
TIBCO iWay® Service Manager

Copyright © 2021. TIBCO Software Inc. All Rights Reserved.

Functional Language Reference Guide

Version 8.0 and Higher
March 2021
DN3502113.0321

Contents

1. iWay Functions . 9

iWay Functions Overview . 9

Runtime Functions. 10

Syntax and Usage. .10

Parameter Evaluation. .12

Conjunctions. 13

The Functions. 13

Automatic Concatenation. 14

Environmental Functions .14

_sreg(): Lookup a Special Register. 14

_property(): Retrieve a Value from a Java Property Object File. 15

_propertymatch(): Match a String Against a File of Regular Expression Patterns. 16

_inlist(): Check Value in a List. 18

_setreg(): Set a Special Register. 19

Document Functions . 21

_docinfo(): Information About the Current Document. 21

_isroot(): Tests Element Root. 23

_root(): Returns the Root Element Name. 23

_isxml(): Test for Parsed XML Content. 23

_isjson(): Test for Parsed JSON Content. .23

_isflat(): Test for Non-Parsed Content. 23

_iserror(): Is the Document in Error State?. .24

_hasruleerr(): Test for Rule Violations. .24

_hasschemaerr(): Test for Schema Rule Violations. 24

_iswellformed(): Test for Valid Format. .24

_iseos(): Is Document at End of Stream. .25

_flatof(): Flatten the Payload. .28

_attcnt(): Index Attachments. .28

_atthdr(): Attachment Header Value. 29

_attbyfname(): Locate an Attachment By File Name. 29

_attflatof(): Make the Content of an Attachment Available. 30

_attbyfname(): Locate an Attachment by File Name. 31

Functional Language Reference Guide 3

_srcname(): Source Name from Subflow. .32

_treehash (): Generate an MD5 Hash. 33

Parsed XML Functions. 34

_xpath(): Execute an XPath Expression. .34

_xpath1(): Execute an XPath Expression. 34

_iwxpath(): Execute an XPath Expression. 36

_xflat(): Generate a Subtree. 36

_xflat1(): Generate a Subtree. .36

_iwxflat(): Generate a Subtree. 37

Understanding XML Path Language (XPath). 38

Navigating XML With Location Steps. 38

XPath Best Practices. .39

XPath Predicates. 40

XPath Functions. 41

Parsed JSON Functions. 43

_jsonptr(): Execute a JSON Pointer Expression. 43

_jsonpath(): Execute a JsonPath Expression. 44

String Functions . 44

_left(): Leftmost Substring. .45

_right(): Rightmost Substring. 45

_lcase(): Convert to Lower Case. .45

_ucase(): Convert to Upper Case. 45

_trim(): Eliminate Whitespace. .46

_normalizespace(): Eliminate Whitespace. 46

_entity(): Entity Encoding. 46

_deentity(): Entity Decoding. .47

_substr(): Substring. 47

_before(): Substring. 47

_after(): Substring. .48

_pad(): Pad to Desired Length. 48

_concat(): Concatenate Strings. 49

_length(): String Length. 49

_count(): String Element Count. .49

Contents

4

_contains(): String Contents. 50

_startswith(): String Contents. .51

_endswith(): String Contents. .51

_regex(): Replace Portions of a String. 51

_reverse(): Reverses a String. 52

_match(): Perform a String Match Against a Pattern. .52

_replace(): Translate Characters in a String. 53

_isnumber(): Is a Value Number. .55

_lit(): Literal String Concatenation. 55

_sql(): SQL Concatenation. .56

_xml(): XML Concatenation. 56

_qval(): Quote/Null a String. 56

_token(): Tokenize a String. 58

_indexof(): Return Offset to a Substring. 59

_printable(): Mask Nonprintable Characters. .59

_murmurhash(): Hash a String Value. .60

Time Service Functions .61

_now(): Get Current Timestamp. 61

_timer(): Return Unix Epoch Time. .63

_tstamp(): Return the Current Timestamp. 64

_ftstamp(): Return the Current Timestamp to Milliseconds. 65

_fmtdate(): Format a Date/Time from a Millisecond Time Value. .66

_dateof(): Return the Timestamp for a Passed Time. 67

_dateadd(): Add Offset to a Date and Return a Timestamp. .68

_datesub(): Subtract Offset to a Date and Return a Timestamp. .70

Math Functions . 72

_add(): Add a List of Terms. .72

_sub(): Subtract. 72

_mod(): Returns the Modulus. 73

_mul(): Multiply a Number. 73

_div(): Divide a Number. 73

_iadd(): Add a List of Terms, Integer. 74

_isub(): Subtract, Integer. .74

Contents

Functional Language Reference Guide 5

_imul(): Multiply a Number, Integer. 74

_idiv(): Divide a Number. .75

_int(): Cast to Integer. .75

_intmask(): Inserts a Number into a Character Mask. 75

_max(): Maximum of a List of Terms. 76

_min(): Minimum of a List of Terms. .76

_random(): Generate a Random Number. 76

_floor(): Obtain the Floor of a Number. .77

_ceil(): Obtain the Ceil of a Number. .77

_round(): Round a Number to an Integer. .78

Decimal Math Functions . 78

_dadd(): Add a Number. 78

_dsub(): Subtract a Number. 79

_dmul(): Multiply a Number. 79

_ddiv(): Divide a Number. 79

Encoding Functions . 80

_mod10(): Mod10 Check Digit Operations. 80

_url(): Convert String to MIME Format. 81

_urlencode(): Convert String to MIME Encoding. .82

_urldecode():Decode a String in MIME Format. .82

_hex(): Encode a String to Hexadecimal. 83

_fromhex(): Decode a String from Hexadecimal. .83

_base64():Encode Into Base64. 84

_frombase64():Decode From Base64. 84

_encode64():Conditionally Encode Into Base64. 85

_decode64(): Conditionally Decode From Base64. 85

_fmtdec(): Insert an Integer Into a Pattern Mask. .86

_fmtint(): Insert an Integer Into a Pattern Mask. .86

_urlparse() Extract Portions of a URL/URI. .87

_deflate(): Compress (Deflate) a Value. 88

_inflate(): Inflate a Value. 91

Working with BLOBs and Varbinary. 92

File Functions . 92

Contents

6

_file(): Get File Contents. 92

_filegdg(): Make File Generations. .93

_fileinfo(): Information About a File. 94

_fileexists(): Does File Exist. 96

System Information Functions . 97

_sysinfo(): Information About the Server. .97

_chaninfo(): Information About a Channel. .99

Security Functions .100

_aes(): Encode and Decode a Value Using the Advanced Encryption Standard With Salt. 101

_hasrole(): Is This Authority Available. 103

_getprin(): Get Information from This Principal. 103

_encr(): Mask the Value. 103

_md5(): Generate an MD5 Hash. 104

_sha1(): Generate a SHA1 Hash. 104

_sha256(): Generate a SHA256 Hash. 105

Other Functions . 105

_excel(): Get Value From a Workbook Spreadsheet. 105

_excelsheets(): Get the List of Workbook Worksheets. .110

_fetch(): Access a Remote Library. .111

_manifest(): Read an Attribute From a Java Archive (JAR) Manifest.113

_parmof(): Get Parameter Setting From Another (Component) Parameter.113

_script(): Invoke Scripts. .114

_scriptlist(): Generate a Scripting Array. 115

_eval(): Evaluate a String. 116

_log(): Write a Message to the Trace Log. .117

_cond(): Perform Conditional Test. 118

_xquery: Evaluate an XQuery Expression. 119

_exists(): Does Value Exist. 120

_exists1(): Does Value Exist. .121

_isendpoint (): Create Special Registers for Placeholders. .121

_iwexists(): Does Value Exist. 122

_ldap(): Get LDAP Contents. 122

_if(): Obtain Value Conditionally. 123

Contents

Functional Language Reference Guide 7

_lock(): Obtain Value Under Lock. .124

_jdbc(): Get A Relational Value from a Table. 125

_unq(): Generate a Unique Identifier. 125

_uuid(): Generate a Unique Identifier. 126

_savedoc(): Save a Document or its Payload for Later Restoration. 127

_restoredoc(): Restore a Saved Document. 129

Arithmetic Expressions . 129

Function Syntax and Return Values . 130

IWXPATH Language Support . 132

Steps. 132

Predicates. 133

Arithmetic. 135

Final Functions. 136

Legal and Third-Party Notices . 137

Contents

8

Chapter1
iWay Functions

iWay Service Manager (iSM) provides many functions that support dynamic configuration
and logical/dynamic conditional routing. You can use these functions in any expression
(simple or complex) that you need to develop.

In this chapter:

iWay Functions Overview

Environmental Functions

Document Functions

String Functions

Time Service Functions

Math Functions

Decimal Math Functions

Encoding Functions

File Functions

System Information Functions

Security Functions

Other Functions

Arithmetic Expressions

Function Syntax and Return Values

IWXPATH Language Support

iWay Functions Overview

iWay functions enable you to examine the context in which a message is processed and the
attributes of that message. You can use the result to determine the subsequent processing
steps for the message. You can select, bypass, or modify the steps in the defined process.

For example, you can examine an XML message with _XPATH() to extract specific elements of
the message that serve as execution parameters. You can check for a schema error, in which
case you might route the message differently.

Conditional routing uses functions that either return a Boolean value (true or false) or can, as a
result of a relationship test, result in a Boolean condition. If the result is true, the step
governed by the conditional routing expression is performed. Otherwise, it is bypassed. For
example, if you use an emitter only if a document is in error, you might use the _ISERROR()
conditional routing expression.

Functional Language Reference Guide 9

Runtime Functions

iWay Service Manager (iSM) supports a large number of runtime functions that can be used to
make routing decisions and supply configuration parameters to iWay components, such as
services and listeners. These functions can be combined into expressions, which consist of
one or more of the functions that are discussed in this chapter.

Functions fall into several categories:

Functions that reference the system environment.

Functions that reference the server's operational context.

Functions that reference the current document flowing through the server.

Syntax and Usage

Functions are written using the following common computer language format:

_name(parameters)

Functions return strings that can be used directly or tested for routing purposes.

For example, the following function returns the value of a specific special register (context
value):

 _sreg(<name>,<default>)

This value can be used directly as a configuration parameter. For example:

This value can also be tested in a route, such as:

_sreg('iway.config') yields 'base'

More sophisticated checking methods, including mathematical conditions, existence and case
insensitive compares, are available through the following special function:

_cond(<value>,operator,<operand>)

For more information on how to use and configure this function, see _cond(): Perform
Conditional Test on page 118.

iWay Functions Overview

10

Parameters can also include literals, which are sequences of characters, usually enclosed in
single quotes. A quote character can be included by escaping it, such as:

_sreg('playwrite','O\'Casey')

The compiler attempts to recognize literals, avoiding the need to use the enclosing quotes.
However iWay strongly recommends that functions be written using the enclosing quotes.

All iWay functions begin with the underscore character. Some commonly used functions such
as _sreg(), _xpath(), _ldap(), and _file() can often be written without the leading underscore.
Using the underscore helps prevent ambiguity and is strongly recommended.

Functions can be combined in literal statements. For example, a data path can be:

_sreg('iway.home')/_sreg('iway.config')/etc/data

which will be evaluated to the data subdirectory in the etc subdirectory of the current
configuration.

Simple mathematical operations can also be performed by using functions. Supported
operations include add, subtract, multiply, divide, and modulus. For example, assume that the
special register timeout holds a number of seconds that you want to use in a parameter that
requires milliseconds. Specifying the following accomplishes the needed conversion:

_mul(_sreg('timeout',0),1000)

To divide a timeout period in half, use the following:

_div(_sreg('timeout',0),2)

Division can be accomplished faster by multiplying by the reciprocal of the divisor. For
example, to obtain one half of the timeout value in the above example, use the following to
yield the desired result:

_mul(_sreg('timeout',0),0.5)

The _div and _mul functions are used in place of the traditional slash and asterisk to avoid
confusion in file names and unique patterns.

Integer math, especially suitable for date arithmetic functions such as adding a duration to a
base date, are available through the _iadd, _isub, _imul, and _idiv functions. Integer math is
supported to 16 places of precision. For more information on date arithmetic, see _dateof():
Return the Timestamp for a Passed Time on page 67.

Functions that return Boolean values, such as _isroot() can be combined with AND and OR
conjunctions. For example, the following expression returns as true if the current root element
name of the document is either a or b:

1. iWay Functions

Functional Language Reference Guide 11

_isroot('a') or _isroot('b')

A more complicated test might be:

_isroot('a') or sreg('a')==55

Unary not (!) is supported for tests. For example, if a document is in error, !_iserror() will return
as false. The not can be used in combination with other tests, such as _isxml() and !iserror()
combines two tests with a logical and condition.

Example: Routing an Output Document

The following example uses the _COND() function to route an output document if it is larger
than 1000 characters:

_COND(_LENGTH(_FLATOF()),GT,1000)

Example: Testing the Result of an Attribute

The following example uses the _ALL() function to test the result of each attribute returned
from an XPath expression and to determine if the document is in an error state. If the
attribute, ABC, is either TOM or HARRY, or the document is in an error state, routing occurs.

_ALL(_XPATH(//XX/@ABC), EQ, _OR("TOM", "HARRY")) OR _ISERROR()

Note: When preceded without an underscore character, OR is used as a predicate.

Parameter Evaluation

Parameters are evaluated in the standard manner, so that any operators in the parameters are
compiled. Evaluation of math symbols can be avoided by enclosing the constant parameters in
literal quotes. However, for reasons of simplicity of upward compatibility, this is not often
performed. As a convenience, certain functions for which math evaluation of parameters
makes little sense do not apply such compilation to their parameters. These include the
following:

_sreg()

_atthdr() and _atthdric()

_concat()

_lit()

_sql()

iWay Functions Overview

12

_xml()

_xpath(), _xpath1(), and _iwxpath()

_exist(), and _iwexist()

_base64, _frombase64(), _encode64(), and _decode64()

Conjunctions

The AND and OR conjunctions allow you to compose expressions that include multiple
phrases. For example:

_if(_sreg('a') < 15 and sreg('b') = 'hello', 'true', 'false')

AND and OR conjunctions are used only in COND(), ALL(), and ANY() functions, where a list of
comparands are being evaluated. For example, consider the following sample document:

<root>
<child>4</child>
<child>2.3</child>
<child>1</child>
</root>

The following expression returns as true:

_ANY(_XPATH(//child),EQ,_OR(5.5,1,7,8))

Programmers refer to this type of comparison as a lazy or. It applies only to the _COND(),
_ALL(), and _ANY() functions.

The Functions

Each of the available functions is discussed, along with comments on their syntax and
common purpose. Some functions are available only in specific server configurations or with
optional components installed. Where such is the case this is stated in the Function Support
Table.

Additional functions can be written and included in the function repertory by following the
instructions in the iWay Service Manager Programmer's Guide.

The function categories are often arbitrary and are used only for description purposes. The
richness of the function may enable it to be used for several purposes. For example, the
_sreg() function returns the value of a context special register. Some registers are defined
during configuration and some are only defined as a specific document passes through the
system.

1. iWay Functions

Functional Language Reference Guide 13

Automatic Concatenation

The interpreter attempts to construct values by evaluating the entire string for iFL. It will
concatenate the value returned by an evaluated iFL at the point of the function. For example, if
the special register partname has a value of xyz, then the string c:/w_sreg(partname)/file.txt
will be evaluated to c:/wxyz/file.txt.

In some cases, automatic concatenation can lead to unexpected results. For example,
suppose you have a value myfile(fname). Evaluating this can result in an attempt to read load
the contents of the fname file, which will result in an error. This can be avoided by treating the
statement as a literal and having iFL evaluate it as such. One solution is to place the text in a
_concat() function. For example:

_concat('myfile(fname)')

In this case, the desired value is returned. The literal marks (in quotes) prevent the evaluation
of the literal itself.

Environmental Functions

Environmental functions return information about or from the environment in which the
document is being processed.

_sreg(): Lookup a Special Register

The _sreg() function uses the following format:

_sreg(name [,default])

name string Name of the register

default string Default value

Special registers contain context information. The information can be configured on the
runtime system, reflect the processing state of the current message, or be explicitly set by
services in a process flow.

Special registers exist in scopes, and are looked up from the local scope to the outermost
scope (the system context). The value returned is that of the nearest scope in which the
register is found. If the register is not found in any scope, the default is returned. If the default
is not specified, null is returned.

The _sreg() function searches in a case sensitive manner. Consider the following examples:

Environmental Functions

14

Register Name Value _sreg('a','def1')

a hello hello

A hello defl

_property(): Retrieve a Value from a Java Property Object File

The _property() function loads the value for the desired property from a Java properties object
file. It uses the following format:

_property(file, attribute [, default [,control] [,evaluate]])

file file name Path to the properties file.

attribute string Name of the desired property.

default string Default if property does not exist.

control string Keyword to control operation:

check. Check for modification.

keep. Do not check for modification.

evaluate keyword The keyword to control the result evaluation:

evaluate. Evaluate the result as iFL. Allows iFL to be
held in a property value.

constant. Do not evaluate. (default)

Load the value for the desired property from a Java properties object file. The check control
option causes the properties file modification timestamp to be examined on each request. This
is to determine whether the file has changed since the last load. If so, the properties file is
reloaded. The keep control option prevents this check for cases in which it is known that
changes will not be made or should not be loaded. Avoiding the check can result in file read
time savings. The keep option is the default.

For example, assume file test.properties contains:

one=first
two=second

1. iWay Functions

Functional Language Reference Guide 15

The following function call causes the value first to be returned:

_property('test','one','notfound','check')

Next, change the properties file to the following:

one=next
two=second

In this case, the following function call returns next:

_property('test','one','notfound','check')

If the control option is omitted or keep is used, the following function call returns first as
before:

_property('test','one','notfound',’keep')

The value of the property can also by stored using the Advanced Encryption Standard (AES), by
configuring the set property command. For more information on using the set property
command, see the iWay Service Manager User's Guide.

The value can be decrypted during a read using the _aes() function applied to the result of the
_property() function. For example:

_aes('decrypt',_sreg('mykey'),_property('file',key'))

_propertymatch(): Match a String Against a File of Regular Expression Patterns

A properties file contains key=value pairs consisting of a regular expression and a value. An
input string is matched against the patterns in the properties file, and the value associated
with the first pattern to match the input is returned.

The properties file is loaded once, cached for the channel, and is not reloaded for each use. If
any changes are made in the properties file, the channel must be restarted to reflect these
changes.

The _propertymatch() function uses the following format:

_propertymatch(file,input,[,default [,control [,encoding]]]

file path Path to the properties file. The suffix is optional.

input string The candidate to be matched against the regular
expressions in the properties file.

Environmental Functions

16

default string The value to be returned if none of the patterns
are matched by the candidate input string.

control keyword Keyword to control operation:

check. Check for modification.

keep. Do not check for modification.

encoding string IANA encoding of the properties file.

The properties file consists of one or more regular expressions (keys), each with an associated
value. Standard properties file comments (lines starting with #) and blank lines are allowed.
Continuation lines are not supported.

The check control option causes the properties file modification timestamp to be examined on
each request to determine whether the file has changed since the last load, and if so, the
properties file is reloaded. The keep control option prevents this check for cases in which it is
known that changes will not be made or should not be loaded. Avoiding the check can result in
file read time savings. The keep option is the default.

In the following example, an input ZIP code must be matched to select an appropriate subflow
to handle the location. The file stored at /appdata/zip.properties might be structured as
follows:

zip code flow selection file
00.*=zip00
01.*=zip01
10.*=zipnyc
20500=zipwhitehouse
20.*=zipwashdc

Since the patterns are matched in the order specified in the file, the ZIP code for the White
House will match before the general Washington, D.C. ZIP codes are matched.

Assume that the ZIP code is located in an input document and stored in a Special Register
(SREG) called INZIP. The following function call does the matching:

_propertymatch('/appdata.zip',sreg(INZIP),'zipother')

If the INZIP SREG holds 10121, then the function returns zipnyc. If the INZIP SREG holds
11570, then the function returns zipother.

The value of the property can also by stored using the Advanced Encryption Standard (AES), by
configuring the set property command. For more information on using the set property
command, see the iWay Service Manager User's Guide.

1. iWay Functions

Functional Language Reference Guide 17

The value can be decrypted during a read using the _aes() function applied to the result of the
_propertymatch() function. For example:

_aes('decrypt',_sreg('mykey'),_propertymatch('file',key'))

_inlist(): Check Value in a List

The _inlist() function checks whether a key value is in a list. This function uses the following
format:

_inlist(list, key [,control])

list string or path Source of the list, which is under control of the
control operand. This can either be the path to the
file containing the list values, or a string directly in
the function.

key string The value to be checked.

control keyword Specifies how the list is interpreted. The following
controls are supported:

keep. (default) The list is a file path. Do not
check for modification.

check. The list is a file path. Check for
modification.

string. The list is a direct list.

