELSTR
(param1, param2,
param3)

Deletes the character substring from an alpha string for the length
specified in param3.

Parameters:

param1. Alpha string or alpha string expression.

param2. Position of the first character to be deleted.

param3. Number of characters to be deleted, beginning with param2
and continuing to the right.

Examples:

@DELSTR('ABCD', '2', '1') deletes the second letter of the string
and returns 'ACD'.

@IF(Y<0, @DELSTR(X, '1', '1'), @IF(Y>0, @DELSTR(X, '2', '1'), X))

If X contains a character string with a length greater than or equal to
2, the expression removes either the first or second character, or
leaves the string intact, depending on the value that appears in
column Y (negative, positive, or zero).

@EQUALS
(param1, param2)

Compares two strings, and returns 'true' if they are equal or 'false' if
they are not.

Parameters:

param1. String to compare.

param2. String to compare.

Example: @EQUALS('BA', 'AB') returns 'false'.

@FILL
(param1, param2)

Repeats an alpha string or expression multiple times.

This function accepts a maximum of 32 kilobytes (KB).

Parameters:

param1. An alpha string or expression.

param2. The number of times that the string is repeated.

Example: @FILL('*',5) creates a string of five asterisks '*****'.

Transform Functions

122 Information Builders

String Function Description

@FLIP
(param1)

Reverses an alpha string, or the result of an alpha expression, to its
mirrored image.

Parameter: param1. Alpha string or alpha string expression.

Example: @FLIP('Good') returns 'dooG'.

@HSTR
(param1)

Returns the hexadecimal (base 16) string value of a decimal (base
10) number specified as param1.

Parameter: param1. Decimal (base 10) number or numeric
expression that represents a decimal number.

Example: @HSTR('15') returns 'F'. @HSTR('16') returns '10'.

@HVAL
(param1)

Returns the decimal (base 10) value of a hexadecimal (base 16)
number specified as param1.

Parameter: param1. Alpha string that represents a hexadecimal
(base 16) number.

Example: @HVAL('FF') returns 255. @HVAL('10') returns 16.

@INSERT
(param1, param2,
param3, param4)

Inserts one string into another at the specified position.

Parameters:

param1. Alpha string that represents the target string.

param2. Alpha string that represents the source string.

param3. Number that represents the character position in param1,
after which the insertion takes place.

param4. Number that represents how many characters from param2
are inserted into param1.

Example: @INSERT('abcde', 'xxx', '3', '2') returns 'abcxxde'.

3. iWay Transformer Concepts

iWay Integration Tools Transformer User’s Guide 123

String Function Description

@INSTR
(param1, param2)

Returns an integer that represents the first position of a substring
within an alpha string or alpha expression.

If the search argument is not found, the function returns 0 (zero).

Parameters:

param1. Input string or alpha expression string.

param2. Alpha string that is searched for in the input string.

Examples:

@INSTR('abcd', 'b') returns 2.

@INSTR('ABCDEF', 'DE') returns 4.

@LEFT
(param1, param2)

Returns a substring of an alpha string, starting from the left, with its
length specified in param2.

Parameters:

param1. Input string.

param2. Number of characters to be returned, starting from the left.

Example: @LEFT('abcdefg', '3') returns 'abc'.

@LEN
(param1)

Returns an integer number that equals the length of an alpha string.

The string is right-justified (for example, trailing blanks are removed)
before starting.

Parameter: param1. Input string.

Example: @LEN ('abcdefg') returns 7.

@LOWER
(param1)

Returns a string converted to all lowercase letters.

Parameter: param1. Input string.

Example: @LOWER('Who said THAT?') returns 'who said that?'

Transform Functions

124 Information Builders

String Function Description

@LPAD
(param1, param2)

Returns the specified input string padded to the left, using the string
specified in param1. The padding is inserted to the left of the string
input until the length specified in param2 is reached. If padding is
not performed (for example, if there is an invalid parameter or the
desired length is smaller than the length of the input string), param1
is returned.

Parameters:

param1. String input to be padded.

param2. Number that represents the desired length of the returned
string.

Examples:

Single quotation marks are not part of the data. They are used to
visually mark the length of the padded string.

@LPAD('constant','12') returns ' constant'.

@LPAD('constant','3') returns ' constant'.

3. iWay Transformer Concepts

iWay Integration Tools Transformer User’s Guide 125

String Function Description

@LPAD
(param1, param2,
param3)

Returns the specified input string padded to the left, using the string
specified in param3. The string is inserted to the left of the input
string until the desired length specified in param2 is reached. If
padding is not performed (for example, if there is an invalid
parameter or the desired length is smaller than the length of the
input string), param1 is returned.

Parameters:

param1. Input string to be padded.

param2. Number that represents the length of the returned string.

param3. String used for padding.

Examples:

Single quotation marks are not part of the data. They are used to
visually mark the length of the padded string.

@LPAD('constant','12', 'L') returns

'LLLLLLLLLLLLconstant'.

@LPAD('constant','3', 'L') returns 'LLLconstant'.

@LTRIM
(param1)

Removes leading white spaces (such as blanks, tabs, line feeds)
from an alpha string or an alpha expression.

Parameter: param1. Input string.

Example: @LTRIM(' John') returns 'John'.

@LTRIM
(param1, param2)

Removes a leading specified trim character from an alpha string or
an alpha expression.

Parameters:

param1. Input alpha string or alpha expression.

param2. Specified trim character.

Example: @RTRIM('XJohn ',X) returns 'John'.

Transform Functions

126 Information Builders

String Function Description

@LTRIM
(param1, param2,
param3)

Removes leading white space (blanks, tabs, line feeds) or specified
trim characters from an alpha string or an alpha expression.

Parameters:

param1. Input alpha string or alpha expression.

param2. Specified trim character.

param3. A true or false flag to trim all occurrences of the trim
character specified in param2.

Example: @RTRIM('XXJohn ',X, true) returns 'John'.

@MID
(param1, param2,
param3)

Returns the substring extract of the specified number of characters
from an input string.

This function will be deprecated in future releases. Use @SUBSTR
instead.

Parameters:

param1. Input string.

param2. Number that represents the starting position of the
substring within param1.

param3. Number of characters to be extracted (the length of the
substring).

Example: @MID('John', '3', '2') returns 'hn'.

@NOT_EQUALS
(param1, param2)

Compares two strings in param1 and param2, and returns 'false' if
they are equal, or 'true' if they are not.

Parameters:

param1. String.

param2. String.

Example: @EQUALS('BA', 'AB') returns 'true'.

3. iWay Transformer Concepts

iWay Integration Tools Transformer User’s Guide 127

String Function Description

@QUOTE
(param1)

Returns the specified parameter in param1, delineated by the single
quotation marks.

Parameter:

param1. String to be quoted.

Examples:

@QUOTE('quote me') returns 'quote me'.

@QUOTE('23') returns '23'.

@QUOTEGEN
(param1)

Generates a WHERE clause in an SQL statement. Generates single
quotation marks around an alpha string, but not if the input is an
integer or a number.

Parameter:

param1. String. It can be an input node value, a constant, or the
result of another function.

Examples:

@QUOTEGEN('HELLO') returns 'HELLO'.

@QUOTEGEN('1234') returns 1234.

@CONCAT('SELECT column1 from table where column2 = ',
@QUOTEGEN(parent/child/value))

returns:

“SELECT column1 from table where column2 = 'value', IF parent/
child/value type is an alpha string.”

“SELECT column1 from table where column2 = value, IF parent/
child/value type is integer or number.”

Transform Functions

128 Information Builders

String Function Description

@REP
(param1, param2,
param3, param4)

Returns the result of the replacement of an alpha substring in an
input string with another substring.

Parameters:

param1. Input alpha string or expression in which the replacement
takes place.

param2. Alpha string or expression that provides the substring to
copy to param1.

param3. First position in param1 that receives the substring from
param2.

param4. Number of characters that are moved from param2 to
param1, starting from the left-most character of param2.

Example: @REP('12345', 'abcde', '3', '2') returns '12ab5'.

@RIGHT
(param1, param2)

Returns a substring of an alpha string, starting from the right, with
its length specified in param2.

Parameters:

param1. Input string from which the characters are taken.

param2. Number of characters to be retrieved, starting from the
character furthest right.

Example: @RIGHT('abcdefg ', '3') returns 'efg'.

3. iWay Transformer Concepts

iWay Integration Tools Transformer User’s Guide 129

String Function Description

@RPAD
(param1, param2)

Returns the specified input string padded to the right, using the
string specified in param1. The padding is inserted to the right of the
input string until the desired length specified in param2 is reached.
If padding is not performed (for example, if there is an invalid
parameter or the desired length is smaller than the length of the
input string), param1 is returned.

Parameters:

param1. String to be padded.

param2. Number that represents the length of the returned string.

Examples:

Single quotation marks are not part of the data. They are used to
visually mark the length of the padded string.

@RPAD ('constant','12') returns 'constant '.

@RPAD ('constant','3') returns 'constant '.

Transform Functions

130 Information Builders

String Function Description

@RPAD
(param1, param2,
param3)

Returns the specified input string padded to the right, using the
string specified in param3. The padding string is inserted to the right
of the input string until the desired length specified in param2 is
reached. If padding is not performed (for example, if there is an
invalid parameter or the desired length is smaller than the length of
the input string), the first parameter is returned.

Parameters:

param1. String to be padded.

param2. Number that represents the length of the returned string.

param3. String used for padding.

Examples:

Single quotation marks are not part of the data. They are used to
visually mark the length of the padded string.

@RPAD ('constant','12', 'R') returns

'constantRRRRRRRRRRRR'.

@RPAD ('constant','3', 'R')returns 'constantRRR'.

@RTRIM
(param1)

Removes trailing white spaces (such as blanks, tabs, line feeds)
from an alpha string or an alpha expression.

Parameter: param1. Input alpha string or alpha expression.

Example: @RTRIM('John ') returns 'John'.

@RTRIM
(param1, param2)

Removes a trailing specified trim character from an alpha string or
an alpha expression.

Parameters:

param1. Input alpha string or alpha expression.

param2. Specified trim character.

Example: @RTRIM('JohnX ',X) returns 'John'.

3. iWay Transformer Concepts

iWay Integration Tools Transformer User’s Guide 131

String Function Description

@RTRIM
(param1, param2,
param3)

Removes trailing white space (blanks, tabs, line feeds) or specified
trim characters from an alpha string or an alpha expression.

Parameters:

param1. Input alpha string or alpha expression.

param2. Specified trim character.

param3. A true or false flag to trim all occurrences of the trim
character specified in param2.

Example: @RTRIM('JohnXX ',X, true) returns 'John'.

@STRTOKEN
(param1, param2,
param3)

Returns a specified string token from a delimited token string.

Parameters:

param1. Input string, delimited with tokens.

param2. Requested token index (numeric).

param3. Delimiter. You can use valid <XML> element tags (nodes)
as delimiters. The XML format of a list can be a variable or URL.
Content must consist of a <list><tag>Value</tag></list> set, in
which element names can be arbitrary but must be consistent.

Parameter Notes:

The third parameter, param3, can have more than one character
as the delimiter.

An empty string is returned if a delimiter is not found or is empty,
or if the input string is empty.

Every delimiter is counted for the index calculation (no repetition).

Example: variable BA = abcd,cdef,ghik,lmnp, then @STRTOKEN(BA,
'2', ',') returns cdef.

Transform Functions

132 Information Builders

String Function Description

@SUBSTR
(param1, param2,
param3)

Returns the substring representing the extracts of a specified
number of characters from an alpha string.

Parameters:

param1. Input alpha string.

param2. Number that represents the starting position of the
substring within param1.

param3. Number of characters to be extracted (the length of the
substring).

Example: @SUBSTR('John', '3', '2') returns 'hn'.

@TRIM
(param1)

Removes white space characters (such as blanks, tabs, and line
feeds) from the left and right sides of an alpha string or an alpha
expression.

Parameter: param1. Input alpha string.

Example: @TRIM(' John ') returns 'John'.

@TRIM
(param1, param2)

Removes a specified trim character from the left and right sides of
an alpha string or an alpha expression.

Parameters:

param1. Input alpha string or alpha expression.

param2. Specified trim character.

Example: @RTRIM('XJohnX ',X) returns 'John'.

3. iWay Transformer Concepts

iWay Integration Tools Transformer User’s Guide 133

String Function Description

@TRIM
(param1, param2,
param3)

Removes white space characters (such as blanks, tabs, and line
feeds) or specified trim characters from the left and right sides of an
alpha string or an alpha expression.

Parameters:

param1. Input alpha string or alpha expression.

param2. Specified trim character.

param3. A true or false flag to trim all occurrences of the trim
character specified in param2.

Example: @RTRIM('XXJohnXX ',X, true) returns 'John'.

@UPPER
(param1)

Returns a string converted to all uppercase letters.

Parameter: param1. Alpha string.

Example: @UPPER('Pablo Picasso') returns 'PABLO PICASSO'.

Time Functions

The time functions available in iWay Transformer are described in the following table.

Transform Functions

134 Information Builders

Time Function Description

@ADD_DATE
(param1, param2,
param3, param4)

Performs a calculation on a date variable. It constructs a resulting
date out of an input date and three values added to that date: years,
months, and days. The result is always a valid date format.

Parameters:

param1. Input date (format: MM/dd/yyyy).

param2. Number of years to add to param1.

param3. Number of months to add to param1.

param4. Number of days to add to param1.

A parameter with a value of 0 (zero) is ignored.

Example: @ADD_DATE('01/01/1992', '1', '2', '2') returns
03/03/1993.

@ADD_TIME
(param1, param2,
param3, param4)

Performs a calculation on a time variable. It constructs a resulting
time out of an input time and three values added to that time: hours,
minutes, and seconds. The result is always a valid time format.

Parameters:

param1. Input time.

param2. Number of hours to add to param1.

param3. Number of minutes to add to param1.

param4. Number of seconds to add to param1.

A parameter with a value of 0 (zero) is ignored.

Example: @ADD_TIME('12:00:00', '1', '2', '3') returns 13:02:03.

@CUSTOMDATE() Will be deprecated in future releases. Use @DATE instead.

@DATE
(param1)

Returns the system date in the specified format. For more
information, see Date Pictures on page 142.

Parameter: param1. Date format.

Example: If the system date is 01/28/1992, @DATE ('dd/MM/yyyy')
returns '28/01/1992'.

3. iWay Transformer Concepts

iWay Integration Tools Transformer User’s Guide 135

Time Function Description

@DAY
(param1)

Returns the day of the specified date as a number between 1 and
31.

Parameter: param1. Input date. It is a date or date expression.

Example: @DAY('01/28/1992') returns '28'.

@DOW
(param1)

Returns the number of the day of the week for the specified date.
For example, Sunday is 1 and Monday is 2.

Parameter: param1. Input date (format MM/dd/yyyy).

Example: @DOW('01/29/1992'), representing a Wednesday,
returns '4'.

@DSTR
(param1, param2)

Returns the specified date in the format specified by the second
parameter. The original input must be in the format 'MM/dd/yyyy'.
For more information, see Date Pictures on page 142.

Parameters:

param1. Input date (format MM/dd/yyyy).

param2. Picture mask (format) of the returned date string.

Example: @DSTR('2/12/1998','MMMM dd, yyyy') returns 'February
12, 1998'.

@DSTR
(param1, param2,
param3)

Returns an input date in the format specified by the third parameter.
The input date must conform to the format specified by the second
parameter. For more information, see Date Pictures on page 142.

Parameters:

param1. Input date.

param2. Picture mask of the input date.

param3. Picture mask (format) of the returned date string.

Example: @DSTR('2/12/1998','dd/MM/yyyy','MMMM dd, yyyy')
returns 'December 02, 1998'.

Transform Functions

136 Information Builders

Time Function Description

@DSTR
(param1, param2,
param3, param4)

Returns an input date format according to the fourth parameter,
which accepts a Boolean value (true or false).

Parameters:

param1. Input date.

param2. Picture mask of the input date.

param3. Picture mask (format) of the returned date string.

param4. Determines whether or not the input date complies with
standard formatting requirements.

@DVAL
(param1, param2)

Converts an input date to a numeric value. The numeric value
represents the number of days elapsed since the day before the first
day of the first century (01/01/01) until the input date. For more
information, see Date Pictures on page 142.

Parameters:

param1. Input date string that can be interpreted as a date (for
example, '01/01/92', 'Jan 1, 1992').

param2. Format of the input date. This parameter is required for the
system to read and interpret param1.

Example: @DVAL('01/01/92', 'MM/dd/yy') and @DVAL('Jan 1,
1992', 'MMM dd, yyyy') each return 727198.

@EOM
(param1)

Returns the date of the end of the month specified in the parameter.

Parameter: param1. Input date.

Example: @EOM ('05/05/93') returns 05/31/93.

@EOY
(param1)

Returns the date of the end of the year specified in the parameter.

Parameter: param1. Input date.

Example: @EOY ('10/05/93') returns '12/31/93'.

3. iWay Transformer Concepts

iWay Integration Tools Transformer User’s Guide 137

Time Function Description

@GD2JD
(param1, param2)

Converts a date in Gregorian format to Julian format.

The Gregorian date format, which is based on the Gregorian solar
calendar, is the most widely used date format in the world. A
Gregorian date is specified by the Year, the Month (identified by
name or number), and the Day of the Month (numbered sequentially
starting at 1). For example, 2008-03-25 is the Gregorian date
representation for March 25, 2008.

In J.D. Edwards systems, Julian dates (JD) are identified by the year
first, followed by the number of days into the year at which this date
appears. For example, Jan 15, 1999 is represented as 99015.
March 15 is 99074. March 15, 2001 is 101074, since dates in the
current century start with 100 (2000), 101 (2001), and so on.

Parameters:

param1. Gregorian date.

param2. Gregorian date picture mask.

@HOUR
(param1)

Returns a number that represents the hour portion of the input time.

Parameter: param1. Input time.

Example: @HOUR('2:00:00') returns 2.

Transform Functions

138 Information Builders

Time Function Description

@JD2GD
(param1, param2)

Converts a date in Julian format to Gregorian format.

In J.D. Edwards systems, Julian dates (JD) are identified by the year
first, followed by the number of days into the year at which this date
appears. For example, Jan 15, 1999 is represented as 99015.
March 15 is 99074. March 15, 2001 is 101074, since dates in the
current century start with 100 (2000), 101 (2001), and so on.

The Gregorian date format, which is based on the Gregorian solar
calendar, is the most widely used date format in the world. A
Gregorian date is specified by the Year, the Month (identified by
name or number), and the Day of the Month (numbered sequentially
starting at 1). For example, 2008-03-25 is the Gregorian date
representation for March 25, 2008.

Parameters:

param1. Julian date.

param2. Gregorian date picture mask.

@MINUTE
(param1)

Returns a number that represents the minutes portion of the input
time.

Parameter: param1. Input time.

Example: @MINUTE('2:35:00') returns 35.

@MONTH
(param1)

Returns a number that represents the month portion of the input
time.

Parameter: param1. Input time.