The _inlist() function facilitates checking whether a value is in a list of valid values (for
example, a set of medical codes). If the control is set to string, then the list is direct (for
example, 1987,4567,3334). The check control option causes the list file modification
timestamp to be examined on each request. This is to determine whether the file has changed
since the last load. If this is the case, then the list is reloaded. The keep control option
prevents this check for cases where it is known that changes will not be made or should not
be loaded. Avoiding the check can decrease file read times. The keep control option is set by
default. For more detailed examples using the keep and check control options, see _property():
Retrieve a Value from a Java Property Object File on page 15 and _propertymatch(): Match a
String Against a File of Regular Expression Patterns on page 16.

Environmental Functions

18

If a file is being used, then it takes the form of an iWay list file consisting of single tokens
delineated by a separator or an end of line. A line that starts with a hash character (#) is
considered to be a comment and is ignored. For example, listfile.txt may look like the following
example:

example list file, first lines have one token each
1234
2345
now a line with multiple entries
5678,8764

Examples:

The following _inlist() function evaluates as true:

_inlist(listfile.txt,2345,keep)

The following _inlist() function evaluates as false:

_inlist("washington,adams,jefferson","cohen",string)

_setreg(): Set a Special Register

The _setreg() function sets the specified Special Register (SREG) to the value that is entered
and returns the previous value, if any. This function uses the following format:

_setreg(name,value[,type [,scope [,action]]])

name string The name of the register.

value string The value to be set.

type keyword The register type. The following types are supported:

user (default). The user register, which is a simple value.

doc. The document-related value.

hdr. The header value, which is serialized by appropriate
protocols when emitted.

delete. Eliminates the specified register.

1. iWay Functions

Functional Language Reference Guide 19

scope keyword The scope of the specified register. The query on the former value is
performed at this scope. The following scopes are supported:

local (default). The scope is the local register context.

flow. The scope is the head of the flow.

message. The scope is the message.

action keyword Determines how to interpret the value operand. The following
actions are supported:

string (default). The value is a string.

parse. Deprecated.

json. The string is parsed to a JSON object.

xml. The string is parsed into an XML tree.

Use caution when using the _setreg() function, since this function can change the contents of
the local special register manager.

The action operand controls how the value is handled. Normally, it is a string and inserted into
the register. If set to xml, then the string is treated as a flat XML tree, which is parsed and set
into the register. The register can be used in an _xpath() function to allow XPath evaluation of
the XML.

Similarly, json sets the string into JSON form, making it available for the _jsonpath() and
_jsonptr() functions.

The parsed object can also be set into the current document by using the _restoredoc()
function.

The selected scope must be appropriate to the context in which the function is used. For
example, a flow scope is not present in non-flow contexts.

When deleting a register, the delete takes place at the identified scope. Registers are normally
looked up by the nearest scope, so the register may continue to exist at lower scopes. This
function can be used effectively as an operand of the _if() function.

If you need to set multiple registers in parallel, you can consider using the _concat() function.
The following example sets registers ra and rb if register rt is true:

_if(sreg('rt')='true',_concat(_setreg('ra','1'),_setreg('rb','2'))

Environmental Functions

20

If you are setting multiple registers using this technique, then you may need to consider the
_lock() function as a part of the setting clause. For example:

_lock('lock1',_concat(,_concat(_setreg('ra','1'),_setreg('rb','2')))

The value parameter is not recommended to be a literal value, but rather a function to obtain
the value, such as _xpath() or _jdbc().

The _setreg() function can also be used to increment a counter. The counter is the value of a
register defined above the update. For example, if a counter for each message handled by the
channel is required, then use a register at the channel level and update it in each worker.
Reviewing the _lock() function is recommended, which implements a standard software
technique for ensuring the integrity of the counter. An example is also provided in the _lock()
function topic. For more information, see _lock(): Obtain Value Under Lock on page 124.

Document Functions

Document functions access information pertaining to the current document being processed. A
document contains a payload and context information about the payload, such as type,
encoding, and whether errors have been previously detected. Parsed payloads include XML and
JSON.

Document functions require a current document for execution. Consequently, document
functions apply only to channel components, such as preparsers and process flow services.
They do not apply to the configuration of server components, such as resource providers or
listeners, as these components are configured before any document is passed through. Other
iWay Functional Language (iFL) functions, such as _property(), are applicable to this usage
scenario, as they do not require a document.

_docinfo(): Information About the Current Document

The _docinfo() function returns information about the current document (message) that is
passing through the process flow. Some document information can also be obtained using
other functions, such as _iserror(). The _docinfo() function uses the following format:

_docinfo(type)

1. iWay Functions

Functional Language Reference Guide 21

type String Determines what information is required from the document.
The following types are supported:

encoding. Returns the current encoding that is being used
for the message. If the document arrived with a declared
encoding, then that encoding is returned. Otherwise, the
default encoding of the channel is returned.

format. Type of the current payload. Can be empty, flat,
bytes, xml or json.

xmlversion. The XML version of the document, which is
applicable to XML only. Returns 1.0 or 1.1.

suffix. The type of the current document. When used as a
file suffix, this often triggers a visualize association with the
data type (for example, pdf). The default, if not set
deliberately, is the file type of the loaded payload format.

xml ---> xml

Json ---> json

lines ---> txt

bytes ---> dat

Example 1

In the following example, the message being received in an arbitrary encoding is to be
converted to Base64 encoding:

_base64(_docinfo('encoding'))

Example 2

In a process flow, a File Read Service (com.ibi.agents.XDFileReadAgent) loads a PDF as a
bytes file. The Set Document State Service (com.ibi.agents.XDDocAgent) is used to assign a
suffix of pdf. The file emit (either in the process flow or as an emit following the process flow)
might use the following output name:

/myfiles/file1._docinfo(‘suffix’)

A file named file1.pdf is returned as the output.

Document Functions

22

_isroot(): Tests Element Root

The _isroot() function returns true if the root of the current document matches the parameter.
It uses the following format:

_isroot(name)

name string Name to be compared to the root element

The _isroot() function is often used to drive a routing decision, such as _root('a') or _root('b')
to cause the route to be selected for any document with a root of 'a' or 'b'.

_root(): Returns the Root Element Name

The _root() function returns the root element name of the current document. It uses the
following format:

_root()

This is equivalent to the _xpath function _xpath(/*/name()). It might be used in a routing
decision, such as _cond(_root(),eqc,'a') which selects the route for documents with roots of 'a'
or 'A'.

_isxml(): Test for Parsed XML Content

The current document can hold parsed or non-parsed (flat) information. The _isxml function
returns true if the current document holds parsed XML. If the document has no contents, then
this function returns false. The _isxml function uses the following format:

_isxml()

_isjson(): Test for Parsed JSON Content

The current document can hold parsed or non-parsed (flat) information. The _isjson function
returns true if the current document holds parsed JavaScript Object Notation (JSON). If the
document has no contents, then this function returns false. The _isjson function uses the
following format:

_isjson()

_isflat(): Test for Non-Parsed Content

The current document can hold parsed or non-parsed (flat) information. The _isflat function
returns true if the current document holds non-parsed data. If the document has no contents,
then this function returns false. The _isflat function uses the following format:

1. iWay Functions

Functional Language Reference Guide 23

_isflat()

_iserror(): Is the Document in Error State?

The current document can have errors posted to it by the system, or can be set into an error
state by the actions of an application process. If the document is in error state, default replies
are delivered to the configured error addresses, otherwise they are delivered to the configured
reply addresses. The _iserror() function returns true if the document is in error state. It uses
the following format:

_iserror()

_hasruleerr(): Test for Rule Violations

As the document passes through its execution route, a supplied rules-based validation system
can be employed. Often the rules relate to eBusiness documents such as SWIFT or EDI. If the
rules system has posted a validation error to this document, the _hasruleerr() returns true. It
uses the following format:

_hasruleerr()

_hasschemaerr(): Test for Schema Rule Violations

Certain rules and services can detect schema violations during the life of a document in the
system. Whether such a violation has been detected can be tested with this function. A
common use of this function is in a process flow test object. This function uses the following
format:

_hasschemaerr()

_iswellformed(): Test for Valid Format

The _iswellformed() function uses the following format:

_iswellformed([format])

format boolean The intended form:

xml (default)

json

Document Functions

24

The current document can hold parsed or non-parsed information. This function returns true if
the current document holds flat information that can be parsed into XML or JSON. If it has not
been parsed, then a true response from this function assures that the message can be
parsed. If the message already holds parsed information, then this function returns true.

_iseos(): Is Document at End of Stream

Streamable input is used for handling large documents or documents for which the application
desires to split the input into sections under the same transaction. Following the completion of
the input stream handling, a final pass is made with a special document containing batch
information:

<batch count='n'/>

The end of stream can also be tested with the _iseos() function. A common use of this
function is in a process flow test object. This function uses the following format:

_iseos()

Creating a Process Flow to Test for an End of Stream Document

Splitting and streaming or splitting preparsers generate a special control document at the end
of a batch to indicate that this batch was completely processed. This End of Stream document
is a non-data XML document that is passed into a channel after all data documents. The
_iseos() function will return as true if the current document contains an End of Stream
message, else it will return as false. The End of Stream document may also contain additional
statistics about the splitting process, such as how many iWay documents were generated from
the batch.

To create a process flow using iWay Designer to test for an End of Stream document:

1. Create a process flow and add a new Test object.

1. iWay Functions

Functional Language Reference Guide 25

2. Configure the parameters for this Test object, as shown in the following image.

3. Add a new Service object to the process flow that uses the QAAgent.

4. Configure the parameters for this Service object, as shown in the following image.

5. Connect the Service object to the True edge of the Test object.

Document Functions

26

The new process flow should have a structure that resembles the example in the following
image.

6. Using the iWay Service Manager Administration Console, create a channel that consists of
an XMLSplitpreparser as an inlet, which would return an End of Stream document when the
last pass is reached.

7. Add a route to the channel that consists of the process flow, which was created using iWay
Designer.

8. Add an outlet to the channel.

The new channel should have a structure that resembles the example in the following
image.

1. iWay Functions

Functional Language Reference Guide 27

9. Use the following input document to test your channel with /a/b as the level string:

<a>
 <b name="b1">
 <c>value of input element a/b@name=b1/c is 1</c>
 <c>value of input element a/b@name=b1/c is 2</c>

 <b name="b2">
 <c>value of input element a/b@name=b2/c is 3</c>
 <c>value of input element a/b@name=b2/c is 4</c>

The _iseos() functions returns as true at the third (last) pass and a trace file is created
which displays the End of Stream document.

_flatof(): Flatten the Payload

The current document is flattened to a string. If the current document is in XML format, then
the decl parameter determines whether an XML declaration will be included in the flattened
output. The default value is set to true.

The _flatof() function uses the following format:

_flatof([decl])

decl boolean Determines if an XML declaration should be
included.

Applies only to XML and is ignored for currently
flat or JSON payloads.

_attcnt(): Index Attachments

Documents can hold attachments. This function has two forms. When used with no
parameters, it returns the number of attachments associated with the document. When used
with two parameters, it returns the index of the first attachment having the named header
equal to the specified value. The _attcnt() function uses the following format:

_attcnt([name,value [,notfound]])

name string Name of an attachment header

value string Value of the named header

Document Functions

28

notfound string What to return if the named attachment header is not found

_atthdr(): Attachment Header Value

The _atthdr() function returns the value of a specific header in the attachment. The IC
(independent case) form tests the attachment header names in a case independent fashion.
Number 0 is the first attachment. The _atthdr() function uses the following format:

_atthdr(index, name, default)

_atthdric(index, name, default)

index integer Index of the attachment, base 0

name string Name of the header desired

default string Default if header not found

When the _atthdr() function is used in a conditional expression in comparison against a string
value, the default value must be specified.

For example, the following conditional expression would not compile, since it requires a default
value in the expression:

COND(_atthdr(1,'mysample'),eq,'a')

Instead, the expression must be specified as follows:

COND(_atthdr(1,'mysample','defaultval'),eq,'a')

For example, to return the first header in the attachment, _atthdr(0,'mysample') could be
used.

_attbyfname(): Locate an Attachment By File Name

This function accesses the Content-Disposition header of each attachment, and returns the
index (base 0) of the first attachment with the requested filename. It returns -1 if the
attachment is not found.

_attbyfname(filename)

filename string Name for testing.

1. iWay Functions

Functional Language Reference Guide 29

Example:

The following sample document contains two attachments:

------=_Part_30_1258108044.1487787594926
Content-Type: application/xml
<?xml version="1.0" encoding="ISO-8859-1" ?><base/>
------=_Part_30_1258108044.1487787594926
Content-Type: application/xml
Content-Transfer-Encoding: 7bit
Content-Disposition: attachment; filename=walter.txt
Content-Length: 32
<part1>attachment data one</part1>
------=_Part_30_1258108044.1487787594926
Content-Type: application/txt
Content-Transfer-Encoding: 7bit
Content-Disposition: attachment; filename=fred.txt
Content-Length: 32
<part2>attachment data two</part2>
------=_Part_30_1258108044.1487787594926--

The function _attbyfname('fred.txt') will return the following value:

'1'

_attflatof(): Make the Content of an Attachment Available

The _attflatof() function returns the content of an attachment as a string. This function uses
the following format:

_attflatof(index [,encoding])

index integer Index of the attachment, base 0.

encoding string The type of encoding used during the conversion. The default
is UTF-8.

Example:

The following sample document contains two attachments:

Document Functions

30

------=_Part_30_1258108044.1487787594926
Content-Type: application/xml
<?xml version="1.0" encoding="ISO-8859-1" ?><base/>
------=_Part_30_1258108044.1487787594926
Content-Type: application/xml
Content-Transfer-Encoding: 7bit
Content-Disposition: attachment; filename=walter.txt
Content-Length: 32
<part1>attachment data one</part1>
------=_Part_30_1258108044.1487787594926
Content-Type: application/txt
Content-Transfer-Encoding: 7bit
Content-Disposition: attachment; filename=fred.txt
Content-Length: 32
<part2>attachment data two</part2>
------=_Part_30_1258108044.1487787594926--

The function _attflatof(_attbyfname('fred.txt')) will return the following value:

<part2>attachment data two</part2>

_attbyfname(): Locate an Attachment by File Name

The _attbyfname() function accesses the Content-Disposition header of each attachment, and
returns the index (base 0) of the first attachment with the requested file name. A value of -1 is
returned if the attachment is not found. This function uses the following format:

_attbyfname(filename)

filename string The file name of the attachment for testing.

Example:

The following sample document contains two attachments:

------=_Part_30_1258108044.1487787594926
Content-Type: application/xml
<?xml version="1.0" encoding="ISO-8859-1" ?><base/>
------=_Part_30_1258108044.1487787594926
Content-Type: application/xml
Content-Transfer-Encoding: 7bit
Content-Disposition: attachment; filename=walter.txt
Content-Length: 32
<part1>attachment data one</part1>
------=_Part_30_1258108044.1487787594926
Content-Type: application/txt
Content-Transfer-Encoding: 7bit
Content-Disposition: attachment; filename=fred.txt
Content-Length: 32
<part2>attachment data two</part2>
------=_Part_30_1258108044.1487787594926--

1. iWay Functions

Functional Language Reference Guide 31

The function _attbyfname('fred.txt') will return a value of 1, which indicates that the
attachment is found.

_srcname(): Source Name from Subflow

The _srcname() function returns the name of the terminate (end node) of the subflow through
which the document reached the calling process flow. This allows the subflow to communicate
information back to the parent flow.

Imagine a subflow that performs some operation that results in one of three possible
situations:

Success.

Failure by a security violation.

Connection error.

Document Functions

32

The parent flow calls the subflow, and wishes to deal with the result from that flow. Within the
subflow, the document that is produced is returned through a terminate or end node, as shown
below. The name of that terminate node becomes the edge name followed by the returned
document. As this example shows in the image below, there are three activities (called
do_<something>) in the outer flow, each of which handles the result returned from the inner
subflow.

If the subflow returns multiple documents, each follows the edge of its own name. If more than
one of any name is returned, the documents are associated as siblings, and can be split later
using the sibling iterator. The source name can be used in a switch statement for more
detailed routing.

_treehash (): Generate an MD5 Hash

The _treehash ([SREG]) function generates an MD5 hash of an XML tree. The hash can be
used to compare two documents.

sreg string Register name of a register holding an XML document or an
XML payload as saved using the _savedoc() function.

If no parameters are used, the current document's hash is returned. If you have saved a
document or an XML payload, the hash for that tree is returned. The function does not address
non-xml documents.

The hash is an MD5 hash computation including all elements, attributes, and element values.
It also takes into account the structure of the document. The probability of two different
documents having the same hash is vanishingly small.

Example:

Assume that a document has been saved into register save. You can compare it to the current
document with:

1. iWay Functions

Functional Language Reference Guide 33

_if(_treehash() == _treehash(‘save’),true,false)

Similarly, you can save the hash into a database for later comparison.

Parsed XML Functions

iWay Service Manager (iSM) manages messages in XML format. This section describes parsed
XML functions that belong to the iWay Functional Language (iFL) set. Do not use these
functions with documents in other (non-XML) formats, since errors will be generated. Parsed
XML is a native format that is managed within iSM.

_xpath(): Execute an XPath Expression

The xpath() function is always an alias for one of the supported xpath functions: xpath1() or
_iwxpath(). By default, xpath() is an alias for _iwxpath() but through compatibility flags, it can
be made to alias xpath1().

The _xpath() function uses the following format:

_xpath(expression [,nsmap [,object]])

_xpath1(): Execute an XPath Expression

The document is evaluated by the provided xpath expression. The start is always considered to
be the root, so all expressions are assumed to begin with a forward slash character (/).

The purpose of the xpath in the context of functions is to extract values from an input
document to be used as configuration parameters. This use of xpath is not intended for
general XML tree manipulation.

In some servers, xpath is a full xpath version 1 as specified by XML Xpath Language http://
www.w3.org/TR/1999/REC-xpath-19991116, while others support only the portion of xpath
specified in section 2.5, Abbreviated Syntax. iSM Version 7.0 supports full XPath per the
specification.

The _xpath1() function uses the following format:

_xpath1(expression [,nsmap [,object]])

expression string Expression in xpath language

nsmap string Name of a namespace map from a provider. If omitted, no
namespace map is applied.

Document Functions

34

http://www.w3.org/TR/1999/REC-xpath-19991116
http://www.w3.org/TR/1999/REC-xpath-19991116

object document A document to which xpath is applied. If omitted, the current
document is evaluated.

The nsmap is the name of a namespace provider. Namespace providers relate the namespace
portion of the xpath expression to the URI to which it relates. The xpath execution engine will
map the URI to the namespace tokens used in the document being evaluated.

If the object parameter is omitted, the xpath is applied against the current document.
Otherwise, this must be the name of a special register holding a document or a register itself
holding a document.

In some cases, XPath syntax can be confusing. Consider a document in a default namespace:

<root xmlns='http://someuri.com'>
 <child name='whoami'/>
</root>

A request for the child name would appear to be //child/@name, and if there were no default
namespace, this would work as expected. For the anonymous namespace, a solution is one.

The default namespace throws in a twist. The XPath specification states the following:

A node test that is a QName is true if and only if the type of the node (see [5 Data Model]) is the
principal node type and has an expanded-name equal to the expanded-name specified by the
QName.

This means that an XPath processor does not deal with plain element names, except those
element names for which no namespace has been declared. If there is any namespace
declaration at all, including one for the default (unprefixed) namespace, the processor uses
the expanded-name.

//*[namespace-uri()="http://someuri.com" and local-name()="child"]/@name

Alternatively, create a namespace provider name, for example, empty1. Add a specification for
a namespace, such as:

none http://someuri.com

Then use an _xpath statement, such as the following:

_xpath(/none:root/none:child/@none:name,empty1)

The processor will map the none namespace to the URI in the statement and select the proper
nodes from the document.

1. iWay Functions

Functional Language Reference Guide 35

_iwxpath(): Execute an XPath Expression

The _iwxpath() function uses the following format:

_iwxpath(expression)

expression string Expression in xpath language

The current document is evaluated by the provided xpath expression. The start is always
considered to be the root, so all expressions are assumed to begin with forward slash (/).

The purpose of the xpath in the context of functions is to extract values from an input
document to be used as configuration parameters. This use of xpath is not intended for
general XML tree manipulation.

The xpath language supported is specified in XML Xpath Language http://www.w3.org/TR/
1999/REC-xpath-19991116, section 2.5, Abbreviated Syntax.

In those servers not providing full xpath support, both xpath and _iwxpath are identical. In
other servers, it can be expected at _iwxpath should operate faster than full xpath. iWay
recommends use of full xpath if _iwxpath does not provide the required services or results.

_xflat(): Generate a Subtree

The _xflat() function is always an alias for one of the supported _xflat() functions:

_xflat1()

_iwxflat()

By default, xflat() is an alias for _iwxflat(). However, by using compatibility flags, it can be made
to alias xflat1().