Example: @MONTH('01/28/1992') returns 1.

@SECOND
(param1)

Returns a number that represents the seconds portion of the input
time.

Parameter: param1. Input time.

Example: @SECOND('12:02:05') returns 5.

3. iWay Transformer Concepts

iWay Integration Tools Transformer User’s Guide 139

Time Function Description

@SOM
(param1)

Returns a number that represents the start of the month portion of
the input time.

Parameter: param1. Input time.

Example: @SOM ('05/18/93') returns '05/01/93'.

@SOY
(param1)

Returns a number that represents the start of the year portion of the
input time.

Parameter: param1. Input time.

Example: @SOY ('10/05/93') returns '01/01/93'.

@TIME
(param1)

Returns the system time. For more information, see Time Pictures on
page 143.

Parameter: param1. Desired time format.

Example: @TIME ('HH:mm:ss') returns 17:08:42.

@TSTR
(param1, param2)

Converts a time to an alpha string, according to the format provider.
A blank picture interprets the string as 'HH:mm:ss'.

For more information, see Time Pictures on page 143.

Parameters:

param1. Desired input time.

param2. Format of the resulting character string.

Example: @TSTR ('14:30', 'HH:mm PM') returns '2:30 PM'.

@YEAR
(param1)

Returns a number that represents the year portion of the input time.

Parameter: param1. Date or date expression.

Example: @YEAR('01/28/1992') returns 1992.

Numeric Pictures

The numeric picture masks available in iWay Transformer are described in the following table.

Transform Functions

140 Information Builders

Symbol Location Description

0 Number Digit.

Number Digit. Zero shows as absent.

. Number Decimal separator or monetary decimal separator.

- Number Minus sign.

, Number Grouping separator.

E Number Separates mantissa and exponent in scientific notation. It
does not require quotation marks in the prefix or suffix.

% Prefix or suffix Multiply by 100 and show as a percentage.

Examples of numeric picture masks are shown in the following table. The ^ symbol represents
one space character.

Numeric Value Picture Resulting Numeric Value

1234.56 #,###.## 1,234.56

123456789.56 #,###.## 123,456,789.56

-1234.56 N###,###.##C ^^-1,234.56

-1234.56 N######.##L -1234.56^^

-1234.56 N######.##P* -**1234.56

0 N######.##Z* *********

-13.5 N##.##-DB; DB13.50

45.3 N##.##+CR; CR45.30

-13.5 N##.##-(,); (13.50)

4055.3 $######.## $^^4055.30

3. iWay Transformer Concepts

iWay Integration Tools Transformer User’s Guide 141

Date Pictures

The following table describes the date symbols and shows an example of each.

Symbol Description Example Presentation

G Era designator. AD Text

y Year. 1996 Number

M Month in year. July & 07 Text &
Number

d Day in month. 10 Number

E Day in week. Tuesday Text

D Day in year. 189 Number

F Day of week in month. 2 (second Wed. in
July)

Number

w Week in year. 27 Number

W Week in month. 2 Number

' Escape for text. ' Delimiter

' ' Single quotation mark. ' Literal

- Separates month, day, and year. 12-24-86 Delimiter

/ Separates month, day, and year. 12/24/86 Delimiter

The typical date formats are 'dd/MM/yyyy' (European), 'MM/dd/yyyy' (American), and
'yyyy/MM/dd' (Scandinavian). When you define the attribute Date for the parameter in one of
the functions, you must also select the format for the date item, as described in the following
table. You can change the default format and place in it any positional directives and masking
characters that you require.

The following table provides examples of the date format (picture), using the date of 21 March
1992. The ^ symbol represents one space character.

Transform Functions

142 Information Builders

Date Picture Result

MM/dd/yyyy 03/21/1992

##/##/## 21/03/92 when an XML parser default is set to European

03/21/92 when an XML parser is set to American

MMMM^dd^yyyy March^21^1992

MMM^dd, ^yyyy Mar.^21^1992

EEEE^^-^7 Saturday^^^-^7

E^7 Mon^7

Time Pictures

The following table describes the time symbols and shows an example of each.

Symbol Description Example Presentation

h Hour in am/pm (1-12) 12 Number

H Hour in day (0-23) 0 Number

m Minute in hour 30 Number

s Second in minute 55 Number

- Separates hours from seconds 1-22 1-22

: Separates hours from seconds 1:22 1:22

S Millisecond 978 Number

a AM/PM marker PM Text

k Hour in day (1-24) 24 Number

K Hour in am/pm (0-11) 0 Number

z Time zone Pacific Standard Time Text

3. iWay Transformer Concepts

iWay Integration Tools Transformer User’s Guide 143

The following table shows examples of time pictures and results.

Time Picture Result Description

HH:mm:SS 08:20:00 Time displayed on 24-hour clock.

HH:mm:SS 16:40:00 Time displayed on 24-hour clock.

HH:mm PM 8:20 pm Time displayed on 12-hour clock.

HH:mm PM 4:40 pm Time displayed on 12-hour clock.

HH-mm-SS 16-40-00 Example of the minus sign (-) as the time
separator.

Custom Functions

A function is a procedure that is built within the iWay Transformer graphical user interface. It
produces the required output based on calculation upon, or manipulation of, input data. You
can apply a function to produce the output value for a specific node using the Mapping Builder.

In addition to the set of predefined functions discussed in Predefined Functions on page 102,
iWay Transformer enables you to implement your own custom functions in Java, according to
the format specified in this chapter.

You can integrate custom functions into iWay Transformer and make them available for use in
your transformations at run time or design time.

Invisible Group

Invisible Group mapping techniques can help you perform complex looping tasks when
designing mappings of the Transform component.

What Is It?

Invisible Group is a group node with the Visible property set to false. It is identified by the

grayed out group icon .

Where Is It Used?

You use Invisible Group in the Mapping Builder when designing the Output structure of the
mappings. For more information, see Mapping Builder.

Invisible Group

144 Information Builders

What Is It Used for?

Use Invisible Group to manipulate the Output structure of the mappings by wrapping the
structure nodes with the invisible group nodes.

Where Is the Visible Property Located?

You can find the Visible property of the Group node in the Filter properties. For more
information, see Filter Tab on page 245.

3. iWay Transformer Concepts

iWay Integration Tools Transformer User’s Guide 145

Invisible Group

146 Information Builders

Chapter4
iWay Transformer Tasks

The user interface of iWay Transformer provides you with the tools required to create and
manage Transform components. It enables you to maintain high-level and detailed
aspects of a project in a customizable environment.

This section describes the basic menus and options available in iWay Transformer.

In this chapter:

Creating a Transform Component

Configuring a Transform Component

Testing a Transform Component

Working With a Transform Component

Working With the Mapping Builder

Working With Namespaces

Working With Functions

Creating a Transform Component

iWay Transformer provides a quick way to create a Transform component. It guides you through
the major steps of building the component. After you create the component, you can
manipulate it using the editing and configuration tools provided with iWay Transformer. The
following procedure shows you how to create a Transform component using iWay Transformer.

iWay Integration Tools Transformer User’s Guide 147

Procedure: How to Create a Transform Component

To create a Transform component:

1. Right-click the Transforms folder in your Integration Project, select New, and then click
Transform, as shown in the following image.

Creating a Transform Component

148 Information Builders

The New iWay Transform dialog box opens, as shown in the next image.

2. Type a name and a description (optional) for the new Transform component.

Tip: If required, you can change the preselected project folder by clicking Browse next to
the Project Folder field.

3. Select a target version of iWay Service Manager (iSM) from the Target Server Version drop-
down list.

4. Click Next.

4. iWay Transformer Tasks

iWay Integration Tools Transformer User’s Guide 149

The Transform Type Selection pane opens, as shown in the following image.

5. From the list in the Transform From section, select the format of the input data, for
example, XML.

6. From the list in the Transform To section, select the format of the output data, for
example, XML.

7. Click Next.

Creating a Transform Component

150 Information Builders

The XML Input pane opens with the Structure tab selected, as shown in the following
image.

Tip: You can skip the remaining steps by clicking the Finish button if it is enabled. You can
then manually alter the Transform component properties at your convenience from the
Properties dialog box.

8. In the Structure File field, type the name of a DTD, XSD (schema), or XML file that
represents the input dictionary.

Click the ellipsis button to the right of the field to browse the workspace for the
structure file.

Click the Import button to the right of the field to browse your file system for the
structure file.

4. iWay Transformer Tasks

iWay Integration Tools Transformer User’s Guide 151

9. Click Next.

The XML Output pane opens with the Structure tab selected, as shown in the following
image.

10. In the Structure File field, type the name of the data dictionary that represents the
structure of the output data (optional).

Click the ellipsis button to the right of the field to browse the workspace for the
structure file.

Click the Import button to the right of the field to browse your file system for the
structure file.

11. Click Finish.

Creating a Transform Component

152 Information Builders

The new Transform component is displayed in the iWay Integration Tools workspace, as
shown in the following image.

The Transform component and any related resources (for example, structure files or input
data) exist in the workspace subdirectory that you named during the creation process. For
example:

iIT_Home\workspace\SampleProject\Transforms\Sample_Transform.gxp

4. iWay Transformer Tasks

iWay Integration Tools Transformer User’s Guide 153

Procedure: How to Add a Transform Component From the iWay Registry

You can load a Transform component from the iWay registry into your Integration Project by
exporting it using iWay Explorer.

1. Click the iWay Explorer tab.

2. Right-click Registry Explorer, and select Connect from the context menu.

Creating a Transform Component

154 Information Builders

3. To obtain a list of Transform components that are available for export, expand Registry
Explorer, Components, and then Transforms, as shown in the following image.

4. Right-click the Transform component, and select Export from the context menu.

4. iWay Transformer Tasks

iWay Integration Tools Transformer User’s Guide 155

The Export Resource dialog box opens, as shown in the following image.

5. Click the ellipsis button to the right of the Project field.

Creating a Transform Component

156 Information Builders

The Export dialog box opens, as shown in the following image.

6. Select an available Integration Project to which the Transform component will be exported,
and click OK.

4. iWay Transformer Tasks

iWay Integration Tools Transformer User’s Guide 157

You are returned to the Export Resource dialog box, where the selected Integration Project
name is displayed in the Project field, as shown in the following image.

7. Click Finish.

Procedure: How to Add a Transform Component From the File System

To add a Transform component from the file system:

1. Click the Integration Explorer tab.

Creating a Transform Component

158 Information Builders

2. Expand an available Integration Project, right-click the Transforms folder, and select Import
from the context menu, as shown in the following image.

4. iWay Transformer Tasks

iWay Integration Tools Transformer User’s Guide 159

The Import dialog box opens, as shown in the next image.

3. Expand the iWay Integration folder, select Transform, and click Next.

Creating a Transform Component

160 Information Builders

The Transform Import Wizard opens, as shown in the following image.

4. Click the ellipsis button to the right of the Import field.

4. iWay Transformer Tasks

iWay Integration Tools Transformer User’s Guide 161

The Open dialog box is displayed, as shown in the following image.

5. Browse to the location of the Transform component (.gxp file extension) on your file
system, and click Open.

Creating a Transform Component

162 Information Builders

You are returned to the Transform Import Wizard, as shown in the following image.

If required, you can change preselected values for the imported Transform component.
Verify that the values specified in the following fields are accurate:

Project Folder. The location to which the Transform component will be imported.

Import. The location of the existing Transform component.

Name. The name of the Transform component, as it will appear in the Integration
Project.

Description. The description of the Transform component, as it will appear in the
Integration Project.

4. iWay Transformer Tasks

iWay Integration Tools Transformer User’s Guide 163

Target Server Version. By default, this is the version of iWay Service Manager (iSM)
that is installed in the iSM home directory.

6. Click Finish.

The imported Transform component is loaded into the specified project folder location and
displayed in iWay Transformer, as shown in the following image.

Configuring a Transform Component

The Properties dialog box enables you to view or modify the set of properties defined for a
Transform component.

Configuring a Transform Component

164 Information Builders

To access the Properties dialog box, right-click a Transform component, and select Properties
from the context menu, as shown in the following image.

4. iWay Transformer Tasks

iWay Integration Tools Transformer User’s Guide 165

The Properties dialog box opens, as shown in the next image.

The Properties dialog box includes the following categories:

Resource. For more information, see Resource on page 167.

Run/Debug Settings. For more information, see Run/Debug Settings on page 168.

Transform Properties. For more information, see Transform Properties on page 169.

@REPLACE Function. For more information, see @REPLACE Function on page 170.

Custom Functions. For more information, see Custom Functions on page 171.

Input. For more information, see Input on page 172.

JDBC Data Source. For more information, see JDBC Data Source on page 193.

Output. For more information, see Output on page 193.

Variables. For more information, see Variables on page 210.

XML Namespaces. For more information, see XML Namespaces on page 219.

Configuring a Transform Component

166 Information Builders

Resource

The Resource category displays system-level information about the Transform component
resource file, as shown in the following image.

The following information is available:

Path

Type

Location

Size

Last Modified

You can set Read only, Archive, and Derived file access options for the resource if required. By
default, the Archive option is set.

The Text file encoding section allows you to specify the type of encoding that is used for the
characters in a file. By default, the character encoding is set to UTF-8.

4. iWay Transformer Tasks

iWay Integration Tools Transformer User’s Guide 167

Run/Debug Settings

The Run/Debug Settings category allows you to manage launch configurations that are
associated with the resource that is currently selected. The Run/Debug Settings pane is
shown in the following image.

Configuring a Transform Component

168 Information Builders

Transform Properties

The Transform Properties category includes basic information about the Transform component,
as shown in the following image.

The following properties are listed:

Name. Name of your Transform component.

Type. Input and output format of your Transform component. If the format of the input or
output is changed, the Type property will reflect that change.

Description. Custom description for your Transform component.

Target Server Version. Target version of iWay Service Manager (iSM) that is selected for
this Transform component.

4. iWay Transformer Tasks

iWay Integration Tools Transformer User’s Guide 169

@REPLACE Function

The @REPLACE Function category provides a way to instantaneously match and replace certain
input data values. Each individually configured replace function works similarly to a custom
function in that you must first define the function, and then apply it in the output node mapping
value definition that you want to affect.

The following image shows the @REPLACE Function pane.

Configuring a Transform Component

170 Information Builders

Click New Match to define an input lookup for the replace function.

Custom Functions

The Custom Functions category enables you to manage the list of custom functions that you
can build on-demand, when a predefined iWay Transformer function does not exist to perform
the task that you require.

4. iWay Transformer Tasks

iWay Integration Tools Transformer User’s Guide 171

The following image shows the Custom Functions pane.

Custom functions must be written using Java and saved as Java class files (.class) in the
following directory to make them available for use with iWay Transformer during design time.

iWaySMHome\tools\transformer\custom_functions

where:

iWaySMHome

Is the directory in which iWay Service Manager is installed.

You must configure custom functions differently for use at run time.

Input

The Input category allows you to configure the input properties for the Transform component.

Configuring a Transform Component

172 Information Builders

The following image shows the Input pane, with the Structure tab selected.

Input Structure

The Structure tab allows you to configure the dictionary, also called the structure, for your
input.

For more information on using dictionaries, see Dictionary on page 95.

Configuring the Input Structure

On the Structure tab, you can specify metadata components by clicking the Import button to
locate the file on your file system, or by typing the name of the file in the component field. You

can also load the structure from the workspace using the Browse button.

4. iWay Transformer Tasks

iWay Integration Tools Transformer User’s Guide 173

The following image shows the Open dialog box that is displayed when you click the Import
button next to a dictionary component field.

Configuring a Transform Component

174 Information Builders

Viewing the Input Structure

You can view the input structure using the context menu. Expand the structure folder, and
double-click the name of the structure or select Open from the context menu, as shown in the
following image.

Input Data

The Data tab allows you to select and configure an input data file, which contains the sample
incoming document for a Transform component.

4. iWay Transformer Tasks

iWay Integration Tools Transformer User’s Guide 175

The following image shows the Input pane, with the Data tab selected.

Configuring the Input Data

On the Data tab, you can specify the data file that you want to use to test the Transform
component. For more information, see Testing a Transform Component on page 219. You can
also overwrite the default data configuration for certain formats. For more information, see
Input Format Reference on page 179.

Configuring a Transform Component

176 Information Builders

Viewing the Input Data

To view the input data, double-click the data file, or right-click the data file and select Open
from the context menu, as shown in the following image.

Input Validation

The Validation tab allows you to specify options for validating an incoming document at run
time against a specific XML schema or a DTD file. You can also validate the document against
the rules contained in a Transform dictionary. We recommend that you use a schema for
validation, rather than a DTD file.

4. iWay Transformer Tasks

iWay Integration Tools Transformer User’s Guide 177

The following image shows the Input pane, with the Validation tab selected.

For more information, see Input Format Reference on page 179.

Configuring a Transform Component

178 Information Builders

Input Format Reference

The following table describes the major concepts and node types used to represent input
items.

Input Document

This is the incoming document or message to which a transformation applies. The following
formats are supported:

CSV. For more information, see CSV Input Properties on page 183.

EDI HIPAA. For more information, see EDI Input Properties on page 184.

EDI X12. For more information, see EDI Input Properties on page 184.

EDIFACT. For more information, see EDI Input Properties on page 184.

Fixed Width. For more information, see Fixed Width Input Properties on page 187.

IDOC. For more information, see IDOC Input Properties on page 189.

SWIFT. For more information, see SWIFT Input Properties on page 190.

XML. For more information, see XML and iWay XML Response Input Properties on page
191.

iWay XML Response. For more information, see XML and iWay XML Response Input
Properties on page 191.

CDF. For more information, see CDF Input Properties on page 182. Note: CDF format is
deprecated. iWay Software recommends that you use Fixed Width format instead.

The input document is displayed on the Input pane as a logical tree of component items,
such as groups or elements. For more information, see the Input Document Tree description
that follows. Each input item contains a name that identifies the type of item, optionally a
number of attributes, or content.

4. iWay Transformer Tasks

iWay Integration Tools Transformer User’s Guide 179

Input Document Tree

This is a sample tree of groups, elements, and attributes encoded in the input document.
Each item in this tree has exactly one parent, and can have more than one child.

The following is a section of an XML input document:

The following is a tree structure representation of the preceding code:

In iWay Transformer, the resulting input document tree is as follows:

Configuring a Transform Component

180 Information Builders

Group

This is a block of data that has a group element as its root. It can contain other groups or
elements nested within, as children. Multiple groups can also exist on the same level. A
group was formerly called a parent.

Element

An element usually belongs to the group as a leaf, which cannot have any other nested
groups or elements.

Attribute

This is a value associated with a group or element. It consists of a name and an associated
textual value. Attributes are used only for XML input. Each group or element can have zero
to many attributes.

Parent

A parent is a group in relation to the elements or groups contained within it. The input can
have more than one parent (root group). In the previous example, the group Company is a
parent of the group Year.

Child

Node A is called a child of node B, if and only if B is the parent of A. In the previous
example, the element Year is a child of the group Company.