_xflat1(): Generate a Subtree

The _xflat1() function uses the following format:

_xflat1(expression [,nsmap [,object]])

expression string An XPath expression.

nsmap string The name of a namespace map from a provider. If
omitted, no namespace map is applied.

Document Functions

36

http://www.w3.org/TR/1999/REC-xpath-19991116
http://www.w3.org/TR/1999/REC-xpath-19991116

object document A document to which XPath is applied. If omitted, the
current document is evaluated.

The current document is evaluated by the provided XPath expression. As with XPath, the root of
the current document is the starting point. The subtree addressed by this expression is
returned in a flattened form that is suitable for reparsing.

The specific parameters are discussed under BAD XREF HERE "_xpath: Execute an XPATH
Expression. The _xflat1() function is often used to provide document segments in the constant
value service leading into a join. For example:

<a>
 <top>
 one
 two
 <x>
 <xroot>
 <xchild>rootchildvalue</xchild>
 </xroot>
 </x>
 </top>

The expression _xflat1(//xroot) yields the subdocument:

 <xroot>
 <xchild>rootchildvalue</xchild>
 </xroot>

_iwxflat(): Generate a Subtree

The _iwxflat() function uses the following format:

_iwxflat(expression [,nsmap [,object]])

expression string An XPath expression.

nsmap string The name of a namespace map from a provider. If
omitted, no namespace map is applied.

object document A document to which XPath is applied. If omitted, the
current document is evaluated.

The current document is evaluated by the provided XPath expression. As with XPath, the root of
the current document is the starting point. The subtree addressed by this expression is
returned in a flattened form that is suitable for reparsing.

1. iWay Functions

Functional Language Reference Guide 37

The specific parameters are discussed under BAD XREF HERE "_xpath: Execute an XPATH
Expression. As is the case with _xpath(), this function is faster but not as fast as the standard
_xflat1() function. The _iwxflat() function is often used to provide document segments in the
constant value service leading into a join. For example:

<a>
 <top>
 one
 two
 <x>
 <xroot>
 <xchild>rootchildvalue</xchild>
 </xroot>
 </x>
 </top>

The expression _iwxflat(//xroot) yields the subdocument:

<xroot>
 <xchild>rootchildvalue</xchild>
</xroot>

Understanding XML Path Language (XPath)

Support for XML Path Language (XPath) is an important feature of iWay and is used in a
number of areas within the server. XPath is a non-procedural language used to access and
manipulate sections of an XML document. The XPath expression gathers information from the
document, as if the XML document is a self-contained hierarchical database. The XPath
expression specifies levels (segments or fields), filter predicates, and functions on the XML
document data. The result of the XPath can be one or more values, a set of XML nodes, or a
particular location in the XML structure. Using these XPath results, iWay Service Manager (iSM)
can control the behavior of service agents, conditional routing, and decision-making inside of
process flows. iSM supports multiple XPath processors ranging from a fast, internal processor
supporting a subset of the XPath language, to full support of the entire language. The complete
XPath language specification and information on the abbreviated syntax can be found at:

http://www.w3.org/TR/xpath.html

Navigating XML With Location Steps

In iWay Service Manager, the node context from which location steps begin is always the root
of the document. Furthermore, only the child axis is implemented and is implicit in all iWay
XPath location steps.

Document Functions

38

http://www.w3.org/tr/xpath.html

Reference: Location Steps

Expression (phrase) Action

/name Locate down one level, selecting children of the specified name.

//name Locate down, selecting children of the specified name regardless
of the depth.

/* Locate down, selecting all children.

//* Locate down, selecting all children.

/. Locate all nodes that are already selected.

/.. Locate upward one level, selecting the parent of each node in
the node-set.

The result of the location step phrase can be a set of XML document nodes consisting of zero,
one, or many nodes. This set of nodes is referred to as a node-set. This node-set is provisional
and may not be the final node-set returned by the XPath expression, depending on subsequent
predicates.

XPath Best Practices

iWay supports two XPath processors with different characteristics. Selecting the right one for
any specific situation can greatly improve the performance of an application.

_iwxpath(). This is an XPath processor provided by iWay. It supports a limited subset of the
XPath language. If your document and query are appropriate to using _iwxpath, you can expect
to achieve significant performance improvements. However, the limitations of this process are:

Very limited function support.

No advanced XPath features such as math.

Surrounding functions such as count() are not supported.

Conjunctions (such as OR and AND) and complex tests are not supported.

Namespaces are not supported.

Note: For most applications, these omitted features are not used. If _iwxpath() does not return
the results you desire, use _xpath1().

1. iWay Functions

Functional Language Reference Guide 39

_xpath1(). This is the full XPath. It may be slower for certain operations, but it does provide
the complete language support of XPath version 1.

_xpath(). This is the default xpath call. Whether it calls _iwxpath() or _xpath1() depends on a
configuration setting on the iSM Administration Console.

In general, it is best practice to write your xpath expressions as simply as possible. Avoid
expressions that may return multiple results when you are not expecting them. Selecting any
(*) can slow down any XPath processor, as well as the //. Use these language constructs if
they are needed, but understand that there may be a penalty in performance.

XPath Predicates

Predicates are written after the location step, and are enclosed in square brackets. There can
be one or more predicates in a step, each of which is applied left to right to control the
membership of the node-set.

A predicate filters the node-set implied by a location step, to produce a new node-set. For each
node in the node-set to be filtered, the predicates are evaluated with that node. If predicate
expression evaluates to true for that node, the node is included in the new node-set.
Otherwise, it is not included.

Multiple predicates are written as sequential predicate terms and are applied left to right,
behaving as if connected by a logical AND:

/Book[Author='Smith'][Price<10]

Each predicate term consists of a single integer, a filter function, or a relation of the form.

<left-value> operator <right-value>

A predicate can hold any number of terms, logically connected by AND and OR. The
specification calls for left to right precedence, with AND taking higher precedence than OR.
Terms may be grouped by parenthesis to force a particular order of evaluation. For example,
the predicate [a=b OR c=d AND e=f] is evaluated as [a=b OR (c=d AND e=f)].

Integer predicates of the form /Tag[2] imply a numeric index into the current node-set (in this
case, selecting the second node).

Reference: Comparison and Logical Operators

Symbol Description Example

= Equal //*[local-name(CustomerRecord/
RecordDate)='OrderRecord']

Document Functions

40

Symbol Description Example

!= Not Equal //*[local-name(CustomerRecord/RecordDate)!
='OrderRecord']

< Less than /OrderRecord/LineItems[position() < 5]

<= Less than or equal /OrderRecord/LineItems[position() <= 5]

> Greater than /OrderRecord/LineItems[position() > 5]

>= Greater than or equal /OrderRecord/LineItems[position() >= 5]

Or Logical Or OrderRecord[salesman = 'Jones' or salesman='Scott]

And Logical And OrderRecord[salesman = 'Jones' and salesman='Scott]

Not Logical Not /a//*[not(starts-with(name(),'d'))]

Reference: Predicate (filter) Functions

Expression Description

starts-with(string1, string2) Returns true if the first string starts with the second string,
otherwise returns false.

ends-with(string1, string2) Returns true if the first string ends with the second string,
otherwise returns false.

contains(string1, string2) Returns true if the first string is contained within the
second string, otherwise returns false.

In each of the preceding filter functions, string1 may be name(), @attribute, @* (all attributes)
or the name of the child node.

XPath Functions

A collection of functions is provided to operate on nodes and node-sets. A function operates
on the current context (for example, the current node) or on characteristics of the current node-
set, and returns a single value.

1. iWay Functions

Functional Language Reference Guide 41

Reference: Functions

Function Description

count(<node-set>) Returns the number of nodes in the specified node-set.

last() Returns the position number of the last node in the context
node-set.

position() The position of a node in the node-set relative to its parent.

count() The number of children of each node in the node-set.

text() Returns the value of each node in the node-set. Also used to
return the value of CDATA.

name() Returns the name of the nodes in the selected node-set.
Example //sql/*/name() returns the names of the
grandchildren of each sql node.

local-name Returns the local name of each node in the node-set.

sreg(name[,default]) The value of a named special register (iWay extension to
XPath).

@attrib, @* Returns the values of the specified attribute, * returns the set
of all attribute values.

concat(string1, string2) Returns the concatenation of all its arguments. Two or more
strings may be concatenated.

Substring(string, position,
length)

Returns the substring of the first argument starting at the
position specified in the second argument with length specified
in the third argument.

Substring-before(string1,
string2)

Returns the substring of string1 that precedes the first
occurrence of string2 in string1, or the empty string if string1
does not contain string2.

Substring-after(string1,
string2)

Returns the substring of string1 that follows the first
occurrence of string2 in string1, or the empty string if string1
does not contain string2.

Document Functions

42

Function Description

namespace-uri() Returns the namespace URI of each node in the node-set.

Parsed JSON Functions

iWay Service Manager (iSM) manages messages in JavaScript Object Notation (JSON) format.
This section describes parsed JSON functions that belong to the iWay Functional Language
(iFL) set. Do not use these functions with documents in other (non-JSON) formats, since errors
will be generated. Parsed JSON is a native format that is managed within iSM.

To demonstrate the functionality of these parsed JSON function description, consider the
following sample JSON message:

{"db":{"vec":[1,2,3],"str":"abc","obj":{"a":1,"b":2}}}

_jsonptr(): Execute a JSON Pointer Expression

The _jsonptr() function uses the following format:

_jsonptr(jexpression [,object])

expression string An expression to be evaluated against the JSON.

object document A document to which JSON Pointer is applied. If omitted,
then the payload of the current document is evaluated.

The JSON Pointer expression is evaluated against the JSON document. JSON Pointer defines a
string syntax for identifying a specific value or section within a JSON document. The expression
meets the criteria of RFC 6901 -- JavaScript Object Notation (JSON) Pointer.

Expression Result

_jsonptr(/db/str) abc

_jsonptr(/db/vec) [1,2,3]

_jsonptr(/db/obj) {"a":1,"b":2}

1. iWay Functions

Functional Language Reference Guide 43

The optional object can be the name of a Special Register (SREG) holding a value in JSON
format, or a value in JSON format. If present, then the expression is evaluated against this
value.

_jsonpath(): Execute a JsonPath Expression

The _jsonpath() function uses the following format:

_jsonpath(jexpression [,object])

expression string An expression to be evaluated against the JSON
document.

object document A document to which JsonPath is applied. If omitted,
then the payload of the current document is evaluated.

The JsonPath expression is evaluated against the JSON document. JsonPath defines a string
syntax for identifying a specific value or section within a JSON document. The expression
meets the criteria of JsonPath, which has no official RFC. It is reputed to be an analog of
XPath, having considerably more power than JSON Pointer. It supports, for example, the use of
predicates.

Expression Result

_jsonpath($.db.str) abc

_jsonpath($.db.vec) [1,2,3]

_jsonpath($.db.obj) {"a":1,"b":2}

The optional object can be the name of a Special Register (SREG) holding a value in JSON
format, or a value in JSON format. If present, then the expression is evaluated against this
value.

String Functions

String functions operate on information that is in string form. Such strings can be returned
from other functions such as _flatof() or can be literals with operation parameters taken from
other operations such as xpath(). This section lists and describes the various string functions
that you can use in iWay Service Manager (iSM).

String Functions

44

_left(): Leftmost Substring

The _left() function extracts the leftmost substring from the input string. This function is
equivalent to using the _substr() function from the left position (0), but is more convenient to
use for many cases.

_left(input, length)

input string The string value to be operated upon.

length integer The length of the desired substring.

_right(): Rightmost Substring

The _right() function extracts the rightmost substring from the input string. This function is
equivalent to using the _substr() function, but avoids the need to compute the starting
position.

_right(input, length)

input string The string value to be operated upon.

length integer The length of the desired substring.

_lcase(): Convert to Lower Case

The _lcase() function converts the input string to lower case. The _lcase() function uses the
following format:

_lcase(input)

input string The string value to be converted to lower case.

_ucase(): Convert to Upper Case

The _ucase() function converts the input string to upper case. The _ucase() function uses the
following format:

_ucase(input)

1. iWay Functions

Functional Language Reference Guide 45

input string The string value to be converted to upper case.

_trim(): Eliminate Whitespace

The _trim() function removes leading and trailing white spaces from a string. This includes
blanks, tabs, and carriage returns. Whitespace includes blanks, tabs, carriage returns, and any
characters defined for the current locale as a whitespace character. The _trim() function uses
the following format:

_trim(input)

input string The string value to be trimmed.

_normalizespace(): Eliminate Whitespace

The _normalizespace() function removes leading and trailing white spaces from a string. This
includes blanks, tabs, carriage returns, and any characters defined for the current locale as a
whitespace character. Within the string multiple blanks are converted to a single blank. For
example, if the dot character represents a space, _normalizespace('ab…c') yields 'ab.c'.

The _normalizespace() function uses the following format:

_normalizespace(input)

input string The string value to be normalized.

_entity(): Entity Encoding

The _entity() function replaces XML characters with entities, for example, A&B becomes
A&B.

The _entity() function uses the following format:

_entity(input)

input string The string value to be operated upon.

String Functions

46

_deentity(): Entity Decoding

The _deentity() function replaces XML entities with characters, for example, A&B becomes
A&B.

The _deentity() function uses the following format:

_deentity(input)

input string The string value to be operated upon.

_substr(): Substring

The _substr() function extracts a substring from the input string. The substring begins at the
starting position and extends to the ending position, which is not included in the substring. If a
specific ending position is omitted, then the substring extends to the end of the input string.
For example, _substr('abcde',1,3) returns bc.

The _substr() function uses the following format:

_substr(input, start [,end])

input string The string value to be operated upon.

start integer Starting position, base 0.

end integer Ending position, base 0.

_before(): Substring

The _before() function extracts a substring from the input string. The substring begins at the
start of the string and extends to the ending string, which is not included in the substring. If
omitted, the substring extends to the end of the input string. For example,
_before('abcde','de') returns abc.

The _before() function uses the following format:

_before(input, pattern)

input string The string value to be operated upon.

1. iWay Functions

Functional Language Reference Guide 47

pattern string Termination of the string.

_after(): Substring

The _after() function extracts a substring from the input string. The substring begins at the
start trigger and extends to the end of the string. For example, _after('abcde','bc') returns de.

The _after() function uses the following format:

_after(input, pattern)

input string The string value to be operated upon.

pattern string Trigger of the string.

_pad(): Pad to Desired Length

_pad(input, length [,type [,character [,control]]])

input string The string value to be operated upon.

length integer Length of desired output.

type keyword Direction of the padding.

Right. Pad on the right of the input (default).

Left. Pad on the left of the input (right justification).

character char One character to be used for padding. Default is blank.

control keyword Final disposition of the output.

asis. Take no action following padding (default).

cut. Cut output to length if input is too long.

The input string is padded and optionally cut to fit an exact length. Padding can be done to the
right or left of the string.

String Functions

48

For example, given the input abc, the following will be the result, using the character b for
blank:

Length Direction Character Control Result

5 right omit omit abcbb

5 left omit omit bbabc

2 right omit cut ab

_concat(): Concatenate Strings

The _concat() function joins together to generate a single string. For example, if special
register x holds the letter 'b', _concat('a',sreg(x),'c') returns abc.

The compiler attempts automatic concatenation when functions are recognized in input strings.
For example, the special register iway.home holds the root of the iWay Server installation. So,
if you want to address a file named myfile.txt in the mydir subdirectory off the iWay root, use of
sreg('iway.home')/mydir/myfile.txt will return the correct path name.

The _concat() function uses the following format:

_concat(input*)

input string The string value to be operated upon.

_length(): String Length

The _length() function returns the number of characters in the supplied input string. It uses the
following format:

_length(input)

input string The string value to be operated upon.

_count(): String Element Count

The _count() function returns the number of items in the supplied input string. It uses the
following format:

1. iWay Functions

Functional Language Reference Guide 49

_count(input [,action][,delim])

input string The string value to be operated upon.

action keyword What to include in the count

value. Only nodes containing values.

empty. Only nodes with empty values.

all. Total of nodes.

delim character The field delimiter.

Returns the number of items in the supplied input string. Usually this is one (1). Sometimes an
xpath expression will identify several values meeting a test. In such a case this is the number
of matches that the xpath expression located in the current document.

A common use is to determine how many elements of a given type are contained in the
document. For example, given the document:

<a>
 <top>
 one
 two
 <x>sreg(iwayhome)</x>
 </top>

The expression _count(xpath(//b)) yields 2, while the expression _count(xpath(//b),empty)
yields 0.

The delimiter is not specified when the first parameter (input) is an xpath expression. For other
types of input, it may be needed. For example:

_count(“a,b,,c,d”,empty,’,’) yields 1.

_contains(): String Contents

The _contains() function returns true if the input string contains the value. The search is case
sensitive. The _contains() function uses the following format:

_contains(input,value)

String Functions

50

input string The string value to be operated upon.

value string The search value.

_startswith(): String Contents

The _startswith() function returns true if the input string starts with the value. For example,
_startswith('iWay Software','iW') yields true. The _startswith() function uses the following
format:

_startswith(input,value)

input string The string value to be operated upon.

value string The search value.

_endswith(): String Contents

The _endswith() function returns true if the input string ends with the value. It uses the
following format:

_endswith(input,value)

input string The string value to be operated upon.

value string The search value.

_regex(): Replace Portions of a String

The _regex() function searches an input string using the regular expression. Any matches are
replaced with the value that is specified for the replacement parameter. Regular expressions
are specifications of what is to be located and where (for example, locating the first carriage
return). The _regex() function uses the following format:

_regex(input, pattern, replacement)

input string The string to be operated upon.

1. iWay Functions

Functional Language Reference Guide 51

pattern string Regular expression pattern.

replacement string The replacement text.

For example, to change scat, cat to scat, dog, you can use the following _regex() function call:

_regex('scat, cat','\\bcat','dog')

Note: The backslash character in the pattern was doubled. This is due to the use of a single
backslash as an escape character. The double backslash characters (\\) causes a single
backslash character to be inserted in the pattern.

Double backslash characters are used because the pattern must be \bcat and the iWay
Functional Language (iFL) handles a single backslash character as an escape character. The
\b pattern character is used to specify a word boundary.

Regular expressions are a standard means of searching data, and there are many books on
this topic. Some commonly used online references include:

http://docs.oracle.com/javase/tutorial/essential/regex/

http://www.javamex.com/tutorials/regular_expressions/

A good book on this topic is:

Hitchens, Ron, "Java NIO", Cambridge, O'Reilly Media, Inc., 2002. [ISBN 0-00288-2]

_reverse(): Reverses a String

Reverses the string value. This function is useful when a value is to be used as an index in a
database, where the high order characters are relatively invariant. Using the reverse of the
value can improve index hashing for some databases.

For example:

_reverse(‘iWay Software_01’)

Yields the following:

10_erawtfoS iaWi

Because the varying part is at the head of the new field, the hash algorithms may generate a
wider distribution.

_match(): Perform a String Match Against a Pattern

The _match() function matches an input string against a regular expression. A successful
match is returned as true, and an unsuccessful match is returned as false.

String Functions

52

http://docs.oracle.com/javase/tutorial/essential/regex/
http://www.javamex.com/tutorials/regular_expressions/

_match(input,pattern)

input string The input string to be matched against the regular
expression.

pattern string The regular expression pattern.

For more information on regular expression matching, see _regex(): Replace Portions of a String
on page 51.

For example, to determine whether an attribute value that is contained in a Special Register
(SREG) matches a stored SIC code in category 127xx (to be routed to the appropriate subflow),
configure the _match() function as follows:

_if(_match(sreg(insic),'127.*'),_setreg('flowcall','subflow127'),_setreg('fl
owcall','subflowAny'))

The application could then use the subflow SREG as an input to the Process Flow object
(XDPFlowAgent) to call the selected subflow.

To check a string against many patterns simultaneously, use the _propertymatch() function. For
more information, see _propertymatch(): Match a String Against a File of Regular Expression
Patterns on page 16.

_replace(): Translate Characters in a String

The _replace() function translates characters in a string.

_replace(input, chars, replacements [,eoloption])

input string The string to be operated upon.

chars string The characters in the string to be replaced.

replacements string The replacement characters.

1. iWay Functions

Functional Language Reference Guide 53

eoloption keyword End of line conversions. You can specify one of
the following conversion options:

NONE. No conversion is specified.

LF2CR. Map the linefeed character to a
carriage return.

LF2CRLF. Map the linefeed character to a
carriage return linefeed.

CRLF2LF. Map the carriage return linefeed
sequence to a single linefeed.

This specification is used most often for Windows/
UNIX conversions.

The input string is searched for the designated characters. Each located character in the chars
operand is replaced with the replacements operand.

The characters in the chars and replacements operands are replaced on a one-for-one basis.
The first character in the chars operand is replaced by the first character in the replacements
operand, and so forth. Any ASCII character can be entered into either operand. Additionally,
escaped sequences, each representing one character, can be included in the operands.

\n New line

\t Tab

\r Line feed

\\ Backslash

\" Double quote

\' Single quote

\xcc Hex character, where cc is the hex representation. For example, \x01 is hex 01.

Example 1. Replace all bar characters with commas. This example is important, as the _xpath
functions return lists of values separated by bars.

_replace(_xpath(/root/childval),'|',',')

String Functions

54

Example 2. Replace all new lines with tabs.

_replace(sreg(values),\n,\t)

Example 3. In this example, four backslashes are used to represent a paired backslash in the
second parameter. This is because the input handlers see the backslashes as two single
backslashes. The function then sees the escaped backslash (\\) as a single character. This
allows any backslash in the value in the sreg() to be replaced with an ampersand.

_replace(sreg(abc),'\\\\','&')

Example 4. In this example, a hexadecimal value is replaced. A common use is to replace
separator characters in an EDI document with a printable value.

_replace('ab\0x85c','\0x85', '!')

Example 5. A unicode value can be used. In this example, ab~c becomes ab$c.

_replace('ab~c','~','\u0024')

Note: The specific Unicode value need not be printable, but the value for $ was selected for
this example as a convenience.

_isnumber(): Is a Value Number

The _isnumber() function tests whether the input is a valid number. A value of true indicates
that the input is numeric and false indicates that it is not numeric or is not present. Use this
to test the results from functions that are expected to return numeric output but may return
NAN (not a number) or another value.

The _isnumber() function uses the following format:

_isnumber (input)

input string The string value to be operated upon.

_lit(): Literal String Concatenation

The _lit() function treats the input string as a literal for parsing purposes. Functional
replacement is performed, but math operations are ignored. If the input string is in literals,
then the entire string is treated as a single literal, and no further operation takes place.
However if the literal marks (single quotes) are omitted, then the parameter can be evaluated.

In the following example, assume that a special register (SREG) named portno has been set to
3284.

1. iWay Functions

Functional Language Reference Guide 55

Statement Result

_lit(<root>sreg(portno)</root>) <root>3284</root>

_lit('<root>sreg(portno)</root>') <root>sreg(portno)</root>

The _lit() function uses the following format:

_lit(input)

input string The string value to be operated upon.

_sql(): SQL Concatenation

The input string is treated as a string for parsing purposes. Functional replacement is
performed but math operations are ignored. This operates identically to _lit().

The _sql() function uses the following format:

_sql(input)

input string The string value to be operated upon.

_xml(): XML Concatenation

The input string is treated as a string for parsing purposes. Functional replacement is
performed but math operations are ignored. This operates identically to _lit().

The _xml() function uses the following format:

_xml(input)

input string The string value to be operated upon.

_qval(): Quote/Null a String

This function generates a quoted string of the input operand. Optionally, the string NULL can
be produced. This function is useful when generating values for an SQL insert or update DML
statement.

String Functions

56

The _qval() function uses the following format:

_qval(input [,char [,action]]))

input string The string value to be operated upon.

char string A keyword for the type of quote to be used.

single. Use single quote characters.

double. Use double quote characters.

action string A keyword describing the action to perform for nulls or empty
input values.

none. Null input is quoted empty string.

null. Null input is the word NULL (unquoted).

empty. Null or empty input is the word NULL (unquoted).

spaces. Maps strings that are filled with spaces to NULL
(unquoted).

For example, consider the following SQL expression fragment:

values(_qval(a))

This might be represented in iWay Designer as:

values(?a)

with the user field of:

a xpath(/root/field)

In this example, the input document field addressed in the xpath() returns a value or a null
result. Depending on what is returned and the action parameter, the results would be:

Returned Action Parameter Result

iway any iway

1. iWay Functions

Functional Language Reference Guide 57

Returned Action Parameter Result

empty value none ‘’

empty value null ‘’

empty value empty ‘’

empty value spaces ‘’

null value none ‘’

null value null NULL

null value empty NULL

null value spaces NULL

_token(): Tokenize a String

Given a delimited string, this function splits the string on the specified delimiter and returns
the token at the requested index. The delimiter can be a regular expression and the index of
the first token is 1. This function returns an empty string if:

The delimiter is an invalid regular expression.

The index parameter can not be parsed as an integer.

The index parameter is less than 1 or greater than the number of tokens after splitting.

The _token() function uses the following format:

_token(input, delimiter, index)

input string The string value to be operated upon.

delimiter string The splitter delimiter, which can be a [Java] regular expression.

index integer The index of the token desired, base 1. The default is 1.

Examples:

String Functions

58

_token('a,b,c,d,e', ',', 3) = c
_token('a/b/c/d/e', '/', 3) = c
_token('a/b/c/d/e', '/', 18) = empty
_token('a_split_b_split_c_split_','_split_',3)=c

The next example accepts x followed by exactly three percent signs, followed by an x or a p:

_token("ax%%%xbx%%%pcx%%%xdx%%%pe",'x\\%{3}[xp]', 3)=c

Note: iFL uses a single backslash to escape the special meanings most characters have in a
string of code. To include a single backslash in a string, it must be escaped as well. Use \\ in
a string to represent a single backslash. Another example of how to use a single backslash to
escape special character meanings is seen in the following expression:

 _token(B2BIT.reshma,'\\.', 1)

The second parameter is a regular expression. You need the backslash to look for the actual
dot character. Because iFL is parsing, and it uses the backslash as an escape, you need to
escape it to get the backslash into the regular expression. For a more detailed explanation,
see _regex(): Replace Portions of a String on page 51.

_indexof(): Return Offset to a Substring

The _indexof() function uses the following format:

_indexof(input, pattern [,startat])

input string The string value to be operated upon.

pattern string The characters to be located.

startat integer Offset to start the search (base 0).

The input string is searched for the contained pattern. The index of the pattern is returned,
base 0. The function is useful when you are parsing or extracting elements of an input string.

_printable(): Mask Nonprintable Characters

The _printable() function uses the following format:

_printable(input [,keyword])

input string The string value to be operated upon.

1. iWay Functions

Functional Language Reference Guide 59

keyword string A control word. If whitespace, carriage returns and tabs are not
translated.

Sometimes a string that is to be printed may contain unprintable characters. For example, this
can result from the _inflate() or _frombase64() function. This function converts non-printable
characters to period characters.

_murmurhash(): Hash a String Value

The _murmurhash() function implements the MurmurHash standard, a non-cryptographic hash
function suitable for general hash-based lookup purposes.

Note: The _murmurhash() function is not a cryptographic hash, since MurmurHash is not
specifically designed to be difficult to reverse by an adversary.

MurmurHash is useful, among other purposes, for database key generation and lookup, and
for use in Bloom filters.

The _murmurhash() function uses the following format:

_murmurhash(input [,algorithm [, seed [, encoding]]])

input string Specifies the value to be hashed. If omitted, then the current
document payload is hashed.

algorithm keyword Specifies the type of algorithm to be used:

H16. Yields a 16-bit hash value.

H32. Yields a 32-bit hash value.

H64. Yields a 64-bit hash value.

The default is H64.

seed number Specifies the initial seed in integer or 0x hex form.

H16 (0x3175467)

H32 (0x9747b28c)

H64 (0xe17a1465)

The default is H64 (0xe17a1465).

String Functions

60

encoding string The Internet Assigned Numbers Authority (IANA) encoding value
of the input. The default IANA value is ISO-8859-1.

The output of the _murmurhash() function is expressed as a base-10 integer.

While the H32 and H64 algorithms are generally suitable for database key use, the H16
algorithm is optimized for use in short Bloom filters. The H16 algorithm is calculated using the
MurmurHash approach, but is not part of the standard.

Time Service Functions

Time services are used to enter parameters requiring time of day operations or to test for
values relating to the current time. For example, a process flow can be configured to perform
one operation on Friday and another operation on every other day.

Time services are provided by three functions that all provide formatted access to the current
time. This section lists and describes the various time service functions that you can use in
iWay Service Manager.

_now(): Get Current Timestamp

The _now() function returns the current time based on a provided pattern. It uses the following
format:

_now([pattern])

pattern string Format pattern

The default pattern (MM/dd/yyyy) returns the date in month/day/year format. So, for example,
the date might return as 06/15/2006 if the function _now() is entered with no pattern.

Pattern characters can be assembled to provide the desired return. The following table lists
the characters and the expected result. Characters are case-sensitive. All examples are based
on a time of June 15, 2006 at 13:02:08 PM.

Character Use Return type Example

y year Digit yyyy=2006, yy=06

M Month of year Depends on length MM=06, MMM=Jun,
MMMM=June

1. iWay Functions

Functional Language Reference Guide 61

Character Use Return type Example

w Week in year Digit 26

W Week in month Digit 2

D Day in year (Julian) Digit 175

d Day in month Digit 25

E Day of week Text Sun

F Day of week in month Digit 0

a Division of day Text pm

H Hour (24 hr clock, 0-23) Digit 12

h Hour (12 hr clock 1-12) Digit 01

K Hour (24 hr clock, 1-24) Digit 13

k Hour (12 hr clock, 0-11) Digit 00

m Minute in hour Digit 02

s Second in minute Digit 08

S Milliseconds Digit HH:mm:ss.SSS

z Time zone Text EDT. The local time zone.

u Day number of week (1
= Monday, ..., 7 =
Sunday)

Number 3 (Wednesday)

Z RFC-822 time zone Number -0500 (EST)

The function call must provide sufficient pattern characters to fill the field for those where
length is specified. The following table provides a few examples:

cond(_now('E'),eqc,'Tue') Does work on Tuesday only.

Time Service Functions

62

_now('hh:mm') The current time. For example, 3:37 is expressed as
03:37.

_now('D') For example, for July 21, 2006, the day of year is
202.

_now('dd/MM/yy') European date format. For example:

25/06/06

_now('z') EDT

_now("yyyy-MM-
dd'T'HH:mm:ss.SSS'Z'")

RFC 3339 (ISO 8601) time. For example:

2012-02-23T11:41:34.793Z

Note: Special characters can be included in the pattern by using an apostrophe (‘) character.
To avoid compiler confusion, surround the pattern string using double quote (“) characters.

In releases running under Java Version 1.6, the pattern character 'u' was used by iWay for
advanced timing capabilities, and will continue to provide that service. The special iWay pattern
characters are now supported in the _timer() function.

_timer(): Return Unix Epoch Time

The _timer() function returns time values based on the request. It uses the following format:

_timer(type)

The _timer() function replaces the use of the _now() function with special iWay-specific
patterns.

type keyword Control

The supported types are listed and described in the following table.

Keyword Use Example Note Alias*

seconds Unix epoch
time in
seconds.

1377179943046 Accurate u

1. iWay Functions

Functional Language Reference Guide 63

Keyword Use Example Note Alias*

milliseconds Unix epoch
time in
milliseconds.

1377179943046678 Accurate U

nanoseconds Unix epoch
time in
nanoseconds.

1377179943046678945 To the best
resolution
available in the
system clocks.
This will depend
on the hardware
and JVM being
used.

Un

If no type value is specified for the _timer() function, then the U (milliseconds) pattern
character is used by default.

Note: Aliases are provided for the keywords, which reflect prior support for iWay pattern
characters in the _now() function. iWay strongly discourages their use, and cannot guarantee
that they will continue to be supported beyond iSM Version 7.0.

The pattern character ‘Un’ represents the best time available for the system at the
nanosecond level. This method can only be used to measure elapsed time and is not related
to any other notion of system or wall-clock time. The value returned represents nanoseconds
since some fixed but arbitrary. This method provides nanosecond precision, but not
necessarily nanosecond accuracy. No guarantees are made about how frequently values
change.

_tstamp(): Return the Current Timestamp

The _tstamp() function returns a timestamp (accuracy to seconds) in ISO 8601 format.

This is a standard time function that is commonly used in many XML and web applications.

The _tstamp() function uses the following format:

Time Service Functions

64

_tstamp([locale])

locale Determines the time zone used for the returned timestamp, which can
be set to one of the following values:

gmt. The timestamp is returned based on Greenwich Mean Time
(GMT). This is the default value.

local. The timestamp is returned based on the current time zone
that is configured for iWay Service Manager (iSM).

_ftstamp(): Return the Current Timestamp to Milliseconds

The _ftstamp() function returns a fine timestamp (accuracy to milliseconds) in ISO 8601
format. This function uses the following format:

_ftstamp([compression] [locale])

compression Determines the format of the returned timestamp, which can be set to
one of the following values:

standard. ISO 8601 format. This is the default value.

compressed. The formatting characters are removed.

locale Determines the time zone used for the returned timestamp, which can
be set to one of the following values:

gmt. The timestamp is returned based on Greenwich Mean Time
(GMT). This is the default value.

local. The timestamp is returned based on the current time zone
that is configured for iWay Service Manager (iSM).

For example:

_ftstamp() yields 2017-07-21T19:42:44:609Z

The special pattern of the word compressed eliminates the separator characters, yielding:

20170721194244609Z

1. iWay Functions

Functional Language Reference Guide 65

The compressed option simplifies using the output in file names.

Users are cautioned that applications that employ local time may encounter issues across
time zones or around time changes, such as daylight saving time (DST).

_fmtdate(): Format a Date/Time from a Millisecond Time Value

The _fmtdate() function formats a date according to a pattern when a date is provided in
milliseconds since January 1, 1970, 00:00:00 GMT. It uses the following format:

_fmtdate(pattern,value [,language, [,country]])

pattern literal A type as described for the _timer() function. The specified
type controls the formatting of the input value.

value date/time A date/time in a format to be formatted based on the pattern.

language literal The language code. By default, the language code is set
according to the locale setting of the system where iSM is
installed.

country literal The country code. By default, the country code is set according
to the locale setting of the system where iSM is installed.

For example:

_fmtdate('yyyy.MM.dd', _dateof('MM/dd/yyyy','06/25/2009')) yields the
following:

 2009.06.25

It is sometimes desirable to obtain the date for some moment in relation to the current
moment. For example, you may want the current date/time for a date one week in the past:

_fmtdate('yyyy/MM/dd hh:mm:ss',_imul(_isub(_timer(),_imul(86400,7)),1000))

Replace the 7 in this example with the number of days desired. 86400 is the number of
seconds in a day.

For example, to return local time:

_fmtdate('dd-MMM-yyyy HH:mm:ss.SSS z',_timer(milliseconds))

The language argument is a valid ISO Language Code. These codes are the lowercase, two-
letter codes as defined by ISO-639. You can find a full list of these codes at a number of
websites, such as http://www.ics.uci.edu/pub/ietf/http/related/iso639.txt.

Time Service Functions

66

http://www.ics.uci.edu/pub/ietf/http/related/iso639.txt

The country argument is a valid ISO Country Code. These codes are the upper case, two-letter
codes as defined by ISO-3166. You can find a full list of these codes at a number of websites,
such as http://www.iso.org/iso/country_codes.htm.

The language and country codes affect the language of the result, not the time zone offset
specified by the pattern. The country code is required only in cases in which the language code
is ambiguous.

For example, one hour from this moment:

_fmtdate('EEE, dd-MMM-yyyy HH:mm:ss zzz', _iadd(_timer(),3600000), 'en')

yields the following:

Wed, 31-Dec-2012 19:04:00 EST

For example:

_fmtdate('EEE, dd-MMM-yyyy HH:mm:ss zzz', _iadd(_timer(),3600000), 'fr')

yields the following:

mer., 31-déc.-2012 19:04:00 EST

Note: Date operations can be performed by doing arithmetic on the values with appropriate
patterns. The _timer() function returns the current time for this function.

_dateof(): Return the Timestamp for a Passed Time

The _dateof() function parses a date and returns the corresponding number of milliseconds
since January 1, 1970, 00:00:00 GMT. It uses the following format:

dateof(pattern, value [,zone][,default])

pattern literal A type as described for the _timer() function. The specified
type controls the formatting of the input value.

value date/time A date and time in a format to be formatted based on the
pattern.

zone literal A time zone, such as Zulu.

default string Value to be returned if the date and time value (operand 2) is
not successfully parsed as a date. Failure to enter this
operand will result in an error if a bad date value is detected.

1. iWay Functions

Functional Language Reference Guide 67

http://www.iso.org/iso/country_codes.htm

For example:

_dateof('MM/dd/yyyy', '06/25/2009') yields the following:

 1245902400000

To create a duration suitable for date arithmetic, use the Zulu zone. This avoids any offset, so
that a pattern, such as ss will give absolute seconds.

Note: The _iadd() and _isub() functions are preferred for date arithmetic because they operate
on long integers with more precision than _add() and _sub().

Compute and display the time ten minutes ago. This example was run at 09/08/27 05:13:54.

_fmtdate('yy/MM/dd hh:mm:ss',_isub(_timer(),_dateof('mm',10,gmt)))

Results in 09/08/27 05:03:54.

_dateadd(): Add Offset to a Date and Return a Timestamp

The _dateadd() function adds the offset parameter to the date parameter. If the date and time
is not provided, then the current date/time of iWay Service Manager (iSM) is used. This
function uses the following format:

Time Service Functions

68

_dateadd(offset [,date])

offset literal A number pattern. This pattern describes the number of days,
hours, minutes, seconds, or microseconds to add to the date.
This pattern has the following definition:

[xxd][xxh][xxm]xx[s]

The value of xx represents a numeric value and the suffix is
defined as follows:

d (Days)

h (Hours)

m (Minutes)

s (Seconds)

Note: If the value of the offset parameter is entered without the d,
h, m, or s suffix, then the offset is assumed to be milliseconds.

For example:

1d1h - Adds one day and one hour.

15m - Adds 15 minutes.

1d30s - Adds one day and 30 seconds.

3600000 - Adds 3600000 milliseconds.

1h10m - Adds one hour and 10 minutes.

1h10 - Is a valid pattern (it is missing the suffix on the second
numeric value) the seconds [s] are assumed because it is the
last numeric entry.

date date/time Optional date timestamp. If this value is not provided, then the
current date and time of iSM is used.

For example, _dateadd(1d) yields the following:

1477627200000

Note: This is assuming that the date and time of iSM is 10/27/2016 12:00:00 AM.

1. iWay Functions

Functional Language Reference Guide 69

You may have a use case where you need to perform and display a date calculation on a fixed
date (for example, adding a week to 10/27/2016). This may be accomplished by using several
iSM functions. For example:

_fmtdate('yyyy-MM-dd hh:mm:ss a',_dateadd(7d,_dateof('MM/dd/
yyyy','10/27/2016')))

Results in:

2016-11-03 12:00:00 AM

_datesub(): Subtract Offset to a Date and Return a Timestamp

The _datesub() function subtracts the offset parameter from the date parameter. If the date
and time is not provided, then the current date/time of iWay Service Manager (iSM) is used.
This function uses the following format:

Time Service Functions

70

_datesub(offset [,date])

offset literal A number pattern. This pattern describes the number of days,
hours, minutes, seconds, or microseconds to subtract from the
date. This pattern has the following definition:

[xxd][xxh][xxm]xx[s]

The value of xx represents a numeric value and the suffix is
defined as follows:

d (Days)

h (Hours)

m (Minutes)

s (Seconds)

Note: If the value of the offset parameter is entered without the d,
h, m, or s suffix, then the offset is assumed to be milliseconds.

For example:

1d1h - Subtracts one day and one hour.

15m - Subtracts 15 minutes.

1d30s - Subtracts one day and 30 seconds.

3600000 - Subtracts 3600000 milliseconds.

1h10m - Subtracts one hour and 10 minutes.

1h10 - Is a valid pattern (it is missing the suffix on the second
numeric value) the seconds [s] are assumed because it is the
last numeric entry.

date date/time Optional date timestamp. If this value is not provided, then the
current date and time of iWay Service Manager (iSM) is used.

For example, _datesub(1d) yields the following:

1477454400000

Note: This is assuming that the date and time of iSM is 10/27/2016 12:00:00 AM.

1. iWay Functions

Functional Language Reference Guide 71

You may have a use case where you need to perform and display a date calculation on a fixed
date (for example, subtracting a week from 10/04/2016). This may be accomplished by using
several iSM functions. For example:

_fmtdate('yyyy-MM-dd hh:mm:ss a',_datesub(7d,_dateof('MM/dd/
yyyy','10/04/2016')))

Results in:

2016-09-27 12:00:00 AM

Math Functions

Math functions enable you to generate configuration parameters and to assist with tests. This
section lists and describes the various math functions that you can use in iWay Service
Manager (iSM).

Note: By default, math operations are performed in floating point, which can generate
problematic results when a value is provided below the radix (for example, 12 in 10.12).
Decimal numbers when operated on by the iFL functions _ddiv() and _dmul(), while slightly
slower, operate upon decimal digits as entered. This means that a decimal type is not more
precise than a binary floating point or fixed point type in a general sense (for example, it
cannot store 1/3 without loss of precision), but it is more accurate for numbers provided with
a finite number of decimal digits, as is often the case for monetary calculations. Users are
responsible for understanding the use to which numeric values are specified, and the scale
and precision required for the final result.