Descendant

Node A is called a descendant of node B, if either (1) A is a child of B, or (2) A is the child
of some node C that is a descendant of B.

Ancestor

Node A is called an ancestor of node B, if and only if B is a descendant of A.

Sibling

Node A is called a sibling of node B, if and only if B and A share the same parent. Node A is
a preceding sibling if it comes before B in the input document tree. Node B is a following
sibling if it comes after A in the input document tree.

4. iWay Transformer Tasks

iWay Integration Tools Transformer User’s Guide 181

CDF Input Properties

The tables in this topic describe the tabs and fields for Common Data Format (CDF) input. It is
a conceptual data abstraction for storing, accessing, and manipulating multidimensional data
sets.

Note: CDF format is deprecated. iWay Software recommends that you use Fixed Width format
instead.

Structure tab: Allows you to configure the dictionary for the CDF input data using the Dictionary
Builder interface.

Field Description

Structure Identifies the structure component used for the input dictionary of the
Transform component.

To locate the file, type the file name, or click the Browse button.

The following is a sample CDF structure file, which is created when you click
the New button.

<TransformCDFlayout>
 <RecordHeader RecordCount="1" Mode="Ignore" LineFeed="nl"
 Format="ASCII">
 <Column Name="Name" StartOffset="1" Length="8" />
 <Column Name="Title" StartOffset="10" Length="17" />
 </RecordHeader>
 <RecordDetails>
 <RecordLayout Type="20" StartOffset="1" Length="2">
 <Column Name="Column1" StartOffset="1" Length="2"/>
 <Column Name="Column2" StartOffset="4" Length="7"/>
 <Column Name="Column3" StartOffset="12" Length="6"/>
 </RecordLayout>
 </RecordDetails>
</TransformCDFlayout>

You can use the CDF Dictionary Editor tool to modify the base structure.

Data tab: Allows you to select and configure a CDF input data file, which contains the sample
incoming document for your Transform component.

Field Description

Data File To locate the file, type the file name, or click the Browse button.

Configuring a Transform Component

182 Information Builders

Field Description

Decode data
content

To decode data content from EBCDIC format, select this check box.
This check box is not selected by default.

content This check box is not selected by default.

CSV Input Properties

The tables in this topic describe the tabs and fields for the Comma-Separated Values (CSV)
input format. In a CSV file, each block of data is separated by a comma. However, iWay
Transformer allows for other delimiters. For more information, see the following description of
the Delimiter field on the Data tab.

Structure tab: Allows you to configure the dictionary for the CSV input data.

Field Description

Structure Identifies the structure component used for the input dictionary of
the Transform component.

Typically, this is either the input data file itself, or a CSV file that has
an identical structure to the intended input data file.

To locate the file, type the file name, or click the Browse button.

Restore Defaults Clears the Structure field.

Data tab: Allows you to select and configure a CSV input data file, which contains the sample
incoming document for your Transform component.

Field Description

Data File To locate the file, type the file name, or click the Browse button.

Delimiter Specifies the delimiter character, which separates the elements of
the CSV data. The default value is a comma (,).

iWay Transformer can also process files that use other delimiter
characters. The files must correspond to the CSV format.

4. iWay Transformer Tasks

iWay Integration Tools Transformer User’s Guide 183

Field Description

Header is included
in the data

You can select this check box if the header is included in the
document. This check box is selected by default. The header
typically contains column names.

The following excerpt from a sample input.csv file includes a header
with the data. The header is in the first line.

Country,"Province-Territory Name","Population (in
1000's)","Area Size (in km2)","Type"

Canada,"Alberta","3097.5","661185","Province"
Canada,"British Columbia","4092.8","948596","Province"
.
.
.

Restore Defaults Applies the default values to the Data tab by clearing the Data File
field, selecting the Header is included in the data check box, and
setting the Delimiter to a comma (,).

EDI Input Properties

The tables in this topic describe the tabs and fields for the Electronic Data Interchange (EDI)
input formats, the following of which are created in a similar fashion:

EDI HIPAA (Health Insurance Portability and Accountability Act).

EDI X12. This data format is based on ASC X12 standards. It is used to exchange specific
data between two or more trading partners.

EDIFACT (Electronic Data Interchange For Administration, Commerce, and Transport).

You can edit the data dictionary for EDI input using the Dictionary Builder, and you can store
the components in the library for future reuse.

Structure tab: Allows you to configure the metadata for the EDI message.

Configuring a Transform Component

184 Information Builders

Field Description

Header Identifies the header component used for the input dictionary of the
Transform component. The header contains envelope details that
include trading partner information and message layout.

To locate the file, type the file name, or click the Browse button.

Structure Identifies the structure component used for the input dictionary of
the Transform component. The structure contains the layout and
grammar of the document (or transaction of the EDI message).

To locate the file, type the file name, or click the Browse button.

Data tab: Allows you to select and configure an EDI input data file, which contains a sample
incoming document for your Transform component.

Field Description

Segment Delimiter Specifies the character that indicates the end of a segment.

The default values are:

7E ~ Tilde for EDI HIPAA and EDI X12 formats.

None for EDIFACT format.

Segment Suffix Used in combination with a segment delimiter, the segment suffix
indicates the end of a segment. You can select a predefined
segment suffix from the drop-down list.

The default values are:

None for EDI HIPAA and EDI X12 formats.

0A LF Line Feed for EDIFACT format.

4. iWay Transformer Tasks

iWay Integration Tools Transformer User’s Guide 185

Element Delimiter Specifies the character that indicates the end of an element. You
can select a predefined element delimiter character from the drop-
down list.

The default values are:

2A * Asterisk for EDI HIPAA and EDI X12 formats.

2B + Plus for EDIFACT format.

Component
Element Delimiter

Specifies the character that indicates the end of a component
element. You can select a predefined component element delimiter
character from the drop-down list.

By default, 3A : Colon is used for EDI HIPAA, EDI X12, and EDIFACT
formats.

Escape Character Specifies the escape character that is used when reading the input
data. You can select a predefined escape character from the drop-
down list.

The default values are:

5C \ Backslash for EDI HIPAA and EDI X12 formats.

3F ? Question Mark for EDIFACT format.

Restore Defaults Applies default values to the Data tab.

Validation tab: Allows you to specify options that validate EDI input for the transformation run
time.

Field Description

None To skip validation, select this option. This option is selected by
default.

Use validation rule
defined by the
project's input
structure

To validate the incoming document using the rule defined by the
Transform component input dictionary, select this option. This option
is not selected by default.

For EDI HIPAA and EDI X12, selecting this option activates the Ignore
NTE Segment check box.

Configuring a Transform Component

186 Information Builders

Field Description

Ignore NTE
Segment

For EDI HIPAA and EDI X12, select this check box if you do not want
to validate mapping rules specific to NTE. This check box is not
selected by default.

This option allows NTE segment translations to appear in the XML
document in the same sequence as that of the input document.
However, if this option is not checked, specific rules can be applied
in the dictionary to position NTE segment translations accordingly.

NTE is a floating segment that can occur in any place within a
document. It is applicable to versions prior to EDI X12 version 4010.

This option is not available for EDIFACT.

Restore Defaults Applies the default values to the Validation tab by selecting the None
option.

Fixed Width Input Properties

The tables in this topic describe the tabs and fields for the Fixed Width input format, also
called FWF. Fixed Width files are flat files that contain fixed width data fields that constitute
records. Records are commonly separated by new line characters. Fixed Width format is very
similar to the deprecated CDF format, except for features that are applicable to Fixed Width
only, such as looping.

Structure tab: Allows you to select an XML file that represents the data dictionary for the Fixed
Width input data.

4. iWay Transformer Tasks

iWay Integration Tools Transformer User’s Guide 187

Field Description

Structure Identifies the metadata component used for the input data dictionary of
the Transform component.

To locate the file, type the file name, or click the Browse button.

The following is a sample Fixed Width structure file, which is created
when you click the New button.

<FIXED_WIDTH>
 <RecordHeader>
 <Column Name="DESCRIPTION" StartOffset="1"
 Length="10" />
 </RecordHeader>
 <RecordDetails>
 <Loop ID="Loop" Req="M" Min="1" Max="1">
 <RecordLayout Type="10" StartOffset="1"
 Length="2">
 <Column Name="Column1" StartOffset="3"
 Length="5" />
 <Column Name="Column2" StartOffset="8"
 Length="5" />
 </RecordLayout>
 </Loop>
 </RecordDetails>
</FIXED_WIDTH>

Data tab: Allows you to select and configure a Fixed Width input data file, which contains a
sample incoming document for your Transform component.

Field Description

Data File To locate the file, type the file name, or click the Browse button.

Record Delimiter Specifies delimiter options for the input data file. The record delimiter
is a character that defines the boundary between records. The default
value is a carriage return.

Trim Columns Selected by default, this option is used to trim columns from the input
data file.

Restore Defaults Clears all fields on the Data tab, and selects the Trim Columns check
box.

Configuring a Transform Component

188 Information Builders

IDOC Input Properties

The tables in this topic describe the tabs and fields for the SAP Intermediate Documents
(IDOC) input format. IDOCs represent a standard data structure for electronic data interchange
between application programs written for SAP systems or between an SAP application and an
external program.

You can access IDOCs using the iWay Application Adapter for mySAP ERP in iWay Explorer. For
more information, see the iWay Application Adapter for mySAP ERP User’s Guide.

iWay Transformer does not support the collected IDOC files, due to the structural mapping. You
must split the IDOC batch documents into the individual IDOC files in order to process them
correctly.

Structure tab: Allows you to select a file that represents the data dictionary for the IDOC input
data.

Field Description

Structure Identifies the structure component used for the input dictionary of the
Transform component.

To locate the file, type the file name, or click the Browse button.

The following is an excerpt from a sample structure file named structure.txt.
It is included in the samples provided with the product.

BEGIN_RECORD_SECTION
BEGIN_CONTROL_RECORD
BEGIN_FIELDS
NAME TABNAM
TEXT Name of table structure
TYPE CHARACTER
LENGTH 000010
FIELD_POS 0001
BYTE_FIRST 000001
BYTE_LAST 000010
NAME MANDT
TEXT Client
TYPE CHARACTER
LENGTH 000003
FIELD_POS 0002
BYTE_FIRST 000011
BYTE_LAST 000013
.
.
.

4. iWay Transformer Tasks

iWay Integration Tools Transformer User’s Guide 189

Field Description

Restore
Defaults

Clears the Structure field.

Data tab: Allows you to select and configure an IDOC input data file, which contains a sample
incoming document for your Transform component.

Field Description

Data File To locate the file, type the file name, or click the Browse button.

Restore Defaults Clears the Data File field.

SWIFT Input Properties

The tables in this topic describe the tabs and fields for the Society for Worldwide Interbank
Financial Telecommunication (SWIFT) input format. SWIFT is a messaging and transaction
processing format used by worldwide financial organizations.

Structure tab: Allows you to select a data dictionary that represents the SWIFT input data.

Field Description

Structure Identifies the structure component used for the input dictionary of
the Transform component.

To locate the file, type the file name, or click the Browse button.

Data tab: Allows you to select and configure a SWIFT input data file, which contains a sample
incoming document for your Transform component.

Field Description

Data File To locate the file, type the file name, or click the Import button. You
can also load the file from your workspace using the Browse button.

Restore Defaults Clears the Data File field.

Configuring a Transform Component

190 Information Builders

XML and iWay XML Response Input Properties

The tables in this topic describe the tabs and fields for the XML input formats, which are called
XML and iWay XML Response. iWay XML Response is the commonly defined document format
used in iWay Service Manager data integration services.

Structure tab: Allows you to select an XML, DTD, or XSD (schema) file that represents the data
dictionary for the XML input data.

Field Description

Structure Identifies the structure component used for the input dictionary of the
Transform component. It is typically represented as an XSD (schema),
DTD, or XML file that describes the incoming message.

To locate the file, type the file name, or click the Browse button to
open the following dialog box.

Navigate to the schema reference within the project structure, and click
OK.

You can load a schema from the file system by clicking the Import
button.

4. iWay Transformer Tasks

iWay Integration Tools Transformer User’s Guide 191

Field Description

Contains
Namespace

Select this check box if the input contains a namespace. This check
box is not selected by default. For more information, see Working With
Namespaces on page 265.

Data tab: Allows you to select and configure an XML input data file, which contains a sample
incoming document for your Transform component.

Field Description

Data File To locate the file, type the file name, or click the Browse button.

Trim Text Removes all leading and trailing white space characters from the XML
input data file.

Validation tab: Allows you to specify options that validate the XML input against schemas or
DTDs during transformation run time.

Field Description

None To skip validation, select this option. This option is selected by
default.

Use validation rule
defined in the input data

To perform validation using the dictionary defined in the input
data, select this option. This option is not selected by default.

Use user-defined DTD or
XSD file

To validate the incoming document using an external
dictionary, select this option.

To locate the dictionary component, XSD (schema), or DTD,
type the file name, or click the Browse button.

For a dictionary component, we recommend that you use
schemas instead of DTDs, because an updated parser is
available.

Restore Defaults Applies the default values to the Validation tab by selecting the
None option.

Configuring a Transform Component

192 Information Builders

JDBC Data Source

The JDBC Data Source category enables you to manage the list of JDBC lookups used by the
@JDBCLOOKUP function during transformation mappings. You can define multiple JDBC
connections or add a connection from an existing project. In addition, you can specify any
predefined function (for example, @SREG) as the URL. For more information, see Working With
Functions on page 269.

The following image shows the JDBC Data Source pane.

Output

The Output category allows you to configure the output properties for the Transform
component, according to the expected output requirements, which typically describe the
structure.

4. iWay Transformer Tasks

iWay Integration Tools Transformer User’s Guide 193

The following image shows the Output pane, with the Structure tab selected.

Output Structure

The Structure tab allows you to configure the structure of your output.

For more information on using dictionaries, see Dictionary on page 95.

Configuring the Output Structure

On the Structure tab, you can specify dictionary components by clicking the Browse button to
locate the file on your file system, or by typing the name of the file in the component field.

For supported library formats like EDI and SWIFT, the option to select a dictionary from the
system library is provided. For XML and iWay XML Response input formats, the option to import
a schema from the iWay Registry, an iWay Service Manager configuration, an iWay Web
service, or an Ebix archive is provided. For more information, see XML, iWay XML Embedded
Request, and iWay XML Request Output Properties on page 207.

Configuring a Transform Component

194 Information Builders

The following image shows the Open dialog box that is displayed when you click the Import
button next to a dictionary component field, for example, Structure.

Viewing the Output Structure

To view the output dictionary, double-click the data file, or right-click the data file and select
Open from the context menu, as shown in the following image.

4. iWay Transformer Tasks

iWay Integration Tools Transformer User’s Guide 195

Output Data

The Data tab allows you to configure output data. The following image shows the Output pane,
with the Data tab selected.

Configuring the Output Data

On the Data tab, you can configure the output data for the Transform component that will be
used during run time. For more information, see Output Format Reference on page 197.

Output Validation

The Validation tab allows you to specify options that validate the output document at run time.
For more information, see Output Format Reference on page 197.

Configuring a Transform Component

196 Information Builders

Output Format Reference

This topic provides a reference for the output formats supported by iWay Transformer.

CDF Output Properties

CDF format is deprecated. iWay Software recommends that you use Fixed Width format
instead.

The tables in this topic describe the tabs and fields for Common Data Format (CDF) output. It
is a conceptual data abstraction for storing, accessing, and manipulating multidimensional
data sets.

Structure tab: Allows you to configure the structure for the CDF output data.

Field Description

Structure Identifies the structure component used for the output dictionary of the
Transform component.

To locate the file, type the file name, or click the Browse button or Import
button.

The following is a sample CDF structure file, which is created when you click
the New button.

<TransformCDFlayout>
 <RecordHeader RecordCount="1" Mode="Ignore" LineFeed="nl"
Format="ASCII">
 <Column Name="Name" StartOffset="1" Length="8" />
 <Column Name="Title" StartOffset="10" Length="17" />
 </RecordHeader>
 <RecordDetails>
 <RecordLayout Type="20" StartOffset="1" Length="2">
 <Column Name="Column1" StartOffset="1" Length="2"/>
 <Column Name="Column2" StartOffset="4" Length="7"/>
 <Column Name="Column3" StartOffset="12" Length="6"/>
 </RecordLayout>
 </RecordDetails>
</TransformCDFlayout>

Data tab: Allows you to configure CDF output data.

4. iWay Transformer Tasks

iWay Integration Tools Transformer User’s Guide 197

Field Description

Padding Specifies the character used for padding empty spaces.

If you leave this field blank, iWay Transformer uses a blank space for
padding.

Align Specifies the alignment of the output. Left-justified text (the default
value) is aligned to the left side of each field. Right-justified text is
aligned to the right side.

For example, consider the following dictionary file:

<TransformCDFlayout>
<RecordHeader RecordCount="1" Mode="Ignore"
LineFeed="nl" Format="ASCII">
 <Column Name="ReportTitle" StartOffset="1"
 Length="2"/>
</RecordHeader>
 <RecordDetails>
 <RecordLayout Type="NA" StartOffset="1"
 Length="2">
 <Column Name="MSG_ID "
 StartOffset="1" Length="8"/>
 <Column Name="ITEM_UNIQUE_ID "
 StartOffset="9" Length="20"/>
 <Column Name="ITEM_CASE_NUM "
 StartOffset="30" Length="18"/>
 <Column Name="ORIGIN "
 StartOffset="49" Length="8"/>
.
.
.

Left-aligned data is displayed as:

ABC 55 777 XXX

Right-aligned data is displayed as:

ABC 55 777 XXX

Encode To encode the data in EBCDIC format, select this check box. By default,
this check box is not selected.

Restore Defaults Applies the default values to the Data tab, by clearing the Padding field,
selecting Left from the Align field drop-down list, and deselecting the
Encode check box.

Configuring a Transform Component

198 Information Builders

CSV Output Properties

The tables in this topic describe the tabs and fields for the Comma-Separated Values (CSV)
output format. In a CSV file, each piece of data is separated by a comma. However, iWay
Transformer allows for other delimiters. For more information, see the following description of
the Delimiter field on the Data tab.

Structure tab: Allows you to configure the dictionary for the CSV output data.

Field Description

Structure Identifies the structure component used for the output dictionary of
the Transform component (optional).

To locate the file, type the file name, or click the Browse button.

Data tab: Allows you to configure CSV output data.

Field Description

Delimiter Sequence of one or more characters specifying the border between
column fields. The default value is a comma (,).

Although CSV stands for comma-separated values, iWay Transformer
can process files that use other delimiter characters. The files must
correspond to the CSV format.

Header is
included in the
data

You can select this check box if the header is included in the document.
This check box is selected by default. The header typically contains
column names.

The following excerpt from a sample input.csv file includes a header
with the data. The header is in the first line.

Country,"Province-Territory Name","Population (in
1000's)","Area Size (in km2)",
"Type" Canada,"Alberta","3097.5","661185",
"Province" Canada,"British
Columbia","4092.8","948596","Province"
 .
 .
 .

4. iWay Transformer Tasks

iWay Integration Tools Transformer User’s Guide 199

Field Description

Always Add
Quotes

To add quotation marks around the output values, select this check
box. This check box is not selected by default.

Restore Defaults Applies the default values to the Data tab, by setting the Delimiter to a
comma (,), selecting the Header is included in the data check box, and
deselecting the Always Add Quotes check box.

EDI Output Properties

The tables in this topic describe the tabs and fields for the Electronic Data Interchange (EDI)
output formats, the following of which are created in a similar fashion:

EDI HIPAA (Health Insurance Portability and Accountability Act).

EDI X12. This is a data format based on ASC X12 standards. It is used to exchange
specific data between two or more trading partners.

EDIFACT (Electronic Data Interchange For Administration, Commerce, and Transport).

Structure tab: Allows you to configure the metadata for the EDI output message.

Field Description

Header Identifies the header component used for the output structure of the
Transform component. The header contains envelope details that
include trading partner information and message layout.

To locate the file, type the file name, or click the Browse button.

Structure Identifies the structure component used for the output dictionary of
the Transform component. The structure contains the layout and
grammar of the document (or transaction of the EDI message).

To locate the file, type the file name, or click the Browse button.

Data tab: Allows you to configure an EDI output data file.

Configuring a Transform Component

200 Information Builders

Field Description

Segment Delimiter Specifies the character that indicates the end of a segment.

The default values are:

7E ~ Tilde for EDI HIPAA and EDI X12 formats.

None for EDIFACT format.

Segment Suffix Used in combination with a segment delimiter, the segment suffix
indicates the end of a segment. You can select a predefined
segment suffix from the drop-down list.

The default values are:

None for EDI HIPAA and EDI X12 formats.

0A LF Line Feed for EDIFACT format.

Element Delimiter Specifies the character that indicates the end of an element. You
can select a predefined element delimiter character from the drop-
down list.

The default values are:

2A * Asterisk for EDI HIPAA and EDI X12 formats.

2B + Plus for EDIFACT format.

Component
Element Delimiter

Specifies the character that indicates the end of a component
element. You can select a predefined component element delimiter
character from the drop-down list.

By default, 3A : Colon is used for EDI HIPAA, EDI X12, and EDIFACT
formats.

4. iWay Transformer Tasks

iWay Integration Tools Transformer User’s Guide 201

Field Description

Escape Character Specifies the escape character that is used when reading the output
data. You can select a predefined escape character from the drop-
down list.

The default values are:

5C \ Backslash for EDI HIPAA and EDI X12 formats.

3F ? Question Mark for EDIFACT format.

Validation tab: Allows you to specify options that validate EDI output of the transformation run
time.

Field Description

None To skip validation, select this option. This option is selected by
default.

Use validation rule
defined by the
project's output
structure

To validate the transform using the rule defined by the Transform
component output structure, select this option. This option is not
selected by default.

For EDI HIPAA and EDI X12, selecting this option activates the Ignore
NTE Segment check box.

Ignore NTE
Segment

For EDI HIPAA and EDI X12, select this check box if you do not want
to validate mapping rules specific to NTE. This check box is not
selected by default.

This option allows NTE segment translations to appear in the XML
document in the same sequence as that of the output document.
However, if this option is not checked, specific rules can be applied
in the dictionary to position NTE segment translations accordingly.

NTE is a floating segment that can occur in any place within a
document. It is applicable to versions prior to EDI X12 version 4010.

This check box is not available for EDIFACT.

Configuring a Transform Component

202 Information Builders

Field Description

Restore Defaults Applies the default values to the Validation tab by selecting the None
option.

Fixed Width Output Properties

The tables in this topic describe the tabs and fields for the Fixed Width output format, also
called FWF. Fixed Width files are flat files that contain fixed width data fields that constitute
records. Records are commonly separated by carriage return (new line) characters.

Structure tab: Allows you to select an XML file that represents the data dictionary for the Fixed
Width output data. The data dictionary describes the structure of the output message.

Field Description

Structure Identifies the structure component used for the output dictionary of the
Transform component.

To locate the file, type the file name, or click the Browse button.

The following is a sample Fixed Width structure file, which is created when
you click the New button.

<FIXED_WIDTH>
 <RecordHeader>
 <Column Name="DESCRIPTION" StartOffset="1"
 Length="10" />
 </RecordHeader>
 <RecordDetails>
 <Loop ID="Loop" Req="M" Min="1" Max="1">
 <RecordLayout Type="10" StartOffset="1"
 Length="2">
 <Column Name="Column1" StartOffset="3"
 Length="5" />
 <Column Name="Column2" StartOffset="8"
 Length="5" />
 </RecordLayout>
 </Loop>
 </RecordDetails>
</FIXED_WIDTH>

Restore
Defaults

Clears the Structure field.

Data tab: Allows you to configure a Fixed Width output data file.

4. iWay Transformer Tasks

iWay Integration Tools Transformer User’s Guide 203

Field Description

Record Delimiter Specifies delimiter options for an output data file. The record
delimiter is a character that defines the boundary between records.
The default value is a carriage return.

Padding Specifies the character used for padding empty spaces.

If you leave this field blank, iWay Transformer uses a blank space for
padding.

Align Specifies the alignment of the output. Left-justified text (the default
value) is aligned to the left side of each field. Right-justified text is
aligned to the right side.

For example, consider the following dictionary file:

 <RecordDetails>
 <RecordLayout Type="NA" StartOffset="1"
 Length="2">
 <Column Name="MSG_ID "
 StartOffset="1" Length="8"/>
 <Column Name="ITEM_UNIQUE_ID "
 StartOffset="9" Length="20"/>
 <Column Name="ITEM_CASE_NUM "
 StartOffset="30" Length="18"/>
 <Column Name="ORIGIN "
 StartOffset="49" Length="8"/>
 .
 .
 .

Left-aligned data is displayed as:

ABC 55 777 XXX

Right-aligned data is displayed as:

ABC 55 777 XXX

Encode When selected, encodes your data in EBCDIC format. By default, this
check box is not selected.

Trim Columns Removes trailing spaces from columns in the output data file. By
default, this check box is selected.

Support Record ID Returns the support record ID flag. By default, this check box is
selected.

Configuring a Transform Component

204 Information Builders

Field Description

Restore Defaults Applies the default values to the Data tab, by clearing the Record
Delimiter field and Padding field, selecting Left from the Align field
drop-down list, and selecting the Trim Columns check box.

HTML Output Properties

The following table describes the tabs and fields for the HTML output format.

Data tab: Allows you to configure HTML output data.

Field Description

Mode Specifies the format of the HTML output. Choose either Form or
Table (the default value) format.

Stylesheet Type
(Optional)

Specifies the format of the style sheet that you are using. The
default value is text/css.

Stylesheet File
(Optional)

Identifies the style sheet that is applied to your output.

To locate the file, type the file name, or click the Browse or Import
button. This file must match the selected file type.

Header (Optional) Specifies header comments that are included in the output structure
as necessary. You can specify one or more lines, separated by a
pipe symbol (|). For example,

This information|is inserted|into the output

adds the following header to the output:

<!--This information-->
<!--is inserted-->
<!--into the output-->

4. iWay Transformer Tasks

iWay Integration Tools Transformer User’s Guide 205

Field Description

Footer (Optional) Specifies footer comments that are included in the output structure
as necessary. You can specify one or more lines, separated by a
pipe symbol (|). For example,

This information|is inserted|into the output

adds the following footer to the output:

<!--This information-->
<!--is inserted-->
<!--into the output-->

Restore Defaults Applies the default values to the Data tab, by selecting Form from
the Mode drop-down list, selecting text/css from the Stylesheet Type
drop-down list, and clearing the Stylesheet File, Header, and Footer
fields.

IDOC Output Properties

The following table describes the tabs and fields for the SAP Intermediate Documents (IDOC)
output format. IDOCs represent a standard data structure for electronic data interchange
between application programs written for SAP systems or between an SAP application and an
external program.

You can access IDOCs using the iWay Application Adapter for mySAP ERP in iWay Explorer. For
more information, see the iWay Application Adapter for mySAP ERP User’s Guide.

iWay Transformer does not support the collected IDOC files, due to the structural mapping. You
must split the IDOC batch documents into the individual IDOC files in order to correctly process
them.

Structure tab: Allows you to select a file that represents the data dictionary of the IDOC output
data.

Field Description

Restore Defaults Clears the Structure field.

Configuring a Transform Component

206 Information Builders

SWIFT Output Properties

The following table describes the tabs and fields for the Society for Worldwide Interbank
Financial Telecommunication (SWIFT) output format. SWIFT is a messaging and transaction
processing format used by worldwide financial organizations.

Structure tab: Allows you to select a data dictionary that represents the SWIFT output data.

Field Description

Structure Identifies the structure component used for the output dictionary of
the Transform component.

To locate the file, type the file name, or click the Browse button.

Import Dictionary
from System Library

Allows you to add a data dictionary from a system library.

XML, iWay XML Embedded Request, and iWay XML Request Output Properties

The tables in this topic describe the tabs and fields for the XML, iWay XML Embedded
Request, and iWay XML Request output formats.

Structure tab: Allows you to select an XML, DTD, or XSD (schema) file that represents the data
dictionary for the XML output data.

4. iWay Transformer Tasks

iWay Integration Tools Transformer User’s Guide 207

Field Description

Structure Identifies the structure component used for the output dictionary of
the Transform component. It is typically represented as an XSD
(schema), DTD, or XML file that describes the outgoing message.

To locate the file, type the file name, or click the Browse
button.

The following is an example of an iWay XML Embedded Request:

<?xml version="1.0" encoding="UTF-8" ?>
 <Insert_DW_Customer>
 <iway>
 <request agent="XDJdbcAgent">
 <connection>
 <dsn>DW_SQL</dsn>
 <user>iwaytest</user>
 <password>ENCR(4485729374774629470
 110485)</password>
 <sql>
 <query>INSERT INTO StageDimCustomer (Customer,
 CustomerName, Address, ARGroup, GroupName,
Owner,
 SalesRep, Jurisdiction, ShippingWarehouse,
 DeliveryDay, CustomerCity, CustomerState,
 CustomerZip, Beantown, Bullseye,
WarehouseTransfer)
 VALUES (555, 'DOLLAR STORE NO. 150 ',
'33 BAY
 VIEW ROAD ', 'H6A', SAMPLE,
Inc. ', '
 ', 31, 0, 9, '4', '', 'NY', '13454', '', '',
'YES')
 </query>
 </sql>
 </connection>
 </request>
 </iway>
</Insert_DW_Customer>

You can load a schema from the server registry or from a server
configuration by selecting Import Schema, From Server. Another
option is to load the schema from one of the available iWay Web
services by selecting Import Schema, From Webservice. You can
also load the schema from an Ebix archive by selecting Import
Schema, From Ebix.

Configuring a Transform Component

208 Information Builders

Field Description

Contains Namespace Select this check box if the output contains namespaces. This
check box is not selected by default. You can also specify a
namespace for individual items. For more information, see Working
With Namespaces on page 265.

Data tab: Allows you to configure an XML output data file.

Field Description

Node Indent Indicates the number of spaces used to indent the node. The default
value is 4.

For example, if the node indent is 0, all elements are aligned at the
margin, as follows:

<a>

<c>
</c>

If the node indent is 4, all elements except the root are indented 4
spaces, as follows:

<a>

 <c>
 </c>

Optimization Enables you to retain or omit empty elements and attributes.

To retain empty elements and attributes, select Do Not Optimize.
This is the default value.

To omit empty elements and attributes, select Remove All Empty
Nodes.

To omit empty elements, including empty nested groups, select
Remove Empty Group Nodes.

4. iWay Transformer Tasks

iWay Integration Tools Transformer User’s Guide 209

Field Description

Include XML
Declaration in the
output data

Automatically inserts an XML declaration into the output data
structure. This option is selected by default.

Character Encoding Select the character encoding from the drop-down list. By default,
UTF-8 is selected.

Stylesheet Type
(Optional)

Select either text/xsl or text/css. By default, text/xsl is selected.

This option is an HTML property that is rarely used in plain XML
format.

Stylesheet File
(Optional)

To locate the style sheet file that you want to use for the output,
type the full path, click Browse, or click Import to navigate to the file.

This option is an HTML property that is rarely used in plain XML
format.

Header (Optional) Specifies the header information that you want in the output.

This option is an HTML property that is rarely used in plain XML
format.

Footer (Optional) Specifies the footer information that you want in the output.

This option is an HTML property that is rarely used in plain XML
format.

Variables

The Variables category enables you to manage the list of variables that you can use for the
output node values. Using variables improves the readability and usability of the output. You
can use a defined variable in the output node mapping value through the @GETCONSTANT or
@VARIABLE function.

Configuring a Transform Component

210 Information Builders

The following image shows the Variables pane.

4. iWay Transformer Tasks

iWay Integration Tools Transformer User’s Guide 211

The Variables category is not upward compatible. Transform components with defined variables
do not function properly in earlier versions of iWay Transformer. Projects must use global
constants in earlier versions of iWay Transformer, as shown in the following image.

Variable is a new mapping value type. It represents an intermediate value used globally during
the life of a transformation. You can define two types of variables, dynamic and constant:

The value of a dynamic variable can change during the course of a transformation (run
time). As a result, a dynamic variable is an ideal candidate for supporting elements of the
transformation, such as loop counters or global data storage. The use of variables is much
less resource-expensive, and more efficient, than that of Special Registers (SREGs).
Consequently, we recommend that you use variables for any values that you do not need to
make available after the execution of the transformation.

Constant variables (formerly known as global constants) represent a subset of the scope of
a variable. As a result, you can now define a constant value as a variable of type constant.
This feature is backward compatible with the implementation of global constants from
previous releases of iWay Transformer.

You must define the following parameters for a new variable:

Name. The name of the variable.

Value. The value of the variable.

Configuring a Transform Component

212 Information Builders

Variable Type. The type of the variable, Dynamic or Constant.

Data Type. The data type for the value of the variable. For example, the data type for a
counter is Number.

Description (optional). A brief description of the variable and its functionality according to
your design.

The following image shows the Add New Variable dialog box.

After you define and initialize the variable in the Variables category, you can use it within the
workspace of a project. The full list of available variables is added to the type of nodes to add,
under the Variable option on the context menu of the mapping workspace. That way, it can be
added within your output mappings and assigned values.

4. iWay Transformer Tasks

iWay Integration Tools Transformer User’s Guide 213

The following image shows the Variable option on the context menu.

You can also import variables from other Transform components. Variables in the iWay
Transformer workspace are identified by the dollar sign ($) icon.

You can use two predefined processing functions in iWay Transformer to manipulate variables.
They support two different signatures, depending on the action (ADD, GET, or SET) that needs
to be performed over the referenced variable:

@VARIABLE(name, action, value). Returns the value of the specified variable.

@VARIABLE(name, action). Returns the action of the specified variable.

The following table describes the arguments for each function.

Configuring a Transform Component

214 Information Builders

Name Description Value Default Required

name Variable name N/A VAR_1 Yes

action Action that is
performed by
this function

0: SET-void assigns the
variable value to a mapped
value specified in the input
property.

1: GET-return String returns
the variable value.

2: ADD-void appends to a
value depending on the
variable data type:

dt string: append

dt number: add

2 (ADD) Yes

value Value that is
used in the
action

N/A 1 for
number.
Null for
string.

No

4. iWay Transformer Tasks

iWay Integration Tools Transformer User’s Guide 215

Standard drag-and-drop functionality applies to the variable functions, as shown in the
following image of the Mapping Builder.

Configuring a Transform Component

216 Information Builders

You can change the variable name and action using the Output Node Properties dialog box, as
shown in the next image.

By default, if the variable is numeric, an increment of 1 is added to the output structure, as
shown in this image.

Incrementing the variable by -1 performs a subtraction.

You can change the output node properties for a variable from ADD to SET to assign a value to
the variable node, instead of an increment.

4. iWay Transformer Tasks

iWay Integration Tools Transformer User’s Guide 217

The following image shows the Action drop-down list, from which you can change ADD to SET.

You can also insert the @VARIABLE function inside a formula that is developed using the
Mapping Builder (for example, as a result of the @IF condition), just like any regular predefined
iWay Transformer function.

Configuring a Transform Component

218 Information Builders

XML Namespaces

The XML Namespaces category enables you to load XML namespaces from other projects, or
create your own. The following image shows the XML Namespaces pane.

For more information on defining XML namespaces, see Working With Namespaces on page
265.

Testing a Transform Component

The following procedure describes how to test run a Transform component.

Procedure: How to Test a Transform Component

1. Select the Transform component that you wish to test run, and right-click it to open the
context menu.

2. Select Run As and then Transform.
The test run configuration wizard opens.

3. Select a server to test run against using the Server URL combo box. Alternatively, type the
URL of a server.

4. Click Run to start the test run process.

4. iWay Transformer Tasks

iWay Integration Tools Transformer User’s Guide 219

Tip: You can re-run the last test by clicking the icon.

Working With a Transform Component

iWay Transformer offers design-time and run-time service modes for managing Transform
components.

The following image shows the Run As dialog box, from which you select the way to run a
Transform component.

Design-Time Mode (Transform Test Run)

Design-time mode supports the development of and publication of Transform components on
the run-time server. You can create your own components in design-time mode, or use existing
components. You can transform messages between XML message formats and non-XML
message formats.

Electronic messages often use standard formats such as EDI X12 or SWIFT. iWay makes such
formats available as part of its standard adapter suite. Frequently, however, modifications to
these standards are required for specific business situations. iWay Transformer provides the
tools to customize and extend the offered standard formats to cover such specific situations.

Working With a Transform Component

220 Information Builders

Once you have defined a Transform component, the design-time tool enables you to test it and
validate it against test profiles. Once you have validated the Transform component, you can
publish it to one or more run-time servers.

Ensure that the iWay home folder is set in Preferences.

Run-Time Mode (Run on Server)

Run-time mode uses a published Transform component as an integral part of iWay Service
Manager. You can also use this component at various points within a message processing life
cycle, as required.

Opening a Transform Component

You can import a Transform component from your local drive, or an iWay server. Once a
Transform component is part of your Integration Project, open it by double-clicking its name, or
selecting Open from the context menu.

Saving a Transform Component

You can export a Transform component from your Integration Project to your file system or
other destination.

4. iWay Transformer Tasks

iWay Integration Tools Transformer User’s Guide 221

The following image shows the Export dialog box.

Working With a Transform Component

222 Information Builders

Publishing a Transform Component

To publish a Transform component, select the Publish to option from the context menu, as
shown in the following image.

4. iWay Transformer Tasks

iWay Integration Tools Transformer User’s Guide 223

Specify the server on which to publish the Transform component, as shown in the next image.

Working With the Mapping Builder

When designing a Transform component, you must define the mapping rules and relationships
between input and output documents, according to your requirements.

In iWay Transformer, the Mapping Builder is the user interface that enables you to graphically
map your transformations. The following topics describe the mapping types and relationships
that are supported for input and output documents and the mapping values that you can
assign.