_add(): Add a List of Terms

The _add() function is used to add a list of terms. It uses the following format:

_add(term, term*)

term number Number to be added.

This function returns the sum of the terms. There is nothing implied by the order of the terms.

_sub(): Subtract

The _sub() function is used to return the difference. It uses the following format:

_sub(minuend, subtrahend)

Math Functions

72

minuend number Number to be subtracted from.

subtrahend number Number to be subtracted from the minuend.

_mod(): Returns the Modulus

The _mod() function produces the remainder of dividing the first term by the second. For
example, mod(22,6) = 4 because 22 / 6 = 3 with a remainder of 4. This is often written 22%6
in common arithmetic.

The _mod() function uses the following format:

_mod(term, modulus)

term integer Number to be divided.

modulus integer Number to be used for testing.

_mul(): Multiply a Number

The _mul() function returns the product of the first factor multiplied by the second factor. Note
that multiplication is commutative and therefore there is nothing implied by the order of the
factors. The result is computed as a floating point value.

The _mul() function uses the following format:

_mul(multiplicand, multiplier)

multiplicand number Number to be operated upon.

multiplier number The multiplier for the function.

_div(): Divide a Number

The _div() function returns the quotient of the first factor divided by the second factor. The
result is computed as a floating point value.

The _div() function uses the following format:

_div(dividend, divisor)

1. iWay Functions

Functional Language Reference Guide 73

dividend number Number to be operated upon.

divisor number The divisor for the function. Must be != 0.

_iadd(): Add a List of Terms, Integer

The _iadd() function returns the sum of the terms. There is nothing implied by the order of the
terms. Any term can be an XPATH() function. If the XPATH() returns multiple results, all are
added into the sum. All values are assumed to be integers, and the result is an integer. The
iadd() function is suitable for date manipulation, as the addition is computed with sufficient
precision to maintain the field integrity. See _dateof(): Return the Timestamp for a Passed Time
on page 67 for examples.

The _iadd() function uses the following format:

_iadd(term, term*)

term number Number to be added.

_isub(): Subtract, Integer

The _isub() function returns the difference with integer arithmetic. The isub() function is
suitable for date manipulation, as the subtraction is computed with sufficient precision to
maintain the field integrity. See _dateof(): Return the Timestamp for a Passed Time on page
67for examples.

The _isub() function uses the following format:

_isub(minuend, subtrahend)

minuend number Number to be subtracted from.

subtrahend number Number to be subtracted from the minuend.

_imul(): Multiply a Number, Integer

The _imul() function returns the product of the first factor multiplied by the second factor.
Recall that multiplication is commutative and therefore there is nothing implied by the order of
the factors.

Math Functions

74

The _imul() function uses the following format:

_imul(multiplicand, multiplier)

multiplicand number Number to be operated upon.

multiplier number The multiplier for the function.

_idiv(): Divide a Number

The _idiv() function returns the quotient of the first factor divided by the second factor. The
quotient is an integer, with the fractional part disregarded.

The _idiv() function uses the following format:

_idiv(dividend, divisor)

dividend number Number to be operated upon.

divisor number The divisor for the function. Must be != 0.

_int(): Cast to Integer

The _int() function casts a value to an integer. This is done by ignoring the fractional part, as is
the standard case for computer languages. To avoid loss of information, the _round() performs
a similar operation with half-adjust rounding.

The _int() function uses the following format:

_int(value)

value number Number to be cast.

_intmask(): Inserts a Number into a Character Mask

The _intmask() function inserts a number into a character mask. It uses the following format:

_intmask(pattern,input)

1. iWay Functions

Functional Language Reference Guide 75

pattern string Mask into which the number is inserted. All characters but #
appear as-is, but # characters (one set) are replaced by the
value.

input integer Math value to be inserted. Must be present, if not, it will cause
an error.

_max(): Maximum of a List of Terms

_max(term, term*)

term number Number to be evaluated.

Returns the maximum value of the terms. There is nothing implied by the order of the terms.
Any term can be an XPATH() function. If the XPATH() returns multiple results, all are evaluated.

_min(): Minimum of a List of Terms

_min(term, term*)

term number Number to be evaluated.

Returns the minimum value of the terms. There is nothing implied by the order of the terms.
Any term can be an XPATH() function. If the XPATH() returns multiple results, all are evaluated.

_random(): Generate a Random Number

The _random() function returns a pseudo-random integer between zero and the specified upper
bound value (with default 232-1). All possible values are produced with equal probability.

The _random() function uses the following format:

_random([upperbound] [,width])

upperbound integer Specified upper bounds to be used.

width integer The number of digits in the result. Leading
zeros may be added.

Math Functions

76

This function is especially useful as a seed for a cryptographic algorithm. It is also useful for
simulating server response time distributions using the Delay parameter of the Document Copy
service (com.ibi.agents.XDCopyAgent).

The width parameter specifies the formatted width of the result. For example, to generate a
random telephone number, you might configure the _random() function as follows:

212-555-_random(9999,4)

The following is a sample result that is generated:

212-555-1786

_floor(): Obtain the Floor of a Number

The _floor() function returns the largest (closest to positive infinity) value that is not greater
than the argument and is equal to a mathematical integer. Special cases include:

If the argument value is already equal to a mathematical integer, then the result is the
same as the argument.

If the argument is NAN (not a number) or an infinity or positive zero or negative zero, then
the result is the same as the argument.

For example, the floor of -7.5 is -8. The floor of 7.5 is 7.

The _floor() function uses the following format:

_floor(number)

number value Number to be operated upon.

_ceil(): Obtain the Ceil of a Number

The _ceil() function returns the smallest (closest to negative infinity) double value that is not
less than the argument and is equal to a mathematical integer. Special cases include:

If the argument value is already equal to a mathematical integer, then the result is the
same as the argument.

If the argument is NAN or an infinity or positive zero or negative zero, then the result is the
same as the argument.

If the argument value is less than zero but greater than -1.0, then the result is negative
zero.

1. iWay Functions

Functional Language Reference Guide 77

Note: The value of ceil(x) is exactly the value of -floor(-x).

For example, the ceil of -7.5 is -7. The ceil of 7.5 is 8.

The _ceil() function uses the following format:

_ceil(number)

number value Number to be operated upon.

_round(): Round a Number to an Integer

The _round() function returns the closest integer to the argument value. The result is rounded
to an integer by adding ½, taking the floor of the result, and casting the result to type integer.
In other words, the result is equal to the value of the following expression:

(int)Math.floor(a + 0.5f)

The _round() function uses the following format:

_round(number)

number value Number to be operated upon.

Decimal Math Functions

In addition to supporting functions that use integer math and floating point math, iWay
Functional Language (iFL) also supports decimal math functions. Floating point math is
performed using the Base 16 (Hexadecimal) numbering system, which does not accurately
represent decimal vales below the radix (decimal point). This results in an inability to rely on
exact values with decimal places, which is important when calculating monetary units, such as
dollars and cents. If values are developed during computations that are not in the represented
domain of decimal numbers, an iFL error is generated.

_dadd(): Add a Number

The _dadd() function returns the decimal sum of the decimal terms. This function uses the
following format:

_dadd(term1, term2)

Decimal Math Functions

78

term1 number The first number to be added.

term2 number The second number to be added.

There is nothing implied by the order of the terms. Any term can also be an XPATH() function. If
an XPATH() function returns multiple results, then all of the results are added to the sum.

_dsub(): Subtract a Number

The _dsub() function returns the decimal difference. This function uses the following format:

_dsub(minuend, subtrahend)

minuend number The number to be subtracted.

subtrahend number The number to be subtracted from the minuend.

Both terms that are used in this function must be decimal numbers.

_dmul(): Multiply a Number

The _dmul() functions returns the decimal product of the first factor multiplied by the second
factor. This function uses the following format:

_dmul(multiplicand, multiplier)

multiplicand number The number to be multiplied.

multiplier number The multiplier for the function.

Since multiplication is a commutative operation, there is nothing implied by the order of the
factors. Both terms must be decimal numbers.

_ddiv(): Divide a Number

The _ddiv function returns the decimal quotient of the dividend divided by the divisor.
Attempting to divide by zero results in an error. This function uses the following format:

_ddiv(dividend, divisor)

1. iWay Functions

Functional Language Reference Guide 79

dividend number The number to be divided. The default scale of the result
will be that of the dividend.

divisor number The divisor for the function, which must not be equal to 0.

Both terms must be decimal numbers.

Encoding Functions

Encoding functions enable you to decode and convert strings. This section lists and describes
the various encoding functions that you can use in iWay Service Manager.

_mod10(): Mod10 Check Digit Operations

The _mod10() function generates or checks a modulus 10 digit. This function uses the
following format:

_mod10(action,value)

action keyword Specifies the action to be performed:

Append. Add the valid check digit to the value.

Check. Validate the check digit within the value (true or false).

Generate. Generate and return the check digit for the value
(single integer).

value string A numeric value to be used for check digit activities.

A modulus 10 check (also known as Luhn's Algorithm) is a simple checksum used to validate
a variety of common identification numbers, such as credit card numbers, National Provider
Identifiers in the US, DUNS numbers, and so on. The algorithm is specified in ISO/IEC 7812-1.
It is designed to protect against accidental errors such as simple transpositions rather than
malicious attacks. The formula verifies a number against its included check digit.

Append. Generates a check digit on a passed value, and returns the value with the check
digit added to the end. For example:

_mod10('append',1234567891234567891) := 12345678912345678918

Check. Checks the passed in value for validity. The last digit is assumed to be the check
digit. Return true or false. For example:

Encoding Functions

80

http://en.wikipedia.org/wiki/iso/iec_7812

_mod10('check,12345678912345678914) := false

Generate. Returns a single digit as the check digit for the submitted value. The entire
number is used to generate the check digit. For example:

_mod10('generate',1234567891234567891) := 8

_url(): Convert String to MIME Format

The _url() function converts the URL string to the application/x-www-form-urlencoded MIME
format. For more information about HTML form encoding, consult the HTML specification. The
_url() function uses the following format:

_url(URLString [,encoding])

URLString string The string to convert.

encoding string IANA encoding for the string.

When encoding the string, the following rules apply:

The alphanumeric characters “a” through “z”, “A” through “Z” and “0” through “9”, “.”, “-”,
“*”, and “_” remain the same.

The space character " " is converted into a plus sign (+).

All other characters are considered unsafe and are first converted into one or more bytes
using the specified encoding scheme. Then each byte is represented by the 3-character
string %xy, where xy is the two-digit hexadecimal representation of the byte. The
recommended encoding scheme to use is UTF-8., which is the default.

For example, using UTF-8 as the encoding scheme the string The string ü@foo-bar would get
converted to The+string+%C3%BC%40foo-bar because in UTF-8 the character ü is encoded as
two bytes C3 (hex) and BC (hex), and the character @ is encoded as one byte 40 (hex).

Note: The World Wide Web Consortium Recommendation states that UTF-8 should be used.
Not doing so may introduce incompatibilities. For this reason, UTF-8 is the default encoding
regardless of the encoding under which the listener is running.

If the function determines that the passed string is a valid URL, it encodes only the portion
following the '?'. This is called the <query> in the URL specification. Otherwise, it encodes the
complete string.

1. iWay Functions

Functional Language Reference Guide 81

For example, the URL http://localhost:1456?value=1 test=2 will encode to http://localhost:
1456?value=1+test=2.

_urlencode(): Convert String to MIME Encoding

The _urlencode() function converts the full passed in string to the application/x-www-form-
urlencoded MIME format. For more information about HTML form encoding, consult the HTML
specification. The string is not checked for URL format. The _urlencode() function uses the
following format:

_urlencode(String [,encoding])

String string The string to convert.

encoding string IANA encoding for the string.

When encoding the string, the following rules apply:

The alphanumeric characters "a" through "z", "A" through "Z" and "0" through "9", ".", "-",
"*", and "_" remain the same.

The space character " " is converted into a plus sign "+".

All other characters are considered unsafe and are first converted into one or more bytes
using the specified encoding scheme. Then each byte is represented by the 3-character
string "%xy", where xy is the two-digit hexadecimal representation of the byte. The
recommended encoding scheme to use is UTF-8., which is the default.

Note: The World Wide Web Consortium Recommendation states that UTF-8 should be used.
Not doing so may introduce incompatibilities. For this reason, UTF-8 is the default encoding
regardless of the encoding under which the listener is running.

Unlike the _url() function, no effort is made to validate the input string. Instead, it encodes the
complete string. For example, http://localhost:1456?value=1 test=2 will encode to http%3A%2F
%2Flocalhost%3A1456%3Fvalue%3D1+test%3D2.

_urldecode():Decode a String in MIME Format

The _urldecode() function decodes a string from the application/x-www-form-urlencoded MIME
format into standard format for use as a parameter, inclusion in an XML value, and so on. It
uses the following format:

_urldecode(URL String [,encoding])

Encoding Functions

82

URLString string The string to convert.

encoding string IANA encoding for the string.

The conversion process is the reverse of that used by the _urlencode() function. It is assumed
that all characters in the encoded string are one of the following: "a" through "z", "A" through
"Z", "0" through "9", and "-", "_", ".", and "*". The character "%" is allowed but is interpreted
as the start of a special escaped sequence.

If the encoding is not specified, UTF-8 is assumed, in accord with the recommendations as
described by the _urlencode() function.

_hex(): Encode a String to Hexadecimal

The _hex() function encodes a string into hexadecimal notation. This function uses the
following format:

_hex(value [,charset])

value string The value to be encoded into hexadecimal.

charset string The character set represented by the internal
Unicode or the value. The default is the system
default character set. It is a good idea to specify
the actual character set, which is often ISO-8859-1
for usual byte to character operations.

Example:

_hex(_replace("ab~c",'~','\0x85') ,ISO-8859-1)

The following value is returned:

61628563

_fromhex(): Decode a String from Hexadecimal

The _fromhex() function decodes a string in hexadecimal notation into the ASCII character set.
This function uses the following format:

1. iWay Functions

Functional Language Reference Guide 83

_fromhex(value [,charset])

value string The value to be decoded.

charset string The character set represented by the internal
Unicode or the value. The default is the system
default character set. It is a good idea to specify
the actual character set, which is often ISO-8859-1
for usual byte to character operations.

Example:

_fromhex(69776179)

The following value is returned:

iway

_base64():Encode Into Base64

The _base64() function uses the following format:

_base64(value)

value string The value to encode.

encoding string The encoding to be used in creating the
base64.

The input may be represented in a non-server encoding. To set the encoding for the
conversion, the encoding parameter must be used.

For example, if you want to transfer the current message (document payload) to a third-party in
base64 form, configure the function as follows:

_base64(_flatof(),_docinfo('encoding'))

_frombase64():Decode From Base64

The _frombase64() function uses the following format:

_frombase64(value)

Encoding Functions

84

value string The string to convert.

encoding string The encoding to be used in creating the
base64.

The passed value is converted from base64 representation to standard notation.

_encode64():Conditionally Encode Into Base64

The _encode64() function uses the following format:

_encode64(value)

value string The string to convert.

encoding string The encoding to be used in creating the
base64.

If the value requires base64 encoding it is converted to base 64, else it is returned with no
conversion. Examples of values that need base64 conversion include those with values lower
than 0x20.

If conversion is required, the converted value is enclosed in base64() functional notation.

_decode64(): Conditionally Decode From Base64

The _decode64() function uses the following format:

_decode64(value)

value string The string to convert.

encoding string The encoding to be used in creating the
base64.

If the input value is enclosed in base64() functional notation. it is converted. Otherwise, it is
not changed.

Example 1:

_decode64('base64(YWJj)')

In this example, the string is decoded as 'abc'.

1. iWay Functions

Functional Language Reference Guide 85

Example 2:

_decode64('abcd')

In this example, the string is not decoded since it is not enclosed in the base64 tag.

_fmtdec(): Insert an Integer Into a Pattern Mask

The _fmtdec() function is useful when a value must be in a specific format. It uses the
following format:

_fmtdec(pattern,intval)

pattern string Define the string to be created.

intval integer Value to be inserted.

The value is inserted into the pattern mask to form a complete result. The mask consists of
alphabetic and numeric characters and special symbols as defined for Java formatting. When
the value is inserted, the appropriate pattern characters are replaced with the value. For
example _fmtdec('ab##.#x',17.3) yields ab17.3x.

_fmtint(): Insert an Integer Into a Pattern Mask

The _fmtint() function is useful when a value for a control number is read from the trading
partner manager or another source. It uses the following format:

_fmtint(pattern,intval)

pattern string Define the string to be created.

intval integer Value to be inserted.

The integer is inserted into the pattern mask to form a complete result. The mask consists of
alphabetic and numeric characters and special symbols. It also should contain one sequence
of # characters. When the integer is inserted, the # characters are replaced with the integer.
For example _fmtint('ab###x',17) yields ab017x.

Encoding Functions

86

_urlparse() Extract Portions of a URL/URI

_urlparse(URL String, component [,query_kw [,default]])

URLString string The string to parse.

component string The name of the desired component.

query_kw string A keyword to be located in the query portion of the URL.

default string Value returned if the query keyword is not found.

The Uniform resource Locator/Identified is parsed in order to extract useful pieces. The
components are as described in RFC 2396 Uniform Resource Identifiers (URI): Generic Syntax
(http://www.ietf.org/rfc/rfc2396.txt).

The component parameter, which is required, can be one of these RFC-identified words:

protocol

host

port

path

file

query (also allows parsing of the query for keyboards)

authority

ref

userinfo

When parsing for the query component, two additional parameters are supported. The first is a
keyword to be located, and the second is a default. The keyword is a URL keyword contained in
the query. If the keyword is not found, then the default is returned. If the default is not
present, then an empty string is returned.

For example:

_urlparse('http://www.url.com/look?q=iway','query','q','hello')

yields the following:

1. iWay Functions

Functional Language Reference Guide 87

http://www.ietf.org/rfc/rfc2396.txt

iway

If a URL has triggered a flow in the HTTP listener components, then the URL will be in the url
special register (SREG). In this case, the above example could be:

_urlparse(_sreg(url),'query', 'q', 'hello')

In addition, there are two more keywords for simplicity of use:

Context, which means the directory portion of the URL path, excluding leading and trailing
slashes. For example:

URL Context

http://myhost/something/else something

http://myhost/something/else/again something/else

http://myhost/ empty string

http://myhost/something empty string

Filename, which means the file portion of the URL path. For example.

URL Filename

http://myhost/something/else else

http://myhost/something/else/again again

http://myhost/ empty string

http://myhost/something something

http://myhost/something/ empty string

Note that file and filename are not synonyms. File returns the URL path plus any query string.

To extract specific portions of the returned information, the _token() function can be used.

_deflate(): Compress (Deflate) a Value

The _deflate() function uses the following format:

_deflate(value [,encoding][,output type] [,algorithm modifier])

Encoding Functions

88

value String The string value to be compressed.

encoding The character set of the input string. The default is
ISO-8859-1.

output type keyword The format of the output resulting string. The default is
leadhex. For more information on the supported output
types, see the table below.

algorithm
modifier

keyword The algorithm to be used. The default is standard. For more
information on the supported algorithm modifier types, see
the table below.

A string value (including a flattened XML or JSON object) is compressed using standard ZIP
algorithms.

The compression result is expressed as a Unicode string in a designated format. This string is
appropriate for database updates into a varbinary column, for transmission, or for other
storage.

The compression operation first converts the string to a byte representation based on the
provided encoding. It then applies compression algorithms, and once compressed, the result
is converted back to a string under encoding ISO-8859-1 in a requested format. The default
format is leadhex (for example, 0x010203…) appropriate for direct insertion into most
databases.

The supported output types are listed and described in the following table. The default is
leadhex.

Output Type Description

rawhex The deflated bytes are represented as hexadecimal digits, two per byte.

1. iWay Functions

Functional Language Reference Guide 89

Output Type Description

leadhex The deflated values are represented as hexadecimal digits, two per byte.
The result is prepended with the two characters 0x creating a value
appropriate for most database inserts. For example, using the SQL service
object (com.ibi.agents.XDSQLAgent) in iIT to generate an insert for a table
with two columns, an integer and a varbinary:

SQL INSERT INTO MYTABLE (INTCOL, VBCOL) VALUES(%INTX, %VB)

might result in the following:

SQL INSERT INTO MYTABLE (INTCOL, VBCOL) VALUES(1,
0X1234556788)

For more information on setting insert values using the SQL service
(com.ibi.agents.XDSQLAgent), see the iWay Service Manager Component
Reference Guide.

base64 The deflated bytes are represented in base64, with no iSM prefix (for
example, 076572dfhe=). Typically, base64 representation results in a
shorter string than with hex representation.

func64 The deflated values are represented in base64, encased in iSM base64
marker prefix. For example:

base64(076572dfhe=)

The supported algorithm modifier types are listed and described in the following table. The
default is standard.

Algorith m
Modifier

Description

standard The default compression level. This is usually a good match for balancing
performance with the size of the compressed result.

fastest The compression uses fewer resources, but possibly at the expense of
compression size.

smallest The compression results in a smaller result, but may require additional time
to complete the operation.