Mappings Tab

The Mappings tab is the workspace and default display for designing a Transform component.

The following information is available on the Mappings tab:

Input and output document structure tree. You can entirely or partially expand or collapse
the structure nodes.

Note: As part of the document structure tree, the individual fields and records of your input
and output are referred to as nodes throughout this manual.

The data associations between input and output nodes, represented by lines between
nodes.

Working With the Mapping Builder

224 Information Builders

If you do not want to display the mapping lines, click the Hide Mappings button to disable
this option.

Details of a particular structure node.

You can right-click the node and select Properties.

The Mappings tab includes the following panes, which systematically display mapping-related
information:

Input. This pane is displayed on the left. It contains the visual representation of the
document tree of the structure of the input data (incoming document). The input structure
is read only on the Mappings tab.

Output. This pane is displayed to the right of the Input pane. It is your workspace for
designing the structural layout of the output document, building its visual representation
and specifying its properties.

When working with structures, you can perform the following tasks:

Load and configure input or output structure nodes. Input configuration is limited.

For more information on loading the input and output documents, see Configuring a
Transform Component on page 164.

Drag and drop nodes from the Input pane to the Output pane in order to copy parts of the
input document tree to the output.

Add or delete a structure node.

The following menus let you easily perform various mapping-related tasks:

The Input Node menu provides the available options for manipulating the nodes in the input
structure, which is displayed in the Input pane. For more information, see Input Node
Workspace Menu on page 226.

The Output Node menu provides the available options for manipulating the nodes in the
output structure, which is displayed in the Output pane. For more information, see Output
Node Workspace Menu on page 228.

The Mapping Values menu provides the available options for assigning values to the nodes
in the output structure, which is displayed in the Mapping pane. For more information, see
Mapping Values on page 256.

4. iWay Transformer Tasks

iWay Integration Tools Transformer User’s Guide 225

Input Node Workspace Menu

Right-click an input node in the workspace to display the menu options that are available for
the nodes in the Input pane. You can expand or collapse various nodes within the structure
tree, copy a node, and show or hide mappings between input and output nodes.

The following image shows the options available on the Input Node menu.

The following table describes the Input Node menu options.

Option Description

Copy Copies the selected input node and enables you to paste it in the output.

Working With the Mapping Builder

226 Information Builders

Option Description

Reload
Schema

Reloads the schema for the Input or Output structure pane.

Search Opens the Search dialog box, enabling you to search for text or to search for
and map input and output nodes.

Hide
Mappings

Toggles between showing and hiding the mapping lines between the input
and output structures.

Properties Displays the properties of the selected input node.

4. iWay Transformer Tasks

iWay Integration Tools Transformer User’s Guide 227

Output Node Workspace Menu

Right-click an output node in the workspace to display the menu options that are available for
the nodes in the Output pane. The following image shows the options available on the Output
Node menu.

The options that are available on the Output Node menu depend on which node is currently
selected in the Output pane.

You can disable certain options, depending on the type and position of the output node in the
structure (for example, group, element, or attribute) or the data format (for example, XML or
EDI X12).

The Add and Change Type option lists are dynamic. They also depend on the type of the output
node and the output data format.

Working With the Mapping Builder

228 Information Builders

The following table describes the options available on the Output Node menu.

Option Description

Add Enables you to alter the existing output structure by inserting a new
structure node of a specific type. The following types of structure nodes
are supported:

Attribute (for XML format only)

Group

Element

CDATA (for XML format only)

Comment (for XML format only)

Content (for XML format only)

Variable

iWay XML Request

(Available only when the output type is iWay XML Request.)

iWay Embedded XML Request

(Available only when the output type is iWay Embedded XML Request.)

Refer to the Add submenu of a particular node for the list of enabled node
types that you are permitted to add. The values of the available node
types are enabled or disabled according to the mapping rules for the
output data format. For example, if the XML data format is used, the only
available types of nodes that you can add to an element type of node is an
attribute node or a CDATA node.

Cut Cuts the selected output node, making it available for the paste output
operation.

Copy Copies the selected node to a location that you determine.

Paste Pastes the cut or copied node.

Delete Removes a node from the Output structure. A confirmation dialog box is
displayed for this option.

4. iWay Transformer Tasks

iWay Integration Tools Transformer User’s Guide 229

Option Description

Delete
Mapping

Deletes the selected mapping.

Delete All
Output Items

Deletes all output items.

Rename Renames the selected output structure node. This option is also available
if you double-click the name of the node.

Move Up Moves the selected node up the output structure tree, under the same
parent node.

Move Down Moves the selected node down the output structure tree, under the same
parent node.

Set to Root Enables you to represent the root of the document structure tree. This
option is not available for record-based data formats, such as CSV. This
option is available only for the nodes of type Group, because this is the
only type of node that is permitted to perform the root functionality.

Encapsulate Creates an invisible parent group wrapped around the output node that
you choose to encapsulate. The encapsulating feature is useful when you
are resolving complex looping or mapping issues. For an example, explore
the WebFOCUS_Banklist sample transform project that is packaged with
iWay Transformer.

Change Type Changes the type of the node to one of the following:

Attribute

Group

Element

CDATA

Comment

Content

For more information, see Output Structure on page 235.

Working With the Mapping Builder

230 Information Builders

Option Description

Export to
Library

Exports the selected component to the library.

Export
Mapping to
Library

Exports the selected mapping to the library.

Reload
Schema

Reloads the schema for the Input or Output structure pane.

Search Opens the Search dialog box, enabling you to search for text or to search
for and map input and output nodes.

Hide
Mappings

Toggles between showing and hiding the mapping lines between the input
and output nodes. The mappings signify the relationships between the
input and output nodes, where the particular input value is used to
construct the value of the output node.

Mapping
Builder

Opens the Mapping Builder window, which enables you to modify the
mapping value by changing the input node that it maps to. Alternatively,
you can add a function, constant, or expression to the existing mapping.

For more information on how to use the Mapping Builder, see Working With
Functions on page 269.

Properties Displays the Properties tab, which shows the layout and structural
information pertaining to the selected output node. For more information,
see Group Properties on page 241.

Input Structure

The input structure contains the input, which represents the groups, elements, and attributes
encoded in the input document. Each node in this tree has exactly one parent, and can have
more than one child.

The following table describes the various components provided in iWay Transformer to
represent input nodes. Definitions of basic terms commonly used for nodes within an input
document tree are also provided.

4. iWay Transformer Tasks

iWay Integration Tools Transformer User’s Guide 231

Input Document

The incoming document or message to which transformations apply. The following formats
are supported:

CSV. For more information, see CSV Input Properties on page 183.

EDI HIPAA. For more information, see EDI Input Properties on page 184.

EDI X12. For more information, see EDI Input Properties on page 184.

EDIFACT. For more information, see EDI Input Properties on page 184.

Fixed Width. For more information, see Fixed Width Input Properties on page 187.

IDOC. For more information, see IDOC Input Properties on page 189.

SWIFT. For more information, see SWIFT Input Properties on page 190.

XML. For more information, see XML and iWay XML Response Input Properties on page
191.

iWay XML Response. For more information, see XML and iWay XML Response Input
Properties on page 191.

CDF. For more information, see CDF Input Properties on page 182. Note: CDF format is
deprecated. iWay Software recommends that you use Fixed Width format instead.

The input document is displayed on the input pane as a visual representation of the input
document tree. It maintains a logical order of component nodes, such as groups or
elements, in relation to the underlying document, wrapping the nodes that are contained
within other nodes. For more information, see the Input Document Tree Example that
follows. Each input node contains a name that identifies the type of the node, optionally a
number of attributes, or content.

Group

Block of data that has a group element as its root. It can contain other groups or elements
nested within, as children. Multiple groups can also exist on the same level. A group was
formerly called a parent.

iWay Transformer does not support mixed content group nodes containing data values.
However, the group node for XML and HTML data formats can have any number of attribute
nodes inside, if applicable.

Working With the Mapping Builder

232 Information Builders

Element

Usually belongs to the group as a leaf, which cannot have any other nested groups or
elements. It typically stores a data value. In XML and HTML data formats, it can contain
attribute nodes or CDATA.

Attribute

Value associated with a group or element, consisting of a name, and an associated textual
value. Attributes are used for XML and HTML data formats only. Each group or element can
have zero to many attributes.

4. iWay Transformer Tasks

iWay Integration Tools Transformer User’s Guide 233

Example of Input Document Tree

Sample document tree of groups, elements, and attributes encoded in the input message.
Each node in this tree has exactly one parent, and may have more than one child.

The following is a section of an XML input document:

The following is a tree structure representation of the preceding XML:

In iWay Transformer, the resulting input document tree is as follows:

You can collapse or expand the document tree from the given node to its deepest
descendant. iWay Transformer supports a set of different relationships that link nodes
together.

The common types of document tree relationships are described in the following table.

Working With the Mapping Builder

234 Information Builders

Parent

The input can have more than one parent (root group). Parent is a group in relation to the
elements or groups contained within it. In the preceding example, the group, Company, is a
parent of two elements, Year and Quarter.

Child

Node A is called the child of node B, if and only if B is the parent of A. In the preceding
example, the element Year is a child of the Company group.

Descendant

Node A is called a descendant of node B, if either (1) A is a child of B, or (2) A is the child
of node C, which is a descendant of B.

Ancestor

Node A is called an ancestor of node B, if and only if B is a descendant of A.

Sibling

Node A is called a sibling of node B, if and only if B and A share the same parent. Node A is
a preceding sibling if it comes before B in the input document tree. Node B is a following
sibling if it comes after A in the input document tree.

Output Structure

The output structure contains the output document tree, which represents the completed
structure of groups, elements, and other supported node types, such as attributes or CDATA,
encoded in the output document.

Each node in this tree has exactly one parent group. It can have one or more sibling nodes,
unless it is the root node in the tree, which has to be unique according to the mapping rules in
iWay Transformer. You can adjust the properties of the given node, such as visibility or
namespace, to affect its appearance in the actual output document.

This topic examines the output document tree in the XML to HTML table example, which is
included as a sample Transform component.

4. iWay Transformer Tasks

iWay Integration Tools Transformer User’s Guide 235

The output structure is represented as follows:

In iWay Transformer, the output document tree is visualized as follows in the Output pane of
the Mappings tab:

Mapping Types

The output document tree or hierarchy provides a graphical representation of how the output
data will be organized. The output hierarchy defines output nodes line-by-line and uses a
document tree structure to produce the desired output according to your requirements.

Nodes of type group and element typically serve as the primary building blocks for the output
document tree, with the group type node at the root of the document tree, from which the rest
of the structure is derived. Groups can have children and can be nested, which means that
group nodes can be children and parents in relation to other group nodes.

Element nodes cannot have children, except in XML format, in which elements can contain
XML-specific type nodes, such as attributes or CDATA items. Element nodes are always derived
from the group node parent, which means that they are acting as leaves of the group
branches.

Note: You can change the visibility of groups and elements or use predefined looping
mechanisms to present your output data in the format specific to your requirements.

The following node types are supported in the Mapping Builder:

Group

Element

Attribute (for XML format only)

Working With the Mapping Builder

236 Information Builders

Comment (for XML format only)

Content (for XML format only)

CDATA (for XML format only)

Variables (for XML format only)

Adding New Output Nodes

One of the efficient methods for adding new output nodes is structure mapping. For more
information about structure mapping, see Group on page 238. Another method of adding new
output nodes is by building your document output tree from scratch, which is achieved by right-
clicking an existing output node and selecting Add followed by the type of node you wish to
add.

The supported types of the output nodes you may insert will depend on the type of the parent
node to which you want to add your data nodes and can be driven by the context menu. For
example, if you right-click an XML element node in your output structure, you may discover that
the only possible type of nodes which can be added to that element node is an attribute node.
By following these restrictions, the integrity of the output structure is maintained.

You can review the available options for the output node type by right-clicking the parent node
and selecting the Add submenu.

4. iWay Transformer Tasks

iWay Integration Tools Transformer User’s Guide 237

Group

A group is a block of data that has a group node as its root. It can contain other group or
element nodes nested within, and other node types if supported (for example, attribute or
CDATA for XML data format). Multiple groups can also exist on the same level. The nodes
contained within a certain group are also called children of this particular group, sometimes
referred to as a parent group in relation to the nodes nested within it.

Every output structure, regardless of the output data format, has at least one group node at its
root. A group marks the start of an output block by specifying the start of an output loop. The
first node in your output structure, referred to as a Root, is created automatically by iIT
Transformer when you create your initial output structure. You can then build your structure
from the root group node by adding the nodes of supported type one by one, or by copying the
blocks of data from existing input or output structures. The output is produced by looping
through the entire output structure (starting from the root group), one or more times
(iterations), depending on your settings, while reading the mapped values from the input file.

Consider the CDF output structure displayed in the following image.

Working With the Mapping Builder

238 Information Builders

The first output node, CDF_FILE, is the first group node and is also called the Root. The
presence of the Root node ensures that iIT Transformer loops over the entire output structure
if needed. The next node in the output tree is a HEADER node, which is also a group type of
node. Appearance of the HEADER node marks an output block of data, which includes the child
element nodes Name and Title. The node, 20, is also a group node, which contains an output
block of data to include the next ten child element nodes (RecordType to ts_time). Group
nodes are distinguished by the Group icon, which has a blue diamond shape with a double
border. Element nodes are distinguished by the Element icon, which has a blue diamond
shape.

The following list contains the visual variations of the group node when a specific property is
configured for it.

Invisible

A group node that has its visible property set to false. This means that even though the
group node is present in the output structure during design time, the invisible node’s value
or the whole block of its children nodes will not be displayed in the run-time output
produced by the project. For more information on hiding a group, see Filter Tab on page
251.

Context

A group that has a context applied. The context property is the explicitly defined reference
of the output group node to the particular input group node. It helps to control looping, and
to resolve challenges and opportunities in the area of data structure searching. It is
especially useful for nested multi-level repeated structures. It operates on the logical
structure of the message (similar to XPath). It is available for use by any data format
supported by iIT Transformer.

To set the context property, right-click the group node b in the Output pane and select
Properties. The Properties tab opens and displays the General tab by default.

In the Context field, specify the path value for the looping node on the input side. Click the

ellipses button, which opens the Input Fields pane. Select an input node to be mapped
from the hierarchy tree and click OK.

For more information on setting a context for a group, see General Tab on page 250.

Filter

4. iWay Transformer Tasks

iWay Integration Tools Transformer User’s Guide 239

A group that has a filter applied. The filter property is useful when your incoming document
data may contain loop iterations that should not appear in your output, according to your
requirements. The filter property is designed to help you remove unnecessary blocks of
data. For more information on specifying a filter for a group, see Filter Tab on page 251.

Depending on the group properties (loop, context, and filter) that are specified in the Properties
tab for the selected output node, the group icon changes in the Output pane to reflect these
settings. The following table lists all of these variations for your reference.

Group Setting Visible
Icon

Invisible
Icon

Loop is set to true

Loop is set to false

Loop is set to aggregate

Context is applied and loop is true

Context is applied and loop is false

Context is applied and loop is aggregate

Filter is applied and loop is true

Filter is applied and loop is false

Filter is applied and loop is aggregate

Context and filter are applied and loop is true

Context and filter are applied and loop is false

Context and filter are applied and loop is aggregate

Additional XML Output Structures

Working With the Mapping Builder

240 Information Builders

In iIT Transformer, it is easy to create complex output structures for your output file. The way
you arrange the nested components in the Output pane of the Mapping window is exactly how
your output will be structured.

You can use parent nodes to create complex output structures with nested parent nodes and
output loops for the XML output formats (XML and e-business). EDI (X12, HIPAA, EDIFACT, and
SWIFT) output is treated as XML output due to the use of the e-business metadata by the
Transformation Engine.

In addition to indicating the possible start of an output loop, a group node can also play an
important role in building the following structures depending on the output data format:

XML output document - The first parent node value is defined as the root node of your XML
output document. Other group nodes are defined as XML parent node names; they can be
used to create nested loops for complex XML structures.

EDI (X12, HIPAA, EDIFACT, and SWIFT) output document - The group node for complex
EDI messages can be used to create nested loops.

Group Properties

A set of useful properties is available for group output nodes. To view the properties for a
group node, right-click the group node and select Properties. The Properties tab opens, as
shown in the following image.

The General tab is displayed by default. Notice that the Type field contains a default value of
Group, which indicates the type of mapping node being used. The properties of a group node
are displayed in the following tabs:

General

Filter

Unique Keys

4. iWay Transformer Tasks

iWay Integration Tools Transformer User’s Guide 241

Sorting

XML Namespace

The following topics describe the tabs and options available from the Properties tab for the
group node.

General Tab

The General tab displays information such as the name and type of the node, as well as
looping and context settings of the current node.

Looping

In order to determine how your group node will loop, you need to examine the list of available
values from the Looping drop-down list, and select the applicable option.

Auto - Enforces the default looping mechanism. This is the default value of the Looping
drop-down list.

True - Indicates that looping is necessary for the data in this group.

Working With the Mapping Builder

242 Information Builders

False - Indicates that the group node should not loop.

Agg - Indicates that looping should be aggregate.

If aggregate looping is selected for the particular group, it means that all instances of this
group node which have the same attribute values are combined into one unique group
node. Any nodes that are children of these elements are also gathered and made
subordinate to the new parent node.

4. iWay Transformer Tasks

iWay Integration Tools Transformer User’s Guide 243

Context

The Context field in the General tab is an advanced feature designed to help control local
looping. Applying a context to a group node in your output structure can solve looping
complexity issues. It is especially useful in projects, which require you to make references to
input nodes located in different places within the hierarchy of a structure. The Context
specifies the location of the node where the block of input that is being used for looping
begins. Generally, this should be set to the innermost group block from your input structure,
which encapsulates all of the input data that must be used within this output group node.

To better understand how the Context feature works, you can examine one of the iWay sample
XML projects, located in the following directory:

<iWaySMHome>\tools\transformer\samples\transform_projects\xml\XML_to_XML
\Context\Context.gxp

where:

<iWaySMHome>

Is the directory where iWay Service Manager was installed.

The input to output structure mapping is shown in the following image.

The input is an XML file that lists the details for the sales of a company item. The input
information is organized by the year, quarter, product type, and the individual (brand). The
output is an XML file containing the sales only for items from the specific manufacturer, for
example, Cheapies. The output sales are arranged by year, quarter, and item.

Working With the Mapping Builder

244 Information Builders

Note that Product List has looping set to aggregate and context is set to Sales/Company/
Year. Aggregation looping is required to enforce that only one parent node will exist in the
output per each quarter. The reason why the context is set to Year is that the Year is the
lowest group node in the input structure hierarchy that contains all of the information used
within the Product List node. The input node Year opens the block of data in which the looping
will occur.

When a context is applied to a group, the group icon in the Output pane is displayed as
follows:

Filter Tab

The following image shows the Filter tab.

The Show or hide entire Group if specified condition is true check box enables you to control the
appearance of all the nested groups and elements, by defining the condition and resulting
action on the group node and its contents. Therefore, each individual output block produced by
that output loop will be displayed or hidden in the actual output depending on the state of this
option.

When a filter is applied, the group node icon in the Output pane is displayed as follows:

If this check box is selected and the Hide option is selected in the Action drop-down list, then
the particular output block that satisfies the condition entered is omitted from being displayed
in the output data.

When a group is hidden, the group icon in the Output pane is displayed as follows:

4. iWay Transformer Tasks

iWay Integration Tools Transformer User’s Guide 245

If the condition you enter is evaluated as true for an output loop and the Show option is
selected from the Action drop-down list, then only that output block is displayed in the output.
All other iterations of the group loop that do not match the condition you specified are
suppressed from being displayed in the output data.

The condition you type must be in the following format:

For example:

Horses/Team/Years/Player/Goals == '30'

where:

Horses/Team/Years/Player/Goals

Is the location of the node in your input document structure.

30

Is the desired alphanumeric value of that node. As the incoming document is processed by
the Transformation Engine, if this condition is met in the particular data iteration, the
action selected in the Action drop-down list is performed.

If you are using the Expression Builder to construct the condition, click the icon to specify a
constant value.

The following table lists the possible arguments (operators) for the block condition.

= = equal to

!= not equal to

>= greater than or equal to

<= less than or equal to

> greater than

< less than

Working With the Mapping Builder

246 Information Builders

When you click the ellipsis button next to the Condition field, the Expression Builder window is
displayed to help you build a condition intuitively.

4. iWay Transformer Tasks

iWay Integration Tools Transformer User’s Guide 247

Unique Keys Tab

The following image shows the Unique Keys tab.

You can control the appearance of a group's output child nodes by defining nodes as unique in
the Unique Keys tab. This will remove unnecessary data repetitions from your output group
node. The child node you specify as the node will determine which loop repetitions will be
suppressed. The output will display only the first unique occurrences of the key node. For
example, assume that you generate the following non-unique XML output data:

<Product>
 <ProductID>XR281</ProductID>
 <Name>Green Rocket Vehicle</Name>
</Product>
<Product>
 <ProductID>SR71</ProductID>
 <Name>SR-71 Blackbird</Name>
</Product>
<Product>
 <ProductID>XR281</ProductID>
 <Name>Green Rocket Vehicle Again</Name>
</Product>

If you choose to make the output group node Product unique by specifying the output child
node, ProductID, in the Unique Keys parent property, then your final output is the following:

<Product>
 <ProductID>SR71</ProductID>
 <Name>SR-71 Blackbird</Name>
</Product>
<Product>
 <ProductID>XR281</ProductID>
 <Name>Green Rocket Vehicle</Name>
</Product>

Note: You can specify multiple unique keys if required.

Working With the Mapping Builder

248 Information Builders

The second instance of the XR281 product was removed because it was not unique to the
output item ProductID.

Sorting Tab

The following image shows the Sorting tab.

The Sorting tab provides you with the option to enable the sorting of the loop iterations in the
blocks of data represented by the particular group node. You can choose a child node within
the current group, by which to sort your output. The output can be sorted in ascending or
descending alphanumeric order by the node or nodes you choose in the Sorting Order section.
The Sorting Type option specifies how the output is sorted. Possible values are None, Asc
(Ascending), or Des (Descending). Sorting Type defaults to None.

XML Namespace Tab

The following image shows the XML Namespace tab. This tab provides options to specify XML
namespaces for the individual group node. It is similar to the XML Namespaces category found
in the Project Properties dialog box.

For more information on defining XML Namespaces, see Working With Namespaces on page
265.

4. iWay Transformer Tasks

iWay Integration Tools Transformer User’s Guide 249

Element

An element node is used to represent a basic data item in iIT Transformer. Element nodes
are typically found inside the group node. Sometimes it is referred to as a leaf of the output
tree because it cannot have any other child nodes, such as the nested groups or elements
within it, except for the attribute nodes (for XML data format only).

Element Properties

The set of element node properties is defined for an element output node. To view the
properties of the element node in the Output pane, you must right-click an element node and
then, select Properties. The Properties tab opens.

The following topics describe the tabs that are available from the Properties tab for the
element node.

General Tab

The following image shows the Properties tab for the element node, which provides the
following tabs:

General

Filter

XML Namespace

The Properties tab for the element node defaults to the General tab. Notice that the Type field
contains a default value of Element, which indicates the type of mapping for which the
properties are displayed.

Working With the Mapping Builder

250 Information Builders

Filter Tab

You can also apply a filter to an element. The following image shows the Filter tab for the
element node.

The Show Element node or its specified value if specific condition is true check box enables you
to include all the element nodes or their values in the output, by defining the condition and
resulting action on the child node.

The condition you type must be in the following format:

For example:

Horses/Team/Years/Player/Goals == '30'

where:

Horses/Team/Years/Player/Goals

Is the location of the node in your input document structure.

30

Is the desired alphanumeric value of that node.

If you are using the Expression Builder to construct the condition, click the icon to specify a
constant value.

The following table lists the possible arguments (operators) for the block condition.

= = equal to

!= not equal to

>= greater than or equal to

4. iWay Transformer Tasks

iWay Integration Tools Transformer User’s Guide 251

<= less than or equal to

> greater than

< less than

When a filter condition is applied to an element node, the element icon in the Output pane is
displayed as follows:

XML Namespace Tab

The following image shows the XML Namespace tab for the element node.

For more information on defining XML Namespaces, see Working With Namespaces on page
265.

Attribute

An attribute node contains a value associated with a specific group or element. It consists
of a name, and an associated (textual) value. Attribute nodes are supported for XML format
data only.

In the following example, name and type are attributes for the Company element:

<Company name="Video and Sound Card Express" type="Computer Parts">

Attribute Properties

The set of various attribute properties is available for an attribute output node. To view or
modify the properties of the attribute in the Output pane of the iIT Transformer workspace, you
must right-click an attribute node and then, select Properties. The Properties tab opens.

Working With the Mapping Builder

252 Information Builders

The following topics describe the tabs available from the Properties tab for the attribute node.

General Tab

The following image shows the Properties tab for the attribute node, which provides the
following tabs:

General

Filter

XML Namespace

The Properties tab for the attribute node defaults to the General tab. Notice that the Type field
contains a default value of Attribute, which indicates the type of mapping for which the
properties are displayed.

Filter Tab

You can also apply a filter to an attribute. The following image shows the Filter tab for the
attribute node.

The Show Attribute node if specific condition is true check box enables you to alter the visibility
of the attribute nodes or their values in the output, by defining the condition and resulting
action on the child node. The condition you type must be in the following format:

For example:

4. iWay Transformer Tasks

iWay Integration Tools Transformer User’s Guide 253

Horses/Team/Years/Player/Goals == '30'

where:

Horses/Team/Years/Player/Goals

Is the location of the node in your input document structure.

30

Is the desired alphanumeric value of that node.

If you are using the Expression Builder to construct the condition, click the icon to specify a
constant value.

The following table lists the possible arguments (operators) for the block condition.

= = equal to

!= not equal to

>= greater than or equal to

<= less than or equal to

> greater than

< less than

When a filter condition is applied to an attribute node, the attribute icon in the Output pane is

displayed as follows:

XML Namespace Tab

The following image shows the XML Namespace tab for the attribute node.

For more information on defining XML Namespaces, see Working With Namespaces on page
265.

Working With the Mapping Builder

254 Information Builders

Comment

A comment node can be used to embed comments into the output structure. Comment
nodes are supported for XML output data only.

In the following example, the phrase This is an XML Output sample is a comment.

<?xml version="1.0" encoding="UTF-8"?>
<!--This is an XML Output sample-->

Content

A content node is associated with a group node in the output document. Some groups
have no content, in which case they are called empty. The content of a group node may include
text, and it may include a number of sub-elements, in which case the node is called the parent
of those subelements. Content nodes are supported for XML output data only.

CDATA

A CDATA node is used to indicate sections of data that you want the XML parser to ignore
during validation. CDATA sections can include special characters that will not be parsed.
CDATA nodes are supported for XML output data only.

In the following example, the CDATA tag (node) is wrapped around the compare(a,b) function,
which contains special characters that are not allowed in XML syntax. As a result, these
characters will not be parsed.

<![CDATA[
function compare(a,b)
{
 if (a > b) then
 {
 return 1
 }
}
}]]>

Variable

A Variable node (for XML format only) is used as a mapping value type, which represents an
intermediate value used globally during the life of a transformation. Two types of variables can
be defined, dynamic and constant.

4. iWay Transformer Tasks

iWay Integration Tools Transformer User’s Guide 255

Additional Key Terms

Additional key terms used to describe mapping relationships within the output document tree
are:

Parent

A node A is the parent of a node B if node B is contained within the structure of node A,
and belongs to the block of data that node A represents. The output has at least one
parent group, which is referred to as the root group.

Child

A node A is called the child of a node B if and only if B is the parent of A.

Descendant

A node A is called a descendant of a node B, if either (1) A is a child of B, or (2) A is the
child of some node C that is a descendant of B

Ancestor

A node A is called an ancestor of a node B, if and only if B is a descendant of A.

Sibling

A node A is called a sibling of a node B, if and only if B and A share the same parent. Node
A is a preceding sibling if it comes before B in the output document tree. Node B is a
following sibling if it comes after A in the output document tree.

Mapping Values

Creating an output structure is usually not sufficient to perform a transformation. You typically
must also specify the mapping values for each output node using the interface of the Mapping
Values pane.

The following mapping values are supported.

Input Node: Value of a node from an input structure.

Function: Predefined or custom algorithm of calculation.

Constant: Fixed value.

Expression: Logical statement.

Working With the Mapping Builder

256 Information Builders

You can specify the value for each output node using the Mapping Builder. To access the
Mapping Builder, highlight the output node on the Output pane, find the Mapping field on the
properties pane of that node, and click the Browse button.

4. iWay Transformer Tasks

iWay Integration Tools Transformer User’s Guide 257

The following image shows the Mapping Builder.

The left pane of the Mapping Builder dialog box provides you with the option of switching
between the following areas:

Functions

Input

Variables

JDBC Data Source

Working With the Mapping Builder

258 Information Builders

@REPLACE Input

@REPLACE JDBC

Click the name of the corresponding pane to expand its content. Click New to add new values
to the Variables and JDBC Data Source panes.

This feature allows you to drag and drop any available configuration that was specified using
the Project Properties dialog box into the workspace area of the Mapping Builder. You can
switch between the available panes by clicking on the corresponding button, for example,
Variables, JDBC Data Source, and so on.

Input Node (Context)

Input node represents a value from an input structure. Mapping to an Input node can be done
using Input pane. This pane is typically located in the lower-left corner of the Mapping Builder.
It allows you to select the location of the input node on which to base the value of the current
output node.

You can drag and drop the input node into the working area of the Mapping Builder. Depending
on where in your workspace you drop the node, you can overwrite or update the existing
mapping tree.

The Mapping Builder uses the following notation as the context property to define the location
of the input node in the mapping formula:

4. iWay Transformer Tasks

iWay Integration Tools Transformer User’s Guide 259

Sales/Company/Year/Quarter/Product/Item@sold

This is the same notation that is used in the Mapping Values pane, as shown in the following
image.

Working With the Mapping Builder

260 Information Builders

Function

Function value can be from predefined or custom algorithm of calculation. Mapping to a
Function can be done using Function pane. This pane is typically located in the upper-left
corner of the Mapping Builder. It allows you to select predefined functions or custom functions
that you defined to associate with an output node.

You can drag and drop the function into the working area of the Mapping Builder.

Note: In this version of iIT Transformer, you have an option to insert functions below the
current function in the existing mapping tree or replace the current function.

4. iWay Transformer Tasks

iWay Integration Tools Transformer User’s Guide 261

Constant

Allows you to type in a fixed value for a function or input node, by right-clicking the node and
selecting Set Constant or double-clicking the node.

Make sure the Set Constant option is selected.

The Constant Builder dialog box opens, as shown in the following image.

Type your value in the Constant field and click OK.

Expression

An expression is a logical statement where two or more input node values are combined into
one output value using the basic operators and functions. In Mapping Builder, expressions are
typically used for concatenation where input fields are joined by a plus sign "+" operator.

Working With the Mapping Builder

262 Information Builders

To set an expression, right-click the node and select Set Expression or double-click the node.

Make sure the Set Expression option is selected.

4. iWay Transformer Tasks

iWay Integration Tools Transformer User’s Guide 263

The Expression Builder dialog box opens, as shown in the following image.

Type your value in the Expression field and click OK.

You can also use the buttons that are available to build your expression graphically.

An expression can contain a concatenation of any number of input nodes and constant values
in any order, in the following format:

<input item>+'constant'+...

For example:

Working With the Mapping Builder

264 Information Builders

'For '+tree/fruit+tree/fruit/year+': '+tree/fruit/
apple/yield+
' bushels, '+tree/fruit/apple/avgweight+' grams avg.'

Note: It is strongly encouraged to use the @CONCAT function instead of an expression to
concatenate strings. For more information on using the @CONCAT function and its properties,
see Working With Functions on page 269.

For more information on how to use the Mapping Builder, see Using the Mapping Builder on
page 269.

Building and Altering Output Structures

For most output data formats, you can load an existing output structure from the metadata
configuration of your project. The output structure will appear in the Output pane. Also, output
structures typically can be altered once in the Output pane, but there are some that should
never be altered.

It is not recommended to alter the output structure in the Output pane for the following
formats:

EDI HIPAA

EDI X12

EDIFACT

IDOC

These output data formats require a mandatory metadata structure to be provided for the
message. If you alter the output structure in the Output pane of the Mappings tab for any of
these outputs, even by one character, the resulting transformation will not work properly.

Working With Namespaces

Procedure: How to Load XML Namespaces From Another Transform Component

To load XML namespaces from another Transform component:

1. In the Project Properties dialog box, select the XML Namespaces category in the left pane.

4. iWay Transformer Tasks

iWay Integration Tools Transformer User’s Guide 265

The following image shows the XML Namespaces category in the Project Properties dialog
box of a Transform component with areas for prefix, URI, and ID values.

2. Click Import.

The Open dialog box is displayed.

3. Find and select the Transform component whose namespace you wish to load and click
Open.

Procedure: How to Create XML Namespaces for a Transform

To create XML namespaces for a Transform:

1. In the Project Properties dialog box, click the XML Namespaces category in the left pane.

Working With Namespaces

266 Information Builders

The following image shows the XML Namespaces category with columns for prefix, URI,
and ID values.

2. Click New.

The Add New XML Namespace dialog box opens.

3. In the Prefix field, type the prefix to be associated with the XML namespace.

4. In the URI field, type the URI associated with the prefix and use the URI to represent the
stylesheet, reference, or value for the XML namespace.

For example, a prefix value of addr with the following URI:

http://www.tu-darmstadt.de/ito/addresses

4. iWay Transformer Tasks

iWay Integration Tools Transformer User’s Guide 267

is the equivalent of including the following in your actual data:

xmlns:addr="http://www.tu-darmstadt.de/ito/addresses"

5. Click OK.

The new XML namespace is added to the list.

An identification number for each XML namespace appears automatically set in the ID
column. Identification numbers are unique identifiers used by iIT Transformer to manage
your XML namespaces within the workspace.

6. Click OK.

Note: To attach XML namespaces, left-click the appropriate node in the Output pane and
select Properties. When the Output Node Properties dialog box opens, click the XML
Namespace tab (if it is not already active) and then, select the Apply Namespace URI check
box.

Working With Namespaces

268 Information Builders

Working With Functions

The iIT Transformer interface offers an integrated set of useful functions, which are used to
perform a variety of operations, such as calculation and manipulation of input data, or
retrieving data from a database. You may use functions to modify the output node value to
match your requirements. You can build complex expressions for output values using the
combinations of functions via the Mapping Builder.

In addition, iIT Transformer enables you to implement your own algorithms for producing output
values by adding custom functions according to the specific format. For more information, see
Custom Functions on page 297.

Using the Mapping Builder

The Mapping Builder is a tool available in iIT Transformer as part of the Mapping Builder
facility. It allows you to construct an output node using various methods and formulas
implemented in iIT Transformer as functions. You can access the predefined functions and the
custom functions that you defined, or build the statement containing several functions if
needed.

In iIT Transformer, the predefined functions are subdivided into the following categories:

All Functions

Custom Functions

EDI Functions

Miscellaneous Functions

Numeric Functions

Processing Functions

Runtime Functions

SWIFT Functions

Security Functions

String Functions

Time Functions

4. iWay Transformer Tasks

iWay Integration Tools Transformer User’s Guide 269

Setting Function Parameters

After selecting a specific function, typically you will need to define the set of parameters
associated with it. The number and the names of the parameters for the particular function
can be determined in either of the following ways:

The function expression in the list of functions.

@SUBTRACT (number1, number2)

The function description area located below the list of functions.

The right pane of the Mapping Builder. For example, the @CONCAT function shown in the
following image accepts three parameters of type string.

For more details on the parameters to specify for each particular function, see Predefined
Functions on page 102 for a complete reference. If dealing with custom functions, you may
consult the author of the function.

Generally, the functions can take four types of values as their parameters:

Input nodes

Nested functions

Constant values

Expressions

A function of a parameter can take the value of a specified input node. For information on how
to set an input node, see How to Set an Input Node on page 275.

You can nest functions within functions, which means the output result of a certain function
can serve as the input parameter for another function. For more details, see How to Nest
Functions on page 276.

You can also set a specific invariable value as a constant function parameter. For information
on how to set a constant value, see How to Set a Constant Value for a Function on page 277.

Another option for a function parameter type is an expression which is a basic combination of
operators, input nodes, and/or constants. For information on how to set an expression, see
How to Set an Expression for a Function on page 277.

Working With Functions

270 Information Builders

Predefined Functions

The Mapping Builder enables you to set the output node values using a combination of
functions and/or input nodes. Both custom and predefined functions can be utilized. When
specifying a function through the Mapping Builder, you must know what the specific function
does and how to specify the parameters for it. For more information, see Predefined Functions
on page 102.

Procedure: How to Open the Mapping Builder

The following image shows the Mapping Builder interface in iIT Transformer.

To open the Mapping Builder:

1. In the Mapping Values pane of the Mappings tab, select an output node.

2. Click the ellipsis button.

4. iWay Transformer Tasks

iWay Integration Tools Transformer User’s Guide 271

The Mapping Builder displays as shown in the following image.

The left pane of the Mapping Builder dialog box provides you with the option of switching
between the following areas:

Functions (selected by default)

Input

Variables

JDBC Data Source

@REPLACE Input

@REPLACE JDBC

Click the name of the corresponding pane to expand its content. Click New to add new
values to the Variables and JDBC Data Source panes.

Working With Functions

272 Information Builders

This feature allows you to drag and drop any available configuration that was specified
using the Project Properties dialog box into the workspace area of the Mapping Builder.
You can switch between the available panes by clicking on the corresponding button, for
example, Variables, JDBC Data Source, and so on.