Encoding Functions

90

Algorith m
Modifier

Description

huffman An entropic encoding algorithm well oriented to English language text.

none No compression is performed. This is useful for diagnostic and testing
purposes only.

The following is an example of the _deflate function:

_deflate (_flatof(),,'base64','smallest')

_inflate(): Inflate a Value

_inflate(value, type)

value string The deflated value expressed as a string.

type keyword The representation type of the string. The following types
are supported:

string. Analyze the value looking for type markers
(default).

base64. The string is encoded in base64, either with or
without the base64() markers.

leadhex. The value is hex characters (for example,
010a45), starting with 0x.

rawhex. The value is hex characters without the 0x
marker.

The input is assumed to be a string version produced from a deflated message. How the string
is created will depend on the input document, but can be expected to be either a base64 value
or a string simply made from a byte array. Users are cautioned that if the input is in base64
format, do not attempt to use the _frombase64() function to preconvert the input to string.

The standard representation of a database varbinary column a read in iSM (SQL listeners,
XDSQLAgent, and so on) is marked base64. For example:

base64(71889875rdj02=)

1. iWay Functions

Functional Language Reference Guide 91

It is therefore in a format that can be recognized without a type operand.

The standard ZIP inflate algorithms are attempted, and if successful the result returned is the
inflated string.

Working with BLOBs and Varbinary

Although some databases automatically compress and decompress character data (text or
clob columns), others do not. For applications that expect to store large amounts of textual
(string) data, the iFL functions _deflate() and _inflate() are available. For example, to store the
current document into a nullable varbinary column, the name/value tokens for the insert
statement might be:

thetree _deflate()

The input from a BLOB or varbinary field is returned from iSM readers as framed base64. This
can be passed into the _inflate() iFL function, which automatically recognizes the framing and
decompresses the information back to the original data string. For more information, see
_deflate(): Compress (Deflate) a Value on page 88 and _inflate(): Inflate a Value on page 91.

File Functions

File functions operate on the file system of iWay Service Manager (iSM). File operations
depend on the specifics of the operating system.

_file(): Get File Contents

The _file() function uses the following format:

_file(path, [,default[,encoding]])

path string Path to the desired file.

default string Value to be returned if the file does not exist.

encoding string IANA encoding.

The specified file is loaded and returned. If encoding is specified, the file is considered to be
encoded in the specified IANA encoding. If omitted, the default file system encoding is
assumed.

File Functions

92

The special encoding of base64 will return the contents of the file encoded in base64. This is
especially useful when contents of files, such as PDFs, are to be included as XML values.
Placing an _file() function in the XML document and then using the Tree Evaluator Service
(com.ibi.agents.EvalWalk) will perform the inclusion.

For example:

_file('/mydoc.pdf',,'base64')

_filegdg(): Make File Generations

The _filegdg function pushes down versions of a file as new versions are created. It is designed
to assist in situations in which only a few generations (versions) of a file are required. The
_filegdg function uses the following format:

_filegdg(sourcefile , generations [,generationpath] [,compare])

sourcefile string The path to the file to be preserved.

generations integer The number of generations to exist.

generation path string Path of a directory in which pushed generations will be
preserved. The default is the directory in which the source
file is found.

compare keyword Determines whether the source file should be compared
to the prior last generation. The default is true.

true. If the current version and the prior version are
the same, no generation is pushed.

false. The new generation is always pushed (created).

Generation Data Groups (GDG) keep identified generations of a file. Frequently this is used to
assist during debugging. For example, to keep a limited number of versions of a file to
represent the last few changes to the data. The GDG is the reverse of the unique file naming
facility of iSM in which versions count up to the modulus of the unique characters in the name.

For unique naming, a file named abc####.txt would create 10000 files and then restart at
abc00001. In contrast, the GDG with three versions:

_filegdg('Abc.txt',3)

might create:

1. iWay Functions

Functional Language Reference Guide 93

Abc.txt

Abc0.txt (last version)

Abc1.txt (prior version)

When the next Abc.txt is written (assuming compress is true), the contents of the existing
Abc.txt will be compared to Abc0.txt. If the contents match, then no change will be made. If
they do not match, then the existing Abc1.txt will be deleted, Abc0.txt will be renamed to
Abc1.txt, Abc.txt will be renamed to Abc0.txt, and a new Abc.txt will be created.

The function returns the source file value, so that your file write component can write into
Abc.txt.

The compare option when set to true prevents the creation of identical generations, ensuring
that only changes are represented. For a debug run in which you need to see the actual results
of the specific list runs, you may want to set this option to false.

A reasonable use case would be to write the input file using a File Emit service or a QA service,
using the _filegdg() as the file name to be written. Thus at a failure (ending the iteration or
stopping the channel with a control agent), the output of the debugging service would hold the
last three records, given the above example.

Note: The number of generations and the compare option are consistent over all executions.
The source file (and backup directory if used) vary by instance execution.

_fileinfo(): Information About a File

The _fileinfo function returns information about a specified file. The information returned
depends on the operating system. The _fileinfo function uses the following format:

File Functions

94

_fileinfo(type , file)

type keyword The desired information about the file to be returned. Specify
one of the following types:

absolute. The full, absolute path of the file. A relative path
will be converted to an absolute path.

exists. Returns true if the file exists, else false.

isdir. Returns true if the file is a directory, else false if it
does not exist or is a file.

isfile. Returns true if the file is a file, else false if it does not
exist or is a directory.

length. Returns the (approximate) length in bytes of the file.

locked. Returns true if the operating system reports that the
file is locked.

name. Returns the file name portion of a full file path
specification.

owner. ACL owner for the file, if available in the operating
system.

path. Returns the path portion of a full file path
specification.

moddate. Returns a Unix date value for the modification
date of the file. The _fmtdate() function uses a pattern to
convert the Unix time/date to a readable value.

For more information on returning timestamps, see _timer():
Return Unix Epoch Time on page 63.

file string The specified file for which information is to be returned.

As an example, a file called filedata.txt is located in the c:\mydir\ directory. The following
_fileinfo() function is executed:

_fileinfo(type,' c:\mydir\filedata.txt')

1. iWay Functions

Functional Language Reference Guide 95

The following table lists the returned values for several supported types.

Type Sample Returned Value

absolute c:/mydir/filedata.txt

length 55

isdir false

isfile true

owner pc1/pcuser

Note: The owner information ID is dependent on the operating system.

Time/date values can be converted to more readable formats by use of the _fmtdate()
function. For example:

_fmtdate('mm/dd/yyyy HH:mm:ss',_fileinfo('moddate','c:/docs/a.xml'))

returns:

07/20/2015 07:23:44

_fileexists(): Does File Exist

The _fileexists() function determines whether a file exists on a specified path. It uses the
following format:

_fileexists(path [,nametype])

path string Path to file.

nametype Keyword Determines how the file name is being
expressed. Specify one of the following
types:

standard. Name is a file name.

dos. Name is a DOS/Windows
wildcard specification.

File Functions

96

If the file name is a literal or is resolved as a literal, such as the contents of a Special Register
(SREG), then that file name is used. If the parameter is a _file() function, then the file name as
resolved for the _file() function is used, not the contents of the file. To test for a name in a file,
use the _eval() function to evaluate the file operation.

For example, if a SREG called fname holds a file name, then the following function is returned
as true:

_fileexists(sreg(fname))

Otherwise, this function is returned as false.

If the nametype property is set to dos, then the file name may contain DOS-type wildcard
characters (for example, ? and *). Wildcard characters cannot be used in the path
specification itself, only in the file portion (the file name).

For example, the following function returns true if any files on the path meet the specification:

_fileexists('/lookhere/any*.txt',dos)

Otherwise, this function is returned as false.

System Information Functions

It is now possible to obtain and work with system information. This section describes the
_sysinfo() and _chaninfo() functions.

_sysinfo(): Information About the Server

The _sysinfo() function returns information about the current server. This function uses the
following format:

1. iWay Functions

Functional Language Reference Guide 97

_sysinfo(type [,modifier [,modifier2]])

type keyword The type of information that is to be obtained. You can
specify one of the following values:

processor. Number of processors available to the
server.

A common use of the processor value is to regulate
parallel operations to avoid over-committing
processors and developing a CPU-availability delay.

version. Current server version (for example, 7.0.3).

shortversion. Current software version that is
shortened to the primary release level (for example,
7.0).

debug. Determines if the debug trace level is set.
Returns true or false.

deep. Determines if the deep trace level is set.
Returns true or false.

external. Determines if the external trace level is set.
Returns true or false.

envvar. Accesses an environment variable.

Accessing the System Environment Variable (envvar)

Most operating systems provide environment variables to pass configuration information to
applications. These are not Java system properties, which can be read through the _sreg()
function. Instead, these are variables that reside at the operating system level. There are
many subtle differences between the ways environment variables are implemented on different
operating systems, and variable names are specific to the operating system. For example,
variable names on UNIX systems are case-sensitive, while they are case-insensitive on
Windows systems. The way in which environment variables are used also varies. For example,
Windows systems provide the user name in an environment variable called USERNAME, while
UNIX systems might provide the user name in USER, LOGNAME, or both.

System Information Functions

98

To maximize portability, never refer to an environment variable when the same value is
available in a system property. For example, if the operating system provides a user name, it
will always be available in the system property _sreg('user.name').

To read an environment variable, compose the _sysinfo() function as follows:

_sysinfo('envvar',name [,default])

The following example is applicable to Windows:

_sysinfo('envvar','temp',_concat(_sreg('iwayworkdir'),'/temp'))

_chaninfo(): Information About a Channel

The _chaninfo() function returns information about the specified channel. If the specified
channel does not exist, an exception is generated when the function is evaluated. This
function uses the following format:

_chaninfo(name, [,type])

where:

name

string

Is the name of the channel. If an asterisk (*) is specified, the current channel in which the
function is running will be evaluated.

type

keyword

Is the type of information that is to be obtained. Supported values include:

state. The state of the channel. Possible values include:

active. The channel is available to process messages.

begin. The channel is starting.

retry. The channel is not processing messages and is awaiting a retry cycle.

config. The channel cannot process messages due to a configuration error.

stopping. A stop order has been issued. No further messages are being accepted,
but the channel has not completed its work.

stopped. The channel is not active.

1. iWay Functions

Functional Language Reference Guide 99

waiting. The channel is on a backup server and is not executing.

inactive. The channel was marked inactive in the configuration and awaits an
explicit start command.

ispassive. Is the channel passivated. In some cases, such as an internal queue
becoming too full, a passivate can be issued to a listener. Many listeners handle
passivation automatically. However, some listeners require process flow support. In
such a case, the passivate state test will return as true. The process flow may want to
issue a sleep loop until the state becomes false, or take another action.

workers. The number of workers (threads) defined for the channel.

active. The number of messages currently being processed by the channel. A common
use for this value is to regulate parallel operations to avoid over-committing processor
resources.

debug. Determines if the debug trace level is set. Returns true or false.

deep. Determines if the deep trace level is set. Returns true or false.

external. Determines if the external trace level is set. Returns true or false.

pending. Count of messages on the pending queue at the instant that the call is made.
For channels that do not support pending, if pending is not configured, or if the specific
queue type count is not available, a value of 0 is returned.

Note: In a multi-threaded channel, the pending count may change unpredictably at any
moment as messages are added and removed for execution.

The _chaninfo() function can also be run in a script. For example:

if(_chaninfo('ch1','state')='active',stop ch1)

Security Functions

Security functions are available to test the state of the current user. As a user logs on, usually
through an Authentication Provider, the authority of the current user is encapsulated in a
Principal, which identifies the user and the roles (authorities) that the user possesses. For
example, an administrative user has the role admin as a standard, but role names are related
to services available to the user when that user logs on. Roles are assigned by the security
system (Authentication Realm Providers) based on information stored about the user in the
appropriate information stores.

Security Functions

100

_aes(): Encode and Decode a Value Using the Advanced Encryption Standard With Salt

The _aes() function is used to encode and decode a value using the Advanced Encryption
Standard (AES) with salt. This function uses the following format:

_aes(action,key,data [,keylength,encoding,[,iterations]]

action

(required)

keyword The action to be performed. Specify one of the
following actions:

encrypt. Encrypt the input using a generated salt.

decrypt. Decrypt the input by removing the salt.

key

(required)

string The key to be used. Each character encodes 8 bits of
the key and therefore must be between 0 and 255
inclusive.

data

(required)

string The input data to be encrypted or decrypted.

keylength

(optional)

integer The size of the key in bits. The following are the sizes
that are supported:

128. A 128-bit key. This is the default size.

192. A 192-bit key, which requires the proper policy
files.

256. A 256-bit key, which requires the proper policy
files.

encoding

(optional)

string The type of encoding that will be used to convert data
from characters to bytes. The default is UTF-8.

iterations

(optional)

integer The number of algorithm iterations (1...255). The
default is 1.

Advanced Encryption Standard (AES) is an encryption standard adopted by the U.S. government
in 2002. Implementations of AES are available in many encryption packages. Details on AES
are beyond the scope of this manual but can be found in many sources of cryptographic
information.

1. iWay Functions

Functional Language Reference Guide 101

AES supports key strengths of 128 (the server default), 192, and 256 bits. Due to import-
control restrictions imposed by some countries, the default jurisdiction policy files only permit
strong cryptography to be used. An unlimited strength version of these files (that is, with no
restrictions on cryptographic strength) is available but is not distributed by iWay.

AES is a block cypher that encrypts and then reencrypts. Any number of iterations can be
entered, and the more iterations used, the higher the cryptographic strength of the result.
However, this must be balanced against the processor overhead.

The key is entered as an iFL string, and can contain up to 16, 24, or 32 characters. Each
character must have a value below 256. Use of escaped literals of iRL, such as use of
Unicode values or hex values enable entry of complex keys. Keys shorter than the specified
lengths will be padded with binary zero.

aes('encrypt','iway software','aes')
BtJLII90UBV7wtsrpN8TDw==
_aes('decrypt','iway software','BtJLII90UBV7wtsrpN8TDw==')
aes

It may be convenient to store the key in a properties file or a special register. It is
recommended that the key not be hard coded in the function call. A common way to do this is
to configure a register using the iWay console, or to add to a startup script:

set register mykey _concat('secret key\x01')

The _concat function is used because the iFL optimizers would not recognize the literal
'secret key\x01' and would not convert the hexadecimal escape. Using the _concat()
function causes the iFL interpreter to evaluate the literal to produce the 11 character key. This
will be padded with five binary zeros by the system (assuming 128 bit keys).

Alternatively, you can store the key in the internally masked form used by iSM. You can create
a key of this form using the _encr() function, or using the set property command. For example:

set property keyfile mykey mysecret -encrypt

This command will generate a property file that holds the following key:

mysecret=ENCR(3237310127231613138296)

If this value is loaded into an iSM configuration register during system startup, the value will
never appear in its unmasked form. For more information, see the iWay Service Manager
Security Guide.

Security Functions

102

_hasrole(): Is This Authority Available

_hasrole(name)

name string The name of an authority to be tested.

The current Principal is tested for the names authority. If the user represented by this Principal
has the identified authority the function returns true.

_getprin(): Get Information from This Principal

_getprin(keyword)

keyword string Keyword of which information is to be obtained.

user. User name.

password. Password of the user.

The information associated with the current Principal is returned. A common use of this
information is to configure an emitter that inherits the login credentials of the current user.

This function returns auto when the principals are not configured on the server and the default
user is used. Otherwise, the principal on the channel is returned.

_encr(): Mask the Value

_encr(value)

value string Term to encrypt

iWay Service Manager (iSM) uses a simple cryptographic mechanism to mask passwords
stored in its configuration files. The algorithm employs random seeds and salting when
generating the encrypted result. The result is marked with functional braces for recognition by
the internal decryption services when the value needs to be used.

iWay strongly recommends that this function not be used to protect values in business
systems. Facilities to use validated PKI and session key cryptography are readily available for
this purpose. The use of this function should be restricted only to password masking and
similar purposes. For example:

1. iWay Functions

Functional Language Reference Guide 103

_encr(‘iway’)

This command will generate the following masked value:

ENCR(3157318131043128321832252993249)

Key generation for functions such as AES encryption can use masked values, which are
unmasked only when used. A masked value can be written to a property file by using the set
property command. Often that value is loaded during startup into a general register, where it
continues to be carried in masked form. For more information on using the set property
command, see the iWay Service Manager User's Guide.

_md5(): Generate an MD5 Hash

_md5 (term [,term*])

term string A value to be added to the hash.

In cryptography, MD5 (Message-Digest algorithm 5) is a widely used cryptographic hash
function with a 128-bit hash value. MD5 confirms to an Internet standard (RFC 1321). MD5
has been employed in a wide variety of security applications, and is also commonly used to
check the integrity of files. An MD5 hash is typically expressed as a 32-digit hexadecimal
number. Unlike functions, such as _uuid() that generate unique numbers, an MD5 hash will
produce the same value given identical input. The iWay functional language enables generation
of an MD5 hash of from one to nine terms.

_md5('username','realm','password')

returns

66999343281B2624585FD58CC9D36DFC

A standard use of MD5 is in digest authorization in HTTP. In this case, the username,
password, a realm name and a set of random values called nonces are used to generate the
hash.

Commonly in iWay, it is useful to add a hash value to a message or to check it on receipt. The
_md5 function can help with this requirement.

_sha1(): Generate a SHA1 Hash

The Secure Hash Algorithm (SHA) hash1 function is a cryptographic hash function designed by
the National Security Agency (NSA) and published by the National Institute of Standards and
Technology (NIST) as a U.S. Federal Information Processing Standard.

Security Functions

104

The _sha1() function uses the following format:

_sha1(term [,term*])

term string Terms to include in the SHA1 computation.

Although some concern has been raised about the absolute cryptographic security of the SHA1
algorithm, it remains a commonly used hash for securing the value of data.

For example:

_sha1('name','digest','password','1234567')

The following is returned:

95e760b78aaa4ccca9ac94b8815e753674bafaa7

_sha256(): Generate a SHA256 Hash

The Secure Hash Algorithm (SHA) hash256 function is a cryptographic hash function designed
by the National Security Agency (NSA) and published by the National Institute of Standards and
Technology (NIST) as a U.S. Federal Information Processing Standard.

The _sha256() function uses the following format:

_sha1(term [,term*])

term string Terms to include in the SHA256 computation.

For example:

_sha256('name','digest','password','1234567')

The following is returned:

01598ead43e67a3f57bb6a899c62b0874406142db2f0039d1aeba2bec39901a9

Other Functions

This section lists and describes other functions that you can use in iWay Service Manager
(iSM).

_excel(): Get Value From a Workbook Spreadsheet

The _excel() function returns a value from a workbook spreadsheet.

1. iWay Functions

Functional Language Reference Guide 105

Note: The _excel() function requires the Excel extension to be installed.

The _excel() function uses the following format:

_excel(workbook, sheetname,keycol, dif, keyval, valcol [,default] [,keep]
[,evaluate])

workbook string The path to the workbook.

sheetname string Name of the sheet in the workbook. If omitted,
the default is Sheet1.

keycol sheetcol (see
below)

The column containing the desired property key.

dif boolean Determines whether this sheet is compliant
with DIF format. If set to true, then the property
key search starts in row 2, else it starts in row
2.

Note: As a convenience the keyword dif is
equivalent to true. The setting of this parameter
cannot vary based on the input document.

keyval string The property name in the keycol.

valcol sheetcol The column containing the desired value.

default string Value returned if the keycol/valcol cannot be
determined or located.

keep keyword The keyword to control workbook load
operation:

check. Check for file modification. (default)

keep. Do not check for file modification and
retain the worksheet in memory.

Note: The setting of this parameter cannot vary
based on the input document.

Other Functions

106

evaluate keyword The keyword to control the result evaluation:

evaluate. Evaluate the result as iFL. Allows
iFL to be held in a cell of the worksheet.

constant. Do not evaluate. (default)

Note: The setting of this parameter cannot vary
based on the input document.

Similar to the _property() function, a key is evaluated and the value returned. The spreadsheet,
however, can provide data anywhere on a sheet, and sheet relationships are supported. For
example, a formula in a value column might reference another position or sheet position in a
logical hierarchy meaningful to an application. For example, separate sheets within a single
workbook might hold values for different customers, message types, and so on.

Once a keycol is determined, the rows of the sheet are interrogated to locate the row
containing the keyval. Once the row is determined, the valcol on that row is accessed to obtain
the desired value.

A sheetcol is used to locate the column of interest. It may be an integer, a column ID (if not DIF
format) or a meaningful value in the header row (dif is set to true) such as dev or prod enabling
multiple sets of properties to be stored together. For example, in the sample spreadsheet,
formulas are used to construct simple interrelationships. Other application architects might
elect to keep values in different spreadsheets, with the relationships between the
spreadsheets arranged in a meaning property hierarchy. The _excel() function attempts to
resolve formulas, but users are cautioned that it is possible to construct formulas that _excel()
cannot evaluate. Constructing valid spreadsheets that can be evaluated is the responsibility of
the application architect.