Procedure: How to Select a Function

To select a function:

1. From the Category drop-down list in the Functions pane of the Mapping Builder, select the
function category you want to use, for example, String.

For a list of function categories, see Using the Mapping Builder on page 269.

The following image shows String Functions selected in the Category drop-down list, which
is located in the Functions pane.

Optionally, you can skip to step 2 and select your function from the whole list of available
functions.

4. iWay Transformer Tasks

iWay Integration Tools Transformer User’s Guide 273

2. Select the specific function you want to use, for example, @CONCAT(string, string, string),
and drag it into the workspace area of the Mapping Builder as shown below:

Note: You can drag and drop functions above or below the existing mapping tree in the
workspace area as needed to create a combination of output values.

The function you choose becomes your working function.

3. To replace the working function, drag a new function on the workspace and drop it directly
onto the working function.

Working With Functions

274 Information Builders

Procedure: How to Set an Input Node

To set an input node as the value for a function parameter:

1. Select an input node from the Input document tree area of the Mapping Builder.

2. Drag the input node onto the appropriate parameter in the workspace area of the Mapping
Builder.

An alternate way to perform this task is to use Set Selected Input option from the context
menu, which appears when you right-click the parameter in the workspace area.

Note: Another method for editing the mapping formula of your node is to type it directly in
the preview area located on the lower-right corner of the Mapping Builder window and
press Enter. The tree structure will be refreshed. However, this option is recommended for
advanced users only. Using the drag and drop interface instead is strongly encouraged.

4. iWay Transformer Tasks

iWay Integration Tools Transformer User’s Guide 275

Procedure: How to Nest Functions

To specify another function as a parameter for your working function:

1. Select the function you want from the Functions pane of the Mapping Builder.

2. Drag the function and drop it on the appropriate parameter of the working function on the
workspace area of the Mapping Builder.

An alternative way to perform this task is to use Set Selected Function option from the
context menu, which appears when you right-click the parameter in the workspace area.

You must set the parameters for the nested function as well.

Note: You can nest functions multiple times.

Working With Functions

276 Information Builders

Procedure: How to Set a Constant Value for a Function

To set a constant value:

1. Right-click the appropriate parameter box in the workspace area of the Mapping Builder
and select Set Constant from the context menu.

You can also double-click the parameter box to set a constant.

The following image shows the Constant option selected and a field where you can enter a
value.

2. Type the value for your constant and click OK.

Procedure: How to Set an Expression for a Function

To set an expression:

1. Right-click the appropriate parameter box in the workspace area of the Mapping Builder
and select Set Expression from the context menu.

You can also double-click the parameter box and select the Expression radio button to set
an expression.

2. Type the value for your expression and press Enter.

An expression concatenation is typically used for any number of input items and constant
values in any order, in the following format:

<input item>+'constant'+...

4. iWay Transformer Tasks

iWay Integration Tools Transformer User’s Guide 277

For example:

'For '+tree/fruit+tree/fruit/year+': '+tree/fruit/apple/yield+
' bushels, '+tree/fruit/apple/avgweight+' grams avg.'

Procedure: How to Remove a Function Parameter

To remove a value for a function parameter:

1. Right-click the parameter in the workspace area of the Mapping Builder.

A context menu opens as shown in the following image.

2. Select Delete.

The parameter is removed from the function.

Procedure: How to Cancel and Restore an Action

To cancel and restore an action within the Mapping Builder:

1. To cancel your last action, right-click any component in the workspace, for example, the
working function.

Working With Functions

278 Information Builders

A context menu opens as shown in the following image.

2. Select Undo or use the keyboard shortcut Ctrl+Z.

The last action is removed from the workspace.

3. If you decide to restore an action, right-click any component in the workspace, for
example, the output item.

A context menu opens as shown in the following image.

4. iWay Transformer Tasks

iWay Integration Tools Transformer User’s Guide 279

4. Select Redo or use the keyboard shortcut Ctrl+Y.

The last removed action is returned to the workspace.

Note: Multiple levels of undo and redo are supported. You can select Undo/Redo or use
the corresponding keyboard shortcut (Ctrl+Z/Ctrl+Y) multiple times until you have achieved
the desired result.

Customizing @CONCAT Functions

You can customize the signature of your @CONCAT function for a specific output node by
adding or removing parameters as required using the Mapping Builder. This functionality adds
flexibility to the design of mapping values, which involve complex string concatenations; it also
eliminates the need to use expressions for the concatenation of strings in iIT Transformer.

Procedure: How to Add Parameters for @CONCAT Functions

To add parameters for @CONCAT functions:

1. In the Mapping Builder, right-click the @CONCAT function in the workspace area.

2. Select Add Parameter from the context menu.

The parameter is added to the parameter list, and the number of parameters for this
function definition will increase by one.

Working With Functions

280 Information Builders

Procedure: How to Remove Parameters for @CONCAT Functions

To remove parameters for @CONCAT functions:

1. In the Mapping Builder, right-click a parameter to delete from the @CONCAT function in the
workspace area.

2. Select Delete from the context menu.

The parameter is removed from the parameter list, and the number of parameters for this
particular function definition will decrease by one.

Configuring Properties for JDBC

A JDBC replace function is a replace function in which the match and replace values are taken
from columns of the specified database table or from the results of an SQL statement run on
the specified database. For example, you can configure iIT Transformer to use a database
customer information table, reading the value from the "Full Name" column and replacing it
with the value from the "Nickname" column. Unlike the regular replace functions where the
match and replace pairing is static, the JDBC replace functions read the data from the
specified columns of the next database row each time the transformation processing loops
past the JDBC replace function while producing your output document.

Replace functions are similar to custom functions in that you must first define the function and
then, apply it to the output node mapping value definition that you want to affect. In the case
of replace functions, this can be accomplished using the @REPLACE and @SIMPLE_REPLACE
functions.

For more advanced database functionality, such as matching across multiple input nodes or
running complex SQL queries, see Using the @JDBCLOOKUP Function on page 286.

4. iWay Transformer Tasks

iWay Integration Tools Transformer User’s Guide 281

The process of defining a particular replace function accounts for setting up the value to
match, but not the mapping of it. You must map the replace functions to the specific node
using the Mapping Builder. For more information, see Using the Mapping Builder on page 269.

JDBC Replace Functions as Input Data Sources

Since a JDBC replace function can be defined and used no matter what the data format of your
input is, by using JDBC replace functions you can access multiple input data sources. For
example, if the input data format of your transform is XML, your incoming document is likely an
XML file. By defining and using JDBC replace functions, you can read additional input data from
the database. In fact, if you define multiple JDBC replace functions, you can use as many
database sources as you like.

Procedure: How to Define a JDBC Lookup

To define a JDBC lookup:

1. Select the Transform component and then, Properties from the Integration Project context
menu.

The Properties dialog box opens.

2. Expand Transform Properties in the left pane and then select the @REPLACE Function
category.

Working With Functions

282 Information Builders

The following image shows the Project Properties dialog box with the @REPLACE Functions
category selected in the left pane.

3. Click the JDBC Lookup tab.

4. Click New.

4. iWay Transformer Tasks

iWay Integration Tools Transformer User’s Guide 283

The JDBC Replace Function Dialog opens.

To access the particular database, you must provide the necessary information that is
required for your JDBC lookup.

a. In the Name field, specify a name for the JDBC lookup.

b. In the URL field, specify the database URL.

Note: To define a predefined function (for example, @SREG) as the URL, click the
Browse button to the right of the URL field, which opens the Mapping Builder.

c. From the Driver drop-down list, select an available JDBC driver.

Note: iIT Transformer does not ship with any of the predefined drivers. The driver must
be registered with iIT Transformer.

d. Specify a valid user name and password for accessing the database.

e. In the Match Column field, type the name of the source match column.

f. In the Replace Column field, specify either a database table name or an SQL
statement to run on the database.

g. From the Select Fields drop-down list, select one of the following methods to acquire
the match and replace values:

Working With Functions

284 Information Builders

If you select From Table, specify a database table name in the Table Name field.

If you select From SQL Query, specify an SQL statement to run on the database in the
SQL Query field.

If you specify an SQL statement, the match and replace values are taken from the
result of the SQL statement.

Procedure: How to Modify a JDBC Lookup

To change or update any information in your JDBC lookup:

1. Select the JDBC lookup, for example, jdbc1, and click Edit.

4. iWay Transformer Tasks

iWay Integration Tools Transformer User’s Guide 285

The JDBC Replace Function Dialog opens.

2. Click OK once you have completed the necessary modifications.

Procedure: How to Delete a JDBC Lookup

To delete a JDBC lookup, select the JDBC lookup, for example, JDBC1, and click Remove.

The JDBC lookup is removed from the list.

Using the @JDBCLOOKUP Function

The @JDBCLOOKUP function returns a matched value from a database using an SQL
statement. It takes the JDBC data source name and SQL statement in string form as
parameters. The SQL statement can be set dynamically based on the input from other
functions within iIT Transformer. If more than one value is matching the query, then the last
matching value is returned.

Working With Functions

286 Information Builders

When no result is found in the database, an empty string is returned. When more than one
result is found, the last matching result is returned. Regardless of the number of columns in
the result set, the value of the first column is always returned. During the transformation with
multiple occurrences of @JDBC lookup, if the SQL statements are the same, then the returned
result will be the same.

Parameters:

JDBC_data_source_name: String that represents a globally defined JDBC connection
configuration.

SQL_statement: SQL statement that can be created using SQL Builder.

Example:

@JDBCLOOKUP('LOOKUP_TEST', {'SELECT field1 FROM LOOKUP_TABLE WHERE field2 '
= '+@QUOTE(Customer/Person/Name)})})

where:

LOOKUP_TEST

Is the name of a JDBC connection configuration.

{'SELECT field1 FROM LOOKUP_TABLE WHERE field2 ' = '+@QUOTE(Customer/
Person/Name)}

Is an SQL statement.

Procedure: How to Create an SQL Statement Using SQL Builder

To create an SQL statement, which can be used for the @JDBCLOOKUP function, you must
follow the instructions below:

1. From the menu bar, click Project and select Properties.

The Properties dialog box opens.

2. Click the JDBC Data Source category in the left pane.

4. iWay Transformer Tasks

iWay Integration Tools Transformer User’s Guide 287

The following image shows the Properties dialog box with the JDBC Data Source category
selected in the left pane.

3. Click New.

Working With Functions

288 Information Builders

The JDBC Data Source Dialog opens.

Perform the following steps:

a. In the Name field, provide a name for the JDBC connection.

This name is used as a string value for the JDBC_data_source_name parameter in the
@JDBCLOOKUP function.

b. In the URL field, type the URL to the database.

Note: To define a predefined function (for example, @SREG) as the URL, click the
Browse button to the right of the URL field, which opens the Mapping Builder.

c. From the Driver drop-down list, select an available JDBC driver that is registered with
iIT Transformer.

Note: iIT Transformer does not ship with any of the predefined drivers.

d. Type a valid user name and password to connect to the database.

e. Specify a timeout value in milliseconds.

Note: If the timeout value is omitted, or the value is 0 (default), then timeout is not
enabled.

4. iWay Transformer Tasks

iWay Integration Tools Transformer User’s Guide 289

4. Click OK.

The JDBC lookup is added to the list of defined JDBC lookups.

5. Click OK.

6. In the Mapping Values pane of the Mappings tab, select an output node.

7. Click the ellipsis button.

The Mapping Builder opens.

8. From the Category drop-down list in the Functions pane of the Mapping Builder, select the
Processing Functions category.

9. Select the @JDBCLOOKUP function, and drag it onto the workspace area of the Mapping
Builder.

10. Double-click the JDBC_data_source_name parameter.

Working With Functions

290 Information Builders

The JDBC Data Source dialog box opens as shown in the following image.

11. Select the name of a defined JDBC lookup, for example Oracle, and click OK.

The @JDBCLOOKUP function is updated as shown in the following image.

12. Double-click the SQL_statement parameter.

Since the SQL statement is an expression, the Where clause can contain the following:

Constant

Transformer Function

Input Node Context

Unlimited AND & OR

Note: In the Column Name field, you can also type * or Count (*) to return more advanced
data sets.

4. iWay Transformer Tasks

iWay Integration Tools Transformer User’s Guide 291

13. Click OK once you have finished creating your SQL statement.

Configuring Properties for Replace

Replace functions are used to match and replace specific values of the input data. For
example, suppose your input data has a node called "car_age" with a value of either "new" or
"used". If you decide to substitute the term "used" and want to use "pre-owned", you can
define a replace function with match and replace value pairing where the match value would be
specified as "used" and the replace value is "pre-owned."

Replace functions work similar to custom functions in that you must first define the function
itself and then, assign it in the output node mapping value which needs to be modified. This
task can be accomplished with the @REPLACE and @SIMPLE_REPLACE functions.

The process of defining replace functions accounts for setting up the values to match and
replace, but not the mapping. You must map the replace functions using the Mapping Builder.
For more information, see Using the Mapping Builder on page 269.

Procedure: How to Define A Replace Function

To define a replace function:

1. Right-click a Transform component and select Properties from the context menu.

The Properties dialog box opens.

2. Expand Transform Properties in the left pane and then select the @REPLACE Function
category.

Working With Functions

292 Information Builders

The following image shows the Project Properties dialog box with the @REPLACE Functions
category selected in the left pane.

The Input Lookup and JDBC Lookup tabs contain the lists for the two types of replace
functions available in iIT Transformer.

3. To define the replace functions in which you define the permanent or constant match and
replace values, click the Input Lookup tab. For more information, see How to Define an
Input Lookup on page 293.

To define replace functions in which the match and replace values are taken from the
columns of the specified database table, enabling you to insert the input values from the
different databases, use the JDBC Lookup tab.

Procedure: How to Define an Input Lookup

To define an input lookup for a replace function:

1. Click New in the Input Lookup tab.

4. iWay Transformer Tasks

iWay Integration Tools Transformer User’s Guide 293

The Add/Edit Input Lookup dialog box opens.

2. Type a name, for example, Mammals, for the new input lookup group.

3. Click New Match.

4. Specify the match and replace values in the corresponding fields accordingly.

Working With Functions

294 Information Builders

5. Click OK.

You are returned to the previous Add New Input Lookup dialog box.

You can add multiple input lookups if required.

For example, the following image shows a replace function named "Mammals." The lower
pane of the Add New Input Lookup dialog box has columns for Match and Replace node
values for various mammals, for example, “cow” to "bovine.”

4. iWay Transformer Tasks

iWay Integration Tools Transformer User’s Guide 295

Procedure: How to Modify an Input Lookup

To modify an input lookup:

1. Select the input lookup, for example, Mammals, and click Edit.

Working With Functions

296 Information Builders

The Input Lookup Properties dialog box opens.

You can perform either one of the following modifications to an input lookup group:

Define additional match and replace pairings by clicking New.

Delete an existing match and replace pairing by selecting it and clicking Remove.

Modify the values of an existing match and replace pairing by selecting it and typing
the new value.

2. Click OK once you have completed making the necessary modifications.

Procedure: How to Delete an Input Lookup

To delete an input lookup, select the input lookup, for example, Mammals, and click Remove.

The input lookup is removed from the list.

Custom Functions

Writing Custom Functions

The custom functions that can be used with iIT Transformer must be written in Java code,
complying with the rules discussed in the following section. Custom functions can be stored as
a class file or a jar file, either as part of your iIT project, or on the file system.

4. iWay Transformer Tasks

iWay Integration Tools Transformer User’s Guide 297

Note: The following section is written assuming that you are familiar with the Java
programming language.

Each custom function you write must be a subclass of the AbstractFunction super class.

You must implement a constructor for your class and the two abstract methods, execute() and
getReturnType(), which are inherited from the AbstractFunction class. You may also choose to
add your own methods. The Java code for your custom function must conform to the following
format:

import com.iwaysoftware.transform.common.function.AbstractFunction;
public class MY_FUNCTION_NAME extends AbstractFunction
{
 public MY_FUNCTION_NAME()
 {
 setName("MY_FUNCTION_NAME");
 setDescription("This is what my function does...");
 }
 public Object execute() throws Exception
 {
 // perform function's execution here
 // and return desired output value
 }
 public Class getReturnType()
 {
 return MY_FUNCTION'S_RETURN_TYPE;
 }
}

where:

MY_FUNCTION_NAME

Is the name of your custom function.

MY_FUNCTION'S_RETURN_TYPE

Is the data type of your custom function's return value.

Import Statement

You must include the following import statement in the beginning of your custom function
implementation:

import com.iwaysoftware.transform.common.function.AbstractFunction;

This enables you access to the methods required for your custom function implementation.

Note: Optionally, you can utilize the logging capabilities of iIT Transformer in the code of your
custom function by including the following import statements in the beginning of your custom
function implementation:

Working With Functions

298 Information Builders

import com.iwaysoftware.transform.common.log.LogUtil;
import com.iwaysoftware.transform.common.log.TransformLogger;

Class Declaration

As stated previously, a custom function is a subclass of the AbstractFunction super class.
Therefore, you can declare your custom function as follows:

public class MY_FUNCTION_NAME extends AbstractFunction {
...
}

where:

MY_FUNCTION_NAME

Is the name of your custom function.

Constructor

There are two methods you must call within the constructor of your custom function. They are
the setName(String name) and setDescription(String description) methods, which are
predefined in the AbstractFunction super class. The values provided as parameters for these
methods are utilized when you access your custom function within iIT Transformer.

The name of the function used in iIT Transformer is the parameter that you set using the
setName method, and the description of the function used by iIT Transformer is the message
you type as the parameter in setDescription.

execute()

The method execute(), is one of two abstract methods declared in the AbstractFunction super
class, which is supposed to contain the function procedures and instructions. Your custom
function, which is a subclass of AbstractFunction, must therefore, implement the execute()
method as follows:

public Object execute() throws Exception {
...
}

When you are writing the body of this method, you can follow the same style that is used to
write any method in Java.