No provision is made to store a value in encrypted form, however encrypted values can be
created using the set property command and the value copied to the spreadsheet.

Example 1:

1. iWay Functions

Functional Language Reference Guide 107

A single sheet table with columns representing the current development status is shown in the
following image.

Assume a special register where is set to uat. The transform for editransform might be entered
as follows:

_excel('/excel/users.xlsx','app1','property',dif,
editransform,_sreg(where),'asis')

This function assumes an imaginary transform that is used for debugging. The function will
search the app1 spreadsheet to locate the row that has editransform in the property column. If
found, then it returns the value in the uat column. If not, then it returns asis.

The following is the equivalent for raw addressing:

_excel('/excel/users.xlsx','app1','A', false, editransform,'C','asis')

The form of addressing used depends upon application needs.

Example 2:

Other Functions

108

A multicolumn workbook holding information about specific or general EDI trading partners.
This example uses the _excelsheets() function described. In iWay Service Manager, the EDI
facilities provide a special register frompartner holding the name of the source partner in the
EDI message. The names of the worksheets in the workbook represent specific trading partner
names that do not use the general defaults entered in sheet defaultPartner, as shown in the
following image.

The sheet for partner1 might be as shown in the following image.

Note that cells of partner1 can refer to other sheets, in this example the defaultPartner sheet.

To locate the transform for an EDI 850 message for partner1:

_excel('/
info.xslx',_if(_inlist(),_sreg(frompartner),'defaultPartner')),'key','dif',
850,'For This Partner','trans850default')

The following table lists and describes this command structure.

1. iWay Functions

Functional Language Reference Guide 109

Example Explanation

_excel('/info.xslx', Specify the name of the workbook.

_if(inlist(_excellist('/
info.xslx',_sreg(frompartner),'string')
,
sreg(frompartner)), 'defaultPartner)),

If the incoming partner is in the list of
special partners (sheets), then this
name is used as the sheet name, else
the default is used.

'key',dif, The column in which you look for the
specific data row that you require.

'850' The transform name you want to
locate.

'For This Partner', Where you get the data that you
require.

'trans850default' Just in case.

The result returned will be trans850part1.

_excelsheets(): Get the List of Workbook Worksheets

The _excelsheets() function returns a list of the worksheets in a specified workbook. The
returned list can be used in the _inlist() iFL function, as shown in the example under _excel().

Note: The _excelsheets() function requires the Excel extension to be installed.

The _excelsheets() function uses the following format:

_excelsheets(workbook [,keep])

workbook string The path to the workbook.

Other Functions

110

keep keyword The keyword to control workbook load
operation:

check. Check for file modification. (default)

keep. Do not check for file modification and
retain the worksheet in memory.

Note: The setting of this parameter cannot vary
based on the input document.

_fetch(): Access a Remote Library

The _fetch() function returns specified items (components) from a remote library. The library is
a running iSM configuration.

A common use is to access a subflow for a specific customer or situation. The flow is not built
into the application, avoiding the need to rebuild as each new customer is added. Some
application designers refer to this as an external exit.

The _fetch() function uses the following format:

_fetch(category , itemname [,libraryName] [,user] [,password]
[,remotehost:port])

category* string Category of item to return:

pflow. Deployed system process flow.

xslt. An XSLT template.

transform. An iWay transform.

itemname* string Name of the item to return. For a process flow
this is the name of a deployed system flow in
the configuration. For an iWay transform this is
the transform name as published to the library.

libraryName string Name of the library. This is the name of a
configuration to which the items have been
deployed. The default configuration is base.

1. iWay Functions

Functional Language Reference Guide 111

user string User name with access to the library. The
default is the delivered security profile iway.

password string Password for the user name with access to the
library. The default is the delivered security
profile iway.

host:port string The host name and optionally the port number
for a remote library. If the port is omitted, then
the default port 9999 is used. If the parameter
is omitted, then the access is to a local library
configuration. This is the port to the master
configuration, usually base, on the host. It is
not the port for the library configuration should
these values differ.

Do not use the _fetch() function to fetch an item from your own application. Use this function
only to fetch from a designated library configuration. The component must have been properly
deployed to the library.

Example 1:

The desired process flow is deployed to the base configuration in this installation. The
configuration is running under the default user credentials.

_fetch(‘pflow’,’customer456’)

Example 2:

A configuration named library has been deployed on a remote system with modified
credentials.

_fetch(‘pflow’,_xpath(/root/
customerid),’library’_sreg(‘libuser’),_sreg(‘libpswd’),’libhost:9999’)

Example 3:

The Transform service is configured to run a customer-specific transform deployed to the
library in Example 2.

_fetch(‘transform’,_xpath(/root/
customerid),’library’_sreg(‘libuser’),_sreg(‘libpswd’),’libhost’)

Other Functions

112

_manifest(): Read an Attribute From a Java Archive (JAR) Manifest

A Java Archive (JAR) manifest contains information that is added when a .jar file is built. There
can be standard or application-specific information contained in a manifest. This function
makes the value of a manifest variable available to the application.

The _manifest() function uses the following format:

_manifest(jarname, attribute, [,default])

jarname string Name of the .jar file from which the manifest is
to be read. A relative path is resolved to the
classpath.

attribute string Name (case-sensitive) of the attribute to be
read.

default string Value to be returned if the attribute is not
present or has no value.

For example, you can compose the _manifest() function as follows to determine the build date
for this version of the iwcore.jar file:

_manifest('iwcore','Built-On')

_parmof(): Get Parameter Setting From Another (Component) Parameter

It is sometimes useful to set the parameter of one component (for example, a listener), called
the target, to reflect the setting of another component, called the source. This can, for
example, allow a target listener to reflect (shadow) a source listener. The configuration
parameter is taken from the settings of the source, not the current runtime value. It is
immaterial whether the source component is actually in execution. The setting will be
evaluated on the target as if the source setting had directly been present on that target.

The source can be defined in the runtime dictionary of the same or another configuration (iWay
Integration Application (iIA)).

The _parmof() function uses the following format:

1. iWay Functions

Functional Language Reference Guide 113

_parmof(sourcetype, sourcename, key [,default][, configuration])

sourcetype keyword The type of component to provide the
information (need not be the type of the target
component):

listener. The value is to be taken from a
listener definition.

system. The value is to be taken from a
system (server) definition.

sourcename string The name of the component. Not applicable to
system requests.

key string The (internal) name of the parameter.

default string Value to return if the parameter is not found in
the source.

configuration string Name of the configuration in which the source
is defined. The default is the current
configuration.

As an example, set the number of workers (threads) for a channel to match the number in a
channel named S1 in an iIA named APP3:

_script(): Invoke Scripts

The script iFL allows you to invoke scripts within your process flows and use the results as
required. For example, you can compute a configuration value assign the results to a special
register to use later on within the process flow. The iFL function's call format is:

Other Functions

114

 _script(script[,[scriptFunctionName][,p1[,p2[,...pN]]])

Parameter Description

script The script file location.

scriptFunctionName Name of the function within the script to
call.

p1 ... pN The script parameters.

For example:

function addit(val1, val2)
{
 return Number(val1) + Number(val2);
}

if(typeof(value1) != "undefined" && typeof(value2) != "undefined")
{
 document.write('the value '+value1+'+'+
value2+'='+addit(value1,value2)+'');
}
JavaScript - f.9

The following iFL call:

_script(c:/scripts/f9.js,,'value1=100','value2=156')

returns the following output:

'the value 100+156=256'

On the other hand, the following iFL call to the same JavaScript:

_script('c:/scripts/f9'.js,addit,1000,24)

returns the following output:

'1024.0'

Notice the differences between the two outputs. The first iFL call did not include the function
name, so the script was evaluated and returned the HTML document that would be generated.
The second call executed only the function 'addit' and returned the function's results.

_scriptlist(): Generate a Scripting Array

The script iFL also provides the following convenience function:

1. iWay Functions

Functional Language Reference Guide 115

 _sciptlist(...)

This function is used to generate the scripting array object, for example,
_scriptlist(53000.00,4.5,30) which produces an array with three elements. The first
element being 53000.00, the second is 4.5, and finally, 30.

If the script calls for a stack (Last In First Out array whose elements are pushed in and popped
out), the _sciptlist(...) function can used to generate it as well. Taking the previous
example the first element popped out of the stack would be 30 followed by 4.5 and lastly
53000.00.

The method _scriptlist may only be called within the _script function.

_eval(): Evaluate a String

The _eval() function evaluates a string as an expression of the function. The use of this tracing
facility is to help debug by reporting the setting of parameters that are set by iFL.

The _eval() function uses the following format:

_eval(expression [,tracemsg [,level]])

expression string The string to be evaluated.

tracemsg string A trace message to be issued when the
expression is evaluated.

level keyword The trace level specified for the tracemsg
attribute. The following trace levels are
supported:

none. Does not return any traces.

error. This setting provides error level
traces.

debug. This setting provides debug level
traces (default).

deep. This setting provides deep level
traces.

Other Functions

116

A common use of the _eval() function is to store a complex expression in a file. The expression
can be used by _eval(_file(<path>)). Assume that the file /myfilescfg.txt contains the simple
expression _sreg('iway.config','none'). If the _file('/myfilescfg.txt') function is used alone, then
the value will be _sreg('iway.config','none'), the value in the file. However, by using the _eval()
function, the _sreg() is evaluated and the result is the name of the configuration in which the
server is running.

An optional tracing service adds a message at the specified trace level (if enabled) to the
current trace log. This is useful for debugging the value to be output by this function. By
including the special token (%v) in the trace message, the expression value can be included in
the message. For example:

_eval('file(/holdifl.txt)','eval got %v','deep')

_log(): Write a Message to the Trace Log

The _log() function writes a message to the trace log. This function uses the following format:

_log(tracemsg [,level] [,expression]])

tracemsg string A trace message to be issued when the
expression is evaluated.

level keyword The trace level specified for the tracemsg
attribute. The following trace levels are
supported:

none. Does not return any traces.

error. This setting provides error level
traces.

debug. This setting provides debug level
traces (default).

deep. This setting provides deep level
traces.

info. This setting provides info level traces.

expression iFL An iFL expression (default is true).

1. iWay Functions

Functional Language Reference Guide 117

The tracing service adds a message at the specified trace level (if enabled). This is useful for
debugging the value to be output by this function. By including the special token (%v) in the
trace message, the expression value can be included in the message.

For example, the following function produces the specified message:

_log('Code reached point one','deep')

As an additional example, assume that special register (SREG) A contains the value 12345.
Consider the following function:

_log('Code reached point one with %v','deep',sreg(a))

The output will be:

Code reached point one with 12345

A use of this function is to display intermediate values in a complex iFL expression. The results
of the expression are returned as the value of the function. This allows a _log() function to be
cascaded in a complicated expression. When used with a third parameter (the iFL expression),
the function is idempotent.

The _log() function differs from the _eval() function in that _eval() is designed to construct the
expression to be evaluated. An example is to read an iFL expression from a file and then
execute it at runtime. The _log() function does not perform the delayed evaluation, rather the
expression is simply part of the overall iFL to be evaluated.

_cond(): Perform Conditional Test

The _cond() function uses the following format:

_cond(expression,operator [,operand])

function string First operand.

operator string Operator to be applied.

operand string Operand for comparison operators.

The first parameter is a string, often obtained from some other function. This value is operated
upon as ordered by the second parameter, possibly using the optional third parameter to
complete the test. The result of _cond() is true or false.

Operator Purpose Value Used

Other Functions

118

eq, =, == Pure equality. Strings are compared case sensitively. Yes

eqc Equality, case-insensitive. Yes

ne, != Not equals. Yes

lt, < Less than, numeric, or lexical. Yes

gt, > Greater than, numeric, or lexical. Yes

le, <= Less than or equals, numeric, or lexical. Yes

ge, >= Greater than or equals, numeric, or lexical. Yes

istrue Returns true if the result of the expression is true. No

isfalse Returns true if the result of the expression is false. No

isempty Returns true if the result of the expression exists but has no
value. This is useful for testing the return from an xpath
operation.

No

isnotempty Returns true if the result of the expression exists and has a
value. This is useful for testing the return from an xpath
operation.

No

isnull Returns true if the result of the expression does not exist. No

isnotnull Returns true if the result of the expression exists. No

_xquery: Evaluate an XQuery Expression

_xquery(expression)

expression string Expression in XQuery
language.

The _xquery() function is used to evaluate an XQuery 1.0 expression against the current
document. XQuery can be used to select portions of the document and to compute new values
in powerful ways. The result is the return value of the function.

1. iWay Functions

Functional Language Reference Guide 119

The XQuery language is documented in XQuery 1.0: An XML Query Language available at
http://www.w3.org/TR/xquery/. Notice XQuery 1.0 is a strict superset of XPath 2.0.

The expression argument is treated as a special literal. Functional replacement is performed
by iFL but math operations, quotes, and top-level commas are ignored. This makes it easier to
pass non-alphanumeric characters to the XQuery interpreter.

The result of evaluating an XQuery expression is a result sequence. The return value of
_xquery() is the value of each result sequence item separated by |.

For example, when the expression _xquery(//e[@a="1"]) is applied to the following document:

<root>
<e a="1">one</e>
<e a="1">uno</e>
<e a="2">two</e>
</root>

the result is “one|uno”. Notice how the XQuery expression does not need special quoting.

Functional replacement is applied before the XQuery interpreter is called. For example, assume
the special register reg1 has the value 1, then the expression:

 _xquery(//e[@a="sreg(reg1)"])

returns the same value as the previous expression when applied to the same document.

An XQuery expression can declare variables to be external. For example, the following
expression declares the external variables $v1:

_xquery(declare variable $v1 external; //e[@a=$v1])

The initial value of an external variable is the value of the special register with the same local
name. For example, the last expression returns the same result as the previous examples
when the special register v1 has the value 1. An external variable may be declared in a
namespace. The namespace is ignored when choosing the special register name. For example,
the special register corresponding to the external variable $ns:v2 is simply v2.

_exists(): Does Value Exist

The _exists() function uses the following format:

_exists(statement)

statement string XPath statement of other object.

Other Functions

120

http://www.w3.org/tr/xquery/

An attempt is made to determine whether the object exists. If the path parameter starts with
a /, this is presumed to be an xpath expression and if the statement locates a value this
function returns true.

Otherwise, the object is assumed to be some other internal object such as a special register,
and its existence is tested.

_exists1(): Does Value Exist

The _exists1() function uses the following format:

_exists1(expression [,nsmap [,object]])

expression string Expression in xpath language.

nsmap string Name of a namespace map from a provider. If omitted, no
namespace map is applied.

object document A document to which xpath is applied. If omitted, the current
document is evaluated.

An attempt is made to determine whether the object exists. If the path parameter starts with
a /, this is presumed to be an xpath expression and if the statement locates a value this
function returns true.

Otherwise, the object is assumed to be some other internal object such as a special register,
and its existence is tested. The use of the parameters is as described in the xpath() function.
Exists1() is compatible with xpath1() which is the full xpath(). Use of standard xpath() functions
is recommended over use of the _exists1() function.

_isendpoint (): Create Special Registers for Placeholders

This function includes the functionality described in ATE-155 and creates special registers for
any placeholders in the endpoint pattern.

For example, if the endpoint pattern is:

/pet/{petId}

and the incoming URL is:

/pet/1234

The function will create a special register named petId with value 1234. If the ns argument
were set to pets, the register would be named pets.petId.

1. iWay Functions

Functional Language Reference Guide 121

Note the following arguments of the function:

Action. The HTTP method of the incoming request. When running with an NHTTP listener,
this will normally be _sreg(reqType).

Url. The URL for the incoming request. When running with an NHTTP listener, this will
normally be _sreg(url).

Routeaction. The action associated with a particular route, to match with the incoming
action.

Endpointpattern. A URL pattern associated with a particular route, to match against the
incoming URL.

Type. The type of the URL pattern. Default (and only current option) is RAML.8.

Ns. A namespace prefix to use when creating special registers from placeholders in the
URL pattern.

_iwexists(): Does Value Exist

_iwexists(statement)

statement string XPath statement of other object.

An attempt is made to determine whether the object exists. If the path parameter starts with
a /, this is presumed to be an xpath expression and if the statement locates a value this
function returns true.

Otherwise the object is assumed to be some other internal object such as a special register,
and its existence is tested.

Use the _fileexists() function to test for the existence of a file. Use the _exists() function to
test with full xpath.

_ldap(): Get LDAP Contents

The _ldap() function uses the following format:

_ldap(filter, attribute[[,context], provider])

filter string Search filter in the LDAP.

Other Functions

122

attribute string Attribute to be accessed from the repository.

context string Context to be applied to the search.

provider string Name of any LDAP provider

The value of the attribute is loaded from the LDAP. Some servers support only a single LDAP
directory specification (URL, access ID, password) and this default LDAP directory is used to
satisfy this function. Some servers support multiple LDAP providers. In this case, the optional
provider name can be supplied.

For example, Dick Beck is a member of the corporate group (in LDAP terms the Organizational
Unit). A call to look up his telephone number might be as follows:

LDAP('CN=Beck, Dick',phoneNumber,'ou=COR')

The actual format of the function call will depend upon the schema used to organize the
directory.

_if(): Obtain Value Conditionally

The _if() function uses the following format:

_if(test [, trueclause [,falseclause]])

test condition A conditional test, such as sreg(abc)<6 or _fileexists('c:/
abc.txt).

trueclause string A value to return if the test condition evaluates to true.

falseclaus
e

string A value to return if the test condition evaluates to false. If
omitted, an empty value is returned.

The test is evaluated, If the test results in a true condition, the true clause is returned, else
the false clause is returned. This is useful to set a value in a configuration based on a test.

The clauses can themselves be tests. For example, imagine two special registers, aa and bb
each holding a value. The following expression is legal:

_if(sreg(aa)<8,_if(sreg(bb)=9,'tt','tf'),'f')

If the test is not followed by a trueclause or falseclause, the function returns the tokens true
or false. For example, assume that special register t1 contains 15, then the following returns
as true:

1. iWay Functions

Functional Language Reference Guide 123

_if(sreg(t1)<20)

_lock(): Obtain Value Under Lock

The _lock() function obtains a value that is currently under a lock. This function uses the
following format:

_lock(lockname, value)

lockname string The name of the lock under which the value is computed and
returned. The specified name is arbitrary, but all users of this
lock (for example, any user that wants to update a register)
must use the same name. The lock is created under this name
if it does not exist. If it exists, then other users of this name
are queued until they reach the head of the queue on the
name. When the final user is complete (end of the operation
under the lock), the named lock is destroyed to free resources.

value string The value to be returned.

The value is determined while the named lock is held. This function is designed for use in
returning values of high-level register, which may be shared with other threads (for example,
metrics that hold statistics). The value for the lockname parameter must be the same as the
name of the lock under which the higher level registers are set or computed by the SREG
service (com.ibi.agents.XDSREGAgent).

Metrics can be referenced as special registers. The lock is desirable when one or more of the
registers might be changed by an SREG service (com.ibi.agents.XDSREGAgent) while the value
of that register is being accessed to compute the value.

_lock('my.lock',_if(sreg(aa)<8,_if(sreg(bb)=9,'tt','tf'),'f'))

The lock serializes within the server. For example, if a counter is to be updated across workers
(subchannels) then the register used to keep the count must be defined at a higher level (for
example, the channel level) and the lock will ensure that the counter remains valid. For
example, if the channel register mycounter is defined as having a value of zero, then the
following statement will safely update the register holding the counter:

_lock('lockMyCounter',_setreg('mycounter',_iadd('_sreg('mycounter'),1)

The _setreg() function sets the mycounter register to the value currently in the register plus
one.

Other Functions

124

As a general rule, locks should be as granular as possible. Avoid using a single lock name for
all locks of any purpose. The lock should be unique to the resource being protected under the
lock.

_jdbc(): Get A Relational Value from a Table

One value is returned from the JDBC data source identified by the provider. The statement is
expected to be an SQL select statement, or a {call} statement. It in turn is expected to return a
single value. If the statement returns multiple rows, only the first row is accessed. If the
statement returns multiple fields, only the first is returned. These situations are not
considered errors.

The _jdbc() function uses the following format:

_jdbc(provider, statement [,timeout])

This function is useful for extracting a value from a table with keys. For example:

key value

one first

two second

Now assume a special register named sequence which holds ‘one’ or ‘two’. The following
function statement will return the correct value:

_jdbc(provname,_sql(select value from table where key = _sreg(sequence)))

Note the use of the _sql() function to assist in the analysis of the statement. This is not
necessary unless iWay functions are used in the expression.