4. iWay Transformer Tasks

iWay Integration Tools Transformer User’s Guide 299

Getting Arguments

Retrieving arguments passed into your custom function is achieved through the methods
getValueInstance(), getArgument(int index), and getFunctionContext(), which are the predefined
methods from the functions package that your custom function is a part of. To store two
arguments as String variables argOne and argTwo, write the following:

String argOne =
(String)getFunctionContext().getArgument(0).getValueInstance();

String argTwo =
(String)getFunctionContext().getArgument(1).getValueInstance();

Other methods that you may find useful for your custom function implementation are:

getNumberOfArguments()

Returns an integer indicating the number of arguments passed to your function by the user,
which is used in conjunction with method, getFunctionContext(), as follows:

int num = getFunctionContext().getNumberOfArguments();

getArguments()

Returns an array containing all of the arguments passed to your function by the user. To
store your arguments in an array of objects called myArray, use the following format:

Object[] myArray = getFunctionContext().getArguments();

getReturnType()

getReturnType() is one of the abstract methods declared in the AbstractFunction class.
Therefore your custom function, which is a subclass of AbstractFunction, must implement this
method. The value returned by getReturnType() indicates the type of value you return in method
execute(). The choices for your return value are:

java.lang.Boolean.class

java.lang.Character.class

java.lang.Double.class

java.lang.Float.class

java.lang.Integer.class

java.lang.Long.class

Working With Functions

300 Information Builders

java.lang.String.class

java.lang.StringBuffer.class

Associated Object Map

The custom function interface of iIT Transformer is now updated with the ability to utilize the
data structure of customizable global parameters. This data structure is implemented as a
Java Map object, which is an object that maps keys to values. This object can be accessed by
any custom function within your project. As a result, it can contain global reusable data or
information that can be cached, such as your database connection string. The Associated
Object Map can also be used to track the usage of the custom functions in your project, if
required. Use the following format to access the Associated Object Map:

Map objectMap = super.getAssociatedObjectMap();

Sample Custom Function

The following snippet of Java code is the implementation for a custom function that returns a
string resulting from adding 25 to the input value of the function.

import java.math.BigDecimal;
import java.util.Map;
import com.iwaysoftware.transform.common.function.AbstractFunction;
import com.iwaysoftware.transform.common.log.LogUtil;
import com.iwaysoftware.transform.common.log.TransformLogger;
public class ADD25
 extends AbstractFunction
{
 private static final BigDecimal BD25 = new BigDecimal(25);
 public ADD25()
 {
 /* specifies the function name to be used within iAM */
 setName("ADD25");
 /* specifies the function description to be used within iAM */
 setDescription("Return a string resulting from adding 25 to input value.");
 }
 public Object execute()
 throws Exception
 {
 /*
 * retrieves the first argument and assigns it to Double variable
 * 'input'
 */

4. iWay Transformer Tasks

iWay Integration Tools Transformer User’s Guide 301

 // arguments are String always
 String inputArg = (String)
 getFunctionContext().getArgument(0).getValueInstance();
 BigDecimal input;
 try
 {
 input = new BigDecimal(inputArg);
 }
 catch (Exception e)
 {
 input = new BigDecimal(0);
 }
 // Gets the instance of the logger
 TransformLogger logger = super.getLogger();
 // Gets the debug flag
 boolean debug = LogUtil.canDebug(logger);
 // Fetches associate objects
 Map objectMap = super.getAssociatedObjectMap();
 /* creates a variable to hold the value that will get returned */
 String answerString;
 if (objectMap.containsKey(input))
 {

 // return stored result
 String result = (String) objectMap.get(input);
 if (debug)
 {
 LogUtil.debug(false, logger, "returning CACHED
result: ");
 }
 return result;
 }
 else
 {
 answerString = input.add(BD25).toString();
 objectMap.put(input, answerString);
 if (debug)
 {

 LogUtil.debug(false, logger, "returning the value : "
 + answerString);
 }
 // return string
 return answerString;
 }
 }
 public Class getReturnType()
 {
 /* specifies that method execute() returns a String */
 return java.lang.String.class;
 }

Working With Functions

302 Information Builders

Defining Custom Functions

If no predefined iIT Transformer function or their combination is sufficient to perform the task
you require, you can write your own custom function containing the implementations of your
task and returning the desired value. The custom functions must be written in Java code and
compiled to produce a .class file, which then must be stored in the following directory to be
available for use in design time with iIT Transformer:

<iWaySMHome>/tools/transformer/custom_functions

where:

<iWaySMHome>

Is the directory where iWay Service Manager was installed.

Before using a custom function within iIT Transformer, test it to ensure it works properly. For
more information on creating or writing custom functions, see Writing Custom Functions on
page 297.

Defining a custom function in iIT Transformer creates a link to the actual custom
function .class file stored in the custom_functions directory. Custom functions are defined
using the Project Properties dialog box.

You can also import the custom functions from the other Transform components. For more
information, see How to Import a Custom Function in iIT Transformer on page 309.

Procedure: How to Define a Custom Function in iIT Transformer

To define a custom function:

1. Right-click a Transform component and select Properties from the context menu.

The Properties dialog box opens.

2. In the left pane, expand Transform Properties and select Custom Functions.

4. iWay Transformer Tasks

iWay Integration Tools Transformer User’s Guide 303

The following image shows the Properties dialog box with the Custom Functions category
selected in the left pane.

3. Click Edit Functions.

Working With Functions

304 Information Builders

The Edit Custom Function dialog box opens.

Several options are provided to add one or multiple custom functions if they reside in
a .jar file.

4. iWay Transformer Tasks

iWay Integration Tools Transformer User’s Guide 305

4. Click Add External JARs, select the location of your .jar file, and then click OK.

Working With Functions

306 Information Builders

Note that your .jar file has been parsed and the list of custom functions contained in
the .jar file now appears in the Customizations area, as shown in the following image.

You can make any of the custom functions listed in the Customizations area available in
Mapping Builder by clicking the check box next to it, for example, CountChar.class.

The Parameters dialog box opens, which prompts you to verify the name of the custom
function. Enter the number of parameters that the custom function accepts as shown in
the following image, and click OK.

4. iWay Transformer Tasks

iWay Integration Tools Transformer User’s Guide 307

Note that every custom function that was defined by selecting the corresponding check
box in the Customizations area is now included in the Custom Functions visible to the
transform area, as shown in the following image.

5. Click OK.

Working With Functions

308 Information Builders

The custom functions now appear in the list of defined custom functions of the Mapping
Builder. The name of the function is listed in the Function Signature column, and the
location of the function is listed in the Location column.

Procedure: How to Import a Custom Function in iIT Transformer

To import or define a custom function, or to define a JDBC Lookup:

1. Right-click a Transform component and select Properties from the context menu.

The Properties dialog box opens.

2. In the left pane, expand Transform Properties and select Custom Functions.

3. Click New Function.

Compiling Your .java File

In order to make your custom function available for use within iIT Transformer, you need to
compile the completed Java code of your custom function, integrating it with the Transformer
engine code to create a .class file.

To compile custom functions, the %IWAY_HOME%/lib path must be part of your building
environment. For example, you can use the following script to compile your custom function(s)
with JDK version 1.6:

set IWAY_HOME=%IWAY7%
set LIB="%IWAY_HOME%lib/*"
set CLASS_FILES=%IWAY_HOME%etc/manager/transformations/custom_functions
set SOURCE_FILES=C:/temp/iway_custom_functions/src/*.java
javac -classpath %LIB%; -d %CLASS_FILES% %SOURCE_FILES%
@pause

where:

C:/temp/iway_custom_functions/src/

Is the temporary location for your custom function(s) source files on your hard drive.

4. iWay Transformer Tasks

iWay Integration Tools Transformer User’s Guide 309

Migrating Custom Functions

In early versions of Transformer, for example, 5.2.104, the Java code for a custom function
had a format similar to the following:

import com.xmlglobal.goxmltransform.engine.functions.*;
public class MY_FUNCTION_NAME extends AbstractFunction
{
 public MY_FUNCTION_NAME()
 {
 setName("MY_FUNCTION_NAME");
 setDescription("This is what my function does...");
 }
 public Object execute() throws Exception
 {
 // perform function's execution here
 // and return desired output value
 }
 public Class getReturnType()
 {
 return MY_FUNCTION'S_RETURN_TYPE;
 }
}

where:

MY_FUNCTION_NAME

Is the name of your custom function.

MY_FUNCTION'S_RETURN_TYPE

Is the data type of your custom function's return value.

The following procedure describes how to migrate custom functions created for the early
versions of Transformer, for example, 5.2.104, to be called by your modified .xch file.

Note: Before you compile the migrated custom functions, verify that the iwtranse.jar file is in
your classpath.

Procedure: How to How to Migrate Custom Functions

To migrate custom functions, modify your import statements as follows:

1. Comment out xmlglobal package(s), for example:

//import com.xmlglobal.goxmltransform.engine.functions.*;

2. Add the iwaysoftware package, which must be imported, for example:

import com.iwaysoftware.transform.common.function.AbstractFunction;

Working With Functions

310 Information Builders

Using Custom Functions at Run Time

In iIT Transformer, the functionality of custom functions for run time purposes is the same as
the design time functionality. For more information on configuring custom functions, see
Custom Functions on page 297.

4. iWay Transformer Tasks

iWay Integration Tools Transformer User’s Guide 311

Working With Functions

312 Information Builders

Chapter5
iWay Transformer Tips and Tricks

This section provides useful tips and tricks that are related to iWay Transformer.

In this chapter:

XSLT Runtime Processing

XSLT Runtime Processing

Since iWay Service Manager (iSM) does not include a native XSLT engine for iWay Transformer,
iSM invokes external libraries for XSLT runtime processing.

By default, iSM uses an XSLT engine for iWay Transformer that is compatible in Sun/Oracle
and IBM Java Virtual Machines (JVMs). However, you can set any available XSLT engine for
runtime processing to be used by iWay Transformer. You must ensure that the Java runtime
property is assigned as described and the implementation is added to the classpath.

Note: The default XSLT engine that is set by iSM points to a processing library that supports
XSLT Version 1.0. To enable support for XSLT Version 2.0, you must point to the processing
library that is identified in this topic (org.apache.xalan.processor.TransformerFactoryImpl).

To view the current library that is used by iSM for XSLT runtime processing, logon to the iSM
Administration Console, and click Java Properties in the left pane, as shown in the following
image.

iWay Integration Tools Transformer User’s Guide 313

The Java Properties page opens, as shown in the following image.

Scroll down the list until you see the javax.xml.transform.TransformerFactory property and the
corresponding value that is currently being referenced. In the following image,
javax.xml.transform.TransformerFactory is set to
org.apache.xalan.xsltc.trax.TransformerFactoryImpl.

If no value is assigned to the javax.xml.transform.TransformerFactory runtime property, the
default behavior of iSM is to check for the
com.ibm.xtq.xslt.jaxp.compiler.TransformerFactoryImpl library, which is used in the IBM
implementation of Java. if this XSLT engine is not found, iSM sets the runtime property to
org.apache.xalan.xsltc.trax.TransformerFactoryImpl by default.

To point to a different library that will be used by iWay Transformer for XSLT runtime
processing, you can use one of the following options:

If iSM is running as a service, then use the iSM Administration Console to add the setting.

Note: This is the recommended option to use.

If iSM is running as an application, then add the setting to the iway7.cmd build script.

XSLT Runtime Processing

314 Information Builders

Option 1: Running iWay Service Manager as a Service

In the iSM Administration Console, click Java Settings in the left pane, as shown in the
following image.

The Java Settings page opens, as shown in the following image.

In the Java Virtual Machine Settings section, specify the following in the Startup field:

5. iWay Transformer Tips and Tricks

iWay Integration Tools Transformer User’s Guide 315

-
Djavax.xml.transform.TransformerFactory=org.apache.xalan.processor.Transform
erFactoryImpl

For example:

In this example, javax.xml.transform.TransformerFactory is now being set to
org.apache.xalan.processor.TransformerFactoryImpl.

Click Update when you are finished. As a best practice, restart iSM as well.

Option 2: Running iWay Service Manager as an Application

Edit the iway70.cmd build script and add the following command to the Java settings:

-
Djavax.xml.transform.TransformerFactory=org.apache.xalan.processor.Transform
erFactoryImpl

Save the iway70.cmd build script and restart iSM when you are finished.

XSLT Runtime Processing

316 Information Builders

Feedback
Customer success is our top priority. Connect with us today!

Information Builders Technical Content Management team is comprised of many talented
individuals who work together to design and deliver quality technical documentation products.
Your feedback supports our ongoing efforts!

You can also preview new innovations to get an early look at new content products and
services. Your participation helps us create great experiences for every customer.

To send us feedback or make a connection, contact Sarah Buccellato, Technical Editor,
Technical Content Management at Sarah_Buccellato@ibi.com.

To request permission to repurpose copyrighted material, please contact Frances Gambino,
Vice President, Technical Content Management at Frances_Gambino@ibi.com.

Information Builders, Inc.
Two Penn Plaza
New York, NY 10121-2898

iWay Integration Tools Transformer User’s Guide
Version 7.0.x and Higher

DN3502273.0418

	Contents
	Preface
	Documentation Conventions
	Related Publications
	Customer Support
	Help Us to Serve You Better
	User Feedback
	Information Builders Consulting and Training

	1. iWay Transformer Overview
	About iWay Transformer
	Mapping Builder
	Dictionary Builder
	Procedure: How to Access Dictionary Builder

	Template Viewer
	Test Results

	2. Getting Started With iWay Transformer
	iWay Transformer Basic Tutorial
	Transformer Workbench Basics
	About the Transformer Workbench
	About iWay Transformer Editors
	Setting iWay Transformer Preferences
	Procedure: How to Verify iWay Transformer Preferences

	Transformer Workbench Toolbar and Shortcuts
	Navigating the Transformer Workbench Toolbar
	Navigating the Mapping Builder
	Mappings Tab
	View Template Tab
	Test Results Tab

	Using Keyboard Shortcuts

	Preparing iWay Integration Tools Suite
	Creating a Transform Component
	Procedure: How to Create a Transform Component Using the File Menu
	Procedure: How to Create a Transform Component Using the Integration Project Context Menu
	Procedure: How to Create a Transform Component Using the New Button

	Navigating Resources
	Browsing Mappings
	Procedure: How to Browse Mappings

	Editing Mappings
	Procedure: How to Edit Mappings
	Using the Mapping Builder
	Procedure: How to Open the Mapping Builder

	Renaming Mappings
	Procedure: How to Rename Mappings

	Copying and Moving Mappings
	Procedure: How to Copy Mappings
	Procedure: How to Move Mappings

	Running a Transform Component
	Procedure: How to Run a Transform Component

	Debugging a Transform Component
	Working With Other Editors

	Project Configuration Tutorial
	Configuring a New Transform Component
	Procedure: How to Configure a New Transform Component

	Configuring Transform Component Properties
	Resource
	Run/Debug Settings
	Transform Properties
	@REPLACE Function
	Custom Functions
	Input
	JDBC Data Source
	Output
	Variables
	XML Namespaces

	Dictionary Builder Tutorial
	Overview
	Metadata Management Facility
	Ebix Management Facility

	Navigating Dictionary Builder

	3. iWay Transformer Concepts
	Transformation Process
	Transform Component
	Transform Template
	Configuration of a Transform Component
	Dictionary

	iWay Transformer Mappings
	Mapping Rules
	Mapping Structure

	iWay Transformer Supported Data Formats
	Transform Component Dependencies
	Using Namespaces in iWay Transformer
	Transform Functions
	Predefined Functions
	EDI Functions
	Numerical Functions
	Processing Functions
	Run-Time Functions
	Security Functions
	String Functions
	Time Functions
	Numeric Pictures
	Date Pictures
	Time Pictures

	Custom Functions

	Invisible Group
	What Is It?
	Where Is It Used?
	What Is It Used for?
	Where Is the Visible Property Located?

	4. iWay Transformer Tasks
	Creating a Transform Component
	Procedure: How to Create a Transform Component
	Procedure: How to Add a Transform Component From the iWay Registry
	Procedure: How to Add a Transform Component From the File System

	Configuring a Transform Component
	Resource
	Run/Debug Settings
	Transform Properties
	@REPLACE Function
	Custom Functions
	Input
	Input Structure
	Configuring the Input Structure
	Viewing the Input Structure

	Input Data
	Configuring the Input Data
	Viewing the Input Data

	Input Validation
	Input Format Reference
	CDF Input Properties
	CSV Input Properties
	EDI Input Properties
	Fixed Width Input Properties
	IDOC Input Properties
	SWIFT Input Properties
	XML and iWay XML Response Input Properties

	JDBC Data Source
	Output
	Output Structure
	Configuring the Output Structure
	Viewing the Output Structure

	Output Data
	Configuring the Output Data

	Output Validation
	Output Format Reference
	CDF Output Properties
	CSV Output Properties
	EDI Output Properties
	Fixed Width Output Properties
	HTML Output Properties
	IDOC Output Properties
	SWIFT Output Properties
	XML, iWay XML Embedded Request, and iWay XML Request Output Properties

	Variables
	XML Namespaces

	Testing a Transform Component
	Procedure: How to Test a Transform Component

	Working With a Transform Component
	Design-Time Mode (Transform Test Run)
	Run-Time Mode (Run on Server)
	Opening a Transform Component
	Saving a Transform Component
	Publishing a Transform Component

	Working With the Mapping Builder
	Mappings Tab
	Input Node Workspace Menu
	Output Node Workspace Menu
	Input Structure
	Output Structure

	Mapping Types
	Adding New Output Nodes
	Group
	Group Properties
	General Tab
	Looping
	Context

	Filter Tab
	Unique Keys Tab
	Sorting Tab
	XML Namespace Tab

	Element
	Element Properties
	General Tab
	Filter Tab
	XML Namespace Tab

	Attribute
	Attribute Properties
	General Tab
	Filter Tab
	XML Namespace Tab

	Comment
	Content
	CDATA
	Variable
	Additional Key Terms
	Mapping Values
	Input Node (Context)
	Function
	Constant
	Expression

	Building and Altering Output Structures

	Working With Namespaces
	Procedure: How to Load XML Namespaces From Another Transform Component
	Procedure: How to Create XML Namespaces for a Transform

	Working With Functions
	Using the Mapping Builder
	Setting Function Parameters
	Predefined Functions
	Procedure: How to Open the Mapping Builder
	Procedure: How to Select a Function
	Procedure: How to Set an Input Node
	Procedure: How to Nest Functions
	Procedure: How to Set a Constant Value for a Function
	Procedure: How to Set an Expression for a Function
	Procedure: How to Remove a Function Parameter
	Procedure: How to Cancel and Restore an Action
	Customizing @CONCAT Functions
	Procedure: How to Add Parameters for @CONCAT Functions
	Procedure: How to Remove Parameters for @CONCAT Functions

	Configuring Properties for JDBC
	JDBC Replace Functions as Input Data Sources
	Procedure: How to Define a JDBC Lookup
	Procedure: How to Modify a JDBC Lookup
	Procedure: How to Delete a JDBC Lookup

	Using the @JDBCLOOKUP Function
	Procedure: How to Create an SQL Statement Using SQL Builder

	Configuring Properties for Replace
	Procedure: How to Define A Replace Function
	Procedure: How to Define an Input Lookup
	Procedure: How to Modify an Input Lookup
	Procedure: How to Delete an Input Lookup

	Custom Functions
	Writing Custom Functions
	Import Statement
	Class Declaration
	Constructor
	execute()
	Getting Arguments
	getReturnType()
	Associated Object Map
	Sample Custom Function

	Defining Custom Functions
	Procedure: How to Define a Custom Function in iIT Transformer
	Procedure: How to Import a Custom Function in iIT Transformer
	Compiling Your .java File
	Migrating Custom Functions
	Procedure: How to How to Migrate Custom Functions

	Using Custom Functions at Run Time

	5. iWay Transformer Tips and Tricks
	XSLT Runtime Processing
	Option 1: Running iWay Service Manager as a Service
	Option 2: Running iWay Service Manager as an Application

	Feedback