_unq(): Generate a Unique Identifier

The _unq() function uses the following format:

_unq(pattern)

pattern string Descriptive pattern

Returns a unique identifier within the bounds of the supported pattern. A pattern consists of
literal characters, such as ID, plus trigger characters that are replaced with values by the
server. The supported trigger values are:

1. iWay Functions

Functional Language Reference Guide 125

Character Use Restriction

Stored digit None

^ Unstored digit None

* Current timestamp in RFC 1123 format with non-path
characters removed.

One per pattern

Stored digits survive the restart of the server, while unstored digits are reset to zero each time
the server starts. The number of pattern digits defines the modulus of the generated number.
For example, a pattern of ab### returns ab001, ab002…ab999. The function then returns
ab001 on the next call.

The pattern support is identical to that used for unique file names in other server configuration
parameters.

_uuid(): Generate a Unique Identifier

Returns a UUID (Universally Unique Identifier), also known as GUIDs (Globally Unique Identifier)
meeting the requirements of RFC 4122. A UUID is 128 bits long, and is guaranteed to be
unique across space and time. The method of generation leverages the unique values of IEEE
802 MAC addresses to guarantee uniqueness. The optional code parameter controls the
format of the generated result.

The _uuid() function uses the following format:

_uuid([code])

Code Use Example

none, 0 or standard Display format. d71648c0-1485-11dc-
a269-0019b92fe248

1 or compressed Compressed format. 3e2246d0148211dc957b0019b92fe248

Other Functions

126

_savedoc(): Save a Document or its Payload for Later Restoration

The _savedoc() function allows the current document and (optionally) its state to be held while
the document is changed for some purpose. The current document is the document flowing
through the process flow at any moment. The _restoredoc() function is used to return the
current document to the value set when it was stored in the register. Registers holding
documents will not be marshaled for exchange through the gateway (RVI) or passed to an
internal channel. The save and restore sequence should not be used across threads in the
process flow.

The _savedoc() function is especially useful during pre- and post-service execution in process
flows.

Note: Since saving a document requires memory, this facility should be used with caution to
avoid an impact on performance.

The _savedoc() function uses the following format:

_savedoc(name, {action} [,scope] [,serialization)

name string Name of a special register to hold the saved information.

action keyword Determines what data should be saved for later
restoration. The following actions are supported:

document. Saves the entire contents of the input
document, including status flags, attachments, and
so on. A value of true is returned if successful.

payload. Saves the contents of the document payload
(for example, XML tree). A value of true is returned if
successful.

For more information on how to recover the saved
document information, see _restoredoc(): Restore a
Saved Document on page 129.

1. iWay Functions

Functional Language Reference Guide 127

scope keyword The scope of the specified register. The query on the
former value is performed at this scope. The following
scopes are supported:

local. The scope is the local register context. This
scope is set by default.

flow. The scope is the head of the process flow.

message. The scope is the message (worker).

serialization keyword Determines how the saved data is stored. Specify one of
the following settings:

internal. The saved information is stored in memory.
This is the default setting.

external. The saved information is stored on disk.

Specifying a local scope requires the restore of the data (_restoredoc()) to be on the edge line
on which the data was saved, or an edge that descends from the edge. Specifying flow or
message scopes allows the _restoredoc() function to be used on another thread line, or even
in a subsequent stage of the message handling. Use of these scopes requires careful
management of the edge execution (thread management) to ensure that the data was saved
before it is restored. As a best practice, specifying local scope is recommended.

Serialization settings provide a balance between memory and performance. Specifying the
internal setting (default) causes the data to be held in memory. For very large documents that
are to be saved, specifying the external setting causes the data to be held on a disk. This
reduces memory use at the cost of significant use of system resources and time to exchange
the data with the disk storage. The system maintains the disk storage and the data is only
available to the _restoredoc() function.

Example 1. To save the current message:

_savedoc('docpoint1','document')

Example 2. To save the payload to disk on the local scope:

_savedoc('docpoint1','payload',,'external')

Example 3. If you are running more than 10 messages on the channel use external media,
otherwise use memory:

Other Functions

128

_savedoc('docpoint1','document',,_if(_chaninfo(*,'active')>10,'external','internal'))

_restoredoc(): Restore a Saved Document

The _restoredoc() function is designed to be paired with a _savedoc() function that saves a
current document or its payload. Using the _savedoc() and _restoredoc() functions provides an
efficient means of holding the current document while other operations change the document,
and then restoring the current document to its saved state. The _restoredoc() function will
restore the entire document or the payload, depending on how the save was performed by the
_savedoc() function.

The _restoredoc() function uses the following format:

_restoredoc(name [,disposition])

name string Name of the register holding the information that is
saved by the _savedoc() function.

disposition keyword An optional action that can be taken after the document
is restored. Select one of the following actions:

clear. The register used to hold the saved document
is deleted, which releases the memory used to store
the information. This action is set by default.

keep. The register is not cleared, making it possible
to restore the document again at a later point in the
process flow.

The _restoredoc() function is especially useful during pre- or post-service execution in process
flows, or as a clause of an _if() function.

If the data was saved to external media by the _savedoc() function, specifying the keep action
prevents the file from being deleted. Specifying the clear action causes the file to be deleted
after the restoration. In either case, the file is deleted when the server terminates.

Arithmetic Expressions

A function that returns an integer can participate in an arithmetic expression. However, there
are limitations, such as an expression of the form

Intfunction() opvalue

1. iWay Functions

Functional Language Reference Guide 129

where:

op
Is either plus (+) or minus (-).

value
Is either an integer or a function that returns the expected result.

Example: Arithmetic Expression With Special Register

If the value of the special register, X, is 10, then the following function returns 12:

SREG(X)+2

Function Syntax and Return Values

This topic describes the syntax and return values of the functions supplied with iWay Service
Manager. Functions are listed in alphabetical order.

Any function can begin with the underscore character. Many functions must begin with the
underscore character. This documentation shows the underscore character when it is required.

The underscore character prevents embedded strings from being evaluated. For example, the
SQL statement

WHERE COUNT(XXX) < 3

would result in an error if it were confused with the iWay _COUNT() function. The underscore in
the iWay function distinguishes it from the SQL statement.

Reference: COND() Operators and Operands

Monadic means that there is only one operand on the left and if there is an operand on the
right, it is ignored. For example, COND(FILE(xx),EXISTS).

Dyadic functions require two operands, as do comparisons.

The following table lists and describes the available operators and operands.

Operator Operand Description

EQC Dyadic Case-insensitive compare. The normal case (EQ) is case
sensitive.

Function Syntax and Return Values

130

Operator Operand Description

EXISTS Monadic Determines if the first operand exists. If the first operand is a
special register SREG(name), the value is true if the register
exists (is defined). Otherwise, the value is false. If the first
operand is an XPath expression such as XPath(//SSS), the
result is true if the node identified by the XPath is found in the
document. For all other operands, the function tests whether
the operand has a length.

ISNULL Monadic For XPath, determines if the identified node has a value.
Results of this test can be ambiguous and its use is
discouraged.

ISEMPTY Monadic Returns true if the operand has a value (that is, the node
identified by the XPath has a value).

ISNOTNUL
L

Monadic Reverse of ISNULL.

ISTRUE Monadic Returns true if the value of the first operand is true or yes.
Otherwise, returns false.

ISNOTTRU
E

Monadic Reverse of ISTRUE.

=, EQ

<, LT

<=, LE

>, GT

>=, GE

!=, NE

Dyadic Case-sensitive lexical compare or arithmetic compare.

1. iWay Functions

Functional Language Reference Guide 131

IWXPATH Language Support

Support for XML Path Language (XPath) is an important feature of iWay and is used in a
number of areas within iWay Service Manager (iSM). XPath is a non-procedural language used
to access and manipulate sections of an XML document. The XPath expression gathers
information from the document, as if the XML document is a self-contained hierarchical
database. The XPath expression specifies levels (segments or fields), filter predicates, and
functions on the XML document data. The result of the iwxpath can be one or more values, a
set of XML nodes, or a particular location in the XML structure. Using these XPath results, iSM
can control the behavior of services (agents), conditional routing, and decision making inside
of process flows. The fast iwxpath() function that is provided by iSM implements a subset of
the XPath location steps, predicates, and functions, which are expressed using abbreviated
syntax.

The iwxpath() function is not intended to be a full implementation of the XPath specification,
but rather a very fast subset offering commonly used Xpath() searches. If additional
functionality is required, iSM offers full Xpath() using the Xpath1() function. You can configure
iSM to have the default xpath() function use iwxpath() if required.

The language always returns a string suitable for use in configuring other components. It is
most suitable for locating element values and attributes. When multiple values are selected,
they are separated by a vertical bar |, and empty values are denoted by &.

The XPath statement used to step into an XML document is known as a phrase. Phrases
support both steps used to descend into the document and predicates used to determine how
the step is to be applied. Currently selected XML nodes are called the node-set. In general,
XPath phrase support of iSM is based on the formal XPath specification section 2.5,
Abbreviated Syntax. The specification is available at http://www.w3.org/TR/xpath.

In IWXPATH the node context is always the root of the document, as such, only the child axis is
implemented.

The XPath phrase support of iSM is as follows:

Steps

/<name> Step down one level, selecting children of the specified name.

//<name> Step down, selecting children of the specified name regardless of the level.

/* Step down, selecting all children.

//* Step down, selecting all children.

IWXPATH Language Support

132

http://www.w3.org/tr/xpath

/. Select all nodes already selected (used to apply predicates to the current
node-set).

/.. Step up one level, selecting the parent of each node in the node-set.

These step specifications are fully covered in the appropriate RFC for XPath, section 2.5.

Predicates

Predicates are written after the step, enclosed in square brackets. There can be one or more
predicates in a step, each of which is applied left to right to control the membership of the
node-set.

Multiple predicates are written as sequential predicate terms: /x[p1][2]... applied left to right,
with the predicate affecting the node-set as returned by the prior predicate. In essence, the
predicates used by AND.

Any single predicate can hold any number of terms, separated by AND or OR. Terms can be
grouped in parenthesis. Each term consists of a single term or a relation of <left>op<right>.
The specification calls for left to right binding, AND taking higher precedence. For example, the
predicate [a=b OR c=d AND e=f] is evaluated as [a=b OR (c=f AND e=f)].

Single term predicates, such as /x[2] operate as an index into the node-set so far.

Supported are:

Number, such as 3 Selects the members of the node-set that are the nth child of
their parent.

last() Selects the members of the node-set that are the last child of
their parent.

count(parm) The parm must be an iWay XPath expression. The expression is
processed against the original document being evaluated from the
root context. The number of elements in the node-set returned is
used to select the members of the incoming node-set that are the
nth child of their parent.

sreg(name[,default])* The value of a named special register.

1. iWay Functions

Functional Language Reference Guide 133

starts-with(p1,p2)

ends-with(p1,p2)*

contains(p1,p2)

Evaluates the incoming context, testing whether the name,
attribute, or child values meet the p2 criterion. P1 can be name(),
@attribute, @*any attribute or the name of the child.

not(filter) Inverts the meaning of a selection filter. For example, /a//
*[not(starts-with(name(),'d'))]

Filter functions marked with * are iWay extensions to the XPath specification.

Left terms can be:

<name> Operate on nodes in the node-set with children of the specified name. The
test will be on the value of the children in the node-set.

@<attname> Operate on nodes in the node-set with attributes of the specified name. The
test will be on the value of the attribute in the node-set.

* Operate on all nodes in the node-set with children of any name.

@* Operate on all nodes in the node-set with attributes of any name. The test
will be on the values of any attribute, such as selecting all nodes with any
attribute of value iway.

<function>() One of a specified set of functions.

count([ns]). Number of children of the selected node.

last(). Position() of the last node in the node-set.

local-name([ns]). URI of the namespace within which the node exists.

position(). The position of the selected node in the children of the
parent.

Functions shown with optional parameters [ns] indicate that the function
optionally operates on a node-set. For example, the localname() function
returns the local name of either the current node being tested, or that of the
first node in the node-set located by the xpath expression represented in
the ns parameter.

IWXPATH Language Support

134

Operators are the standard =, !=, <, <=, >, >=. Data is automatically case, such that if both
the operators are numeric, a numeric comparison will be performed. Otherwise, a character
comparison will be performed.

The right term is a literal, which can be:

String literal enclosed in single or double
quotes

Example "IWAY".

Value not in quotes, such as a number.
Simple string values can be entered this way
for convenience.

Example 3 or xyz.

count(xpath) The function to return the number of nodes
in the node-set returned from the xpath
parameter. The xpath of the count()
function examines the original document
being processed, from the root node
context.

sreg(name[,default]) Value of the named special register, or the
default value if the register is not defined.
This is an iWay extension.

Standard string function to build test Standard string functions concat,
substring, substring-before, substring-after.

Standard groupings are allowed. For example, the following specification is now legal in iSM.

//greet/*[*=hello or (@addr=fred@ibi.com or position()<3 and
child1=audit)]

which selects all greet nodes with children having themselves children with the value "hello" or
with attribute addr having the value of fred@ibi.com or those having both a position of one or
two (first two children) and having a child with the node name child1 which has a value of
"audit". This overly complicated example is intended to demonstrate how grouping is used.

Similarly, the expression /edxax/dest[position() = count(//sql)] selects the single dest node
that matches in position the number of sql statements in the document.

Arithmetic

Simple arithmetic is supported in predicates. Only plus and minus are supported. For example

1. iWay Functions

Functional Language Reference Guide 135

//password[count(//user)+1]

returns the password tag value related to the number of user tags in the document.

Final Functions

A set of final functions are supported to operate on the node-set being returned, such that the
values from the XPath operation reflect the value returned by the function rather than the
values of the nodes in the node-set. These functions are not strictly supported by the XPath
specification, but are included to further the use of XPath in setting adapter parameters.

name() Returns the name of the nodes in the selected node-set.
Example //sql/*/name() returns the names of the
grandchildren of each sql node.

position() The position of each node in the node-set relative to its
parent.

count() The number of children of each node in the node-set.

text() Returns the value of each node in the node-set.

localname() Returns the local name of each node in the node-set.

namespace-uri() Returns the namespace uri of each node in the node-set.

IWXPATH Language Support

136

Legal and Third-Party Notices

SOME TIBCO SOFTWARE EMBEDS OR BUNDLES OTHER TIBCO SOFTWARE. USE OF SUCH
EMBEDDED OR BUNDLED TIBCO SOFTWARE IS SOLELY TO ENABLE THE FUNCTIONALITY (OR
PROVIDE LIMITED ADD-ON FUNCTIONALITY) OF THE LICENSED TIBCO SOFTWARE. THE
EMBEDDED OR BUNDLED SOFTWARE IS NOT LICENSED TO BE USED OR ACCESSED BY ANY
OTHER TIBCO SOFTWARE OR FOR ANY OTHER PURPOSE.

USE OF TIBCO SOFTWARE AND THIS DOCUMENT IS SUBJECT TO THE TERMS AND CONDITIONS
OF A LICENSE AGREEMENT FOUND IN EITHER A SEPARATELY EXECUTED SOFTWARE LICENSE
AGREEMENT, OR, IF THERE IS NO SUCH SEPARATE AGREEMENT, THE CLICKWRAP END USER
LICENSE AGREEMENT WHICH IS DISPLAYED DURING DOWNLOAD OR INSTALLATION OF THE
SOFTWARE (AND WHICH IS DUPLICATED IN THE LICENSE FILE) OR IF THERE IS NO SUCH
SOFTWARE LICENSE AGREEMENT OR CLICKWRAP END USER LICENSE AGREEMENT, THE
LICENSE(S) LOCATED IN THE "LICENSE" FILE(S) OF THE SOFTWARE. USE OF THIS DOCUMENT
IS SUBJECT TO THOSE TERMS AND CONDITIONS, AND YOUR USE HEREOF SHALL CONSTITUTE
ACCEPTANCE OF AND AN AGREEMENT TO BE BOUND BY THE SAME.

This document is subject to U.S. and international copyright laws and treaties. No part of this
document may be reproduced in any form without the written authorization of TIBCO Software
Inc.

TIBCO, the TIBCO logo, the TIBCO O logo, FOCUS, iWay, Omni-Gen, Omni-HealthData, and
WebFOCUS are either registered trademarks or trademarks of TIBCO Software Inc. in the
United States and/or other countries.

Java and all Java based trademarks and logos are trademarks or registered trademarks of
Oracle Corporation and/or its affiliates.

All other product and company names and marks mentioned in this document are the property
of their respective owners and are mentioned for identification purposes only.

This software may be available on multiple operating systems. However, not all operating
system platforms for a specific software version are released at the same time. See the
readme file for the availability of this software version on a specific operating system platform.

THIS DOCUMENT IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

THIS DOCUMENT COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS.
CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL
BE INCORPORATED IN NEW EDITIONS OF THIS DOCUMENT. TIBCO SOFTWARE INC. MAY MAKE
IMPROVEMENTS AND/OR CHANGES IN THE PRODUCT(S) AND/OR THE PROGRAM(S)
DESCRIBED IN THIS DOCUMENT AT ANY TIME.

 137

THE CONTENTS OF THIS DOCUMENT MAY BE MODIFIED AND/OR QUALIFIED, DIRECTLY OR
INDIRECTLY, BY OTHER DOCUMENTATION WHICH ACCOMPANIES THIS SOFTWARE, INCLUDING
BUT NOT LIMITED TO ANY RELEASE NOTES AND "READ ME" FILES.

This and other products of TIBCO Software Inc. may be covered by registered patents. Please
refer to TIBCO's Virtual Patent Marking document (https://www.tibco.com/patents) for details.

Copyright © 2021. TIBCO Software Inc. All Rights Reserved.

138

	Contents
	1. iWay Functions
	iWay Functions Overview
	Runtime Functions
	Syntax and Usage
	Example: Routing an Output Document
	Example: Testing the Result of an Attribute

	Parameter Evaluation
	Conjunctions
	The Functions
	Automatic Concatenation

	Environmental Functions
	_sreg(): Lookup a Special Register
	_property(): Retrieve a Value from a Java Property Object File
	_propertymatch(): Match a String Against a File of Regular Expression Patterns
	_inlist(): Check Value in a List
	_setreg(): Set a Special Register

	Document Functions
	_docinfo(): Information About the Current Document
	_isroot(): Tests Element Root
	_root(): Returns the Root Element Name
	_isxml(): Test for Parsed XML Content
	_isjson(): Test for Parsed JSON Content
	_isflat(): Test for Non-Parsed Content
	_iserror(): Is the Document in Error State?
	_hasruleerr(): Test for Rule Violations
	_hasschemaerr(): Test for Schema Rule Violations
	_iswellformed(): Test for Valid Format
	_iseos(): Is Document at End of Stream
	_flatof(): Flatten the Payload
	_attcnt(): Index Attachments
	_atthdr(): Attachment Header Value
	_attbyfname(): Locate an Attachment By File Name
	_attflatof(): Make the Content of an Attachment Available
	_attbyfname(): Locate an Attachment by File Name
	_srcname(): Source Name from Subflow
	_treehash (): Generate an MD5 Hash
	Parsed XML Functions
	_xpath(): Execute an XPath Expression
	_xpath1(): Execute an XPath Expression
	_iwxpath(): Execute an XPath Expression
	_xflat(): Generate a Subtree
	_xflat1(): Generate a Subtree
	_iwxflat(): Generate a Subtree
	Understanding XML Path Language (XPath)
	Navigating XML With Location Steps
	Reference: Location Steps
	Example:

	XPath Best Practices
	XPath Predicates
	Reference: Comparison and Logical Operators
	Reference: Predicate (filter) Functions
	Example:

	XPath Functions
	Reference: Functions

	Parsed JSON Functions
	_jsonptr(): Execute a JSON Pointer Expression
	_jsonpath(): Execute a JsonPath Expression

	String Functions
	_left(): Leftmost Substring
	_right(): Rightmost Substring
	_lcase(): Convert to Lower Case
	_ucase(): Convert to Upper Case
	_trim(): Eliminate Whitespace
	_normalizespace(): Eliminate Whitespace
	_entity(): Entity Encoding
	_deentity(): Entity Decoding
	_substr(): Substring
	_before(): Substring
	_after(): Substring
	_pad(): Pad to Desired Length
	_concat(): Concatenate Strings
	_length(): String Length
	_count(): String Element Count
	_contains(): String Contents
	_startswith(): String Contents
	_endswith(): String Contents
	_regex(): Replace Portions of a String
	_reverse(): Reverses a String
	_match(): Perform a String Match Against a Pattern
	_replace(): Translate Characters in a String
	_isnumber(): Is a Value Number
	_lit(): Literal String Concatenation
	_sql(): SQL Concatenation
	_xml(): XML Concatenation
	_qval(): Quote/Null a String
	_token(): Tokenize a String
	_indexof(): Return Offset to a Substring
	_printable(): Mask Nonprintable Characters
	_murmurhash(): Hash a String Value

	Time Service Functions
	_now(): Get Current Timestamp
	_timer(): Return Unix Epoch Time
	_tstamp(): Return the Current Timestamp
	_ftstamp(): Return the Current Timestamp to Milliseconds
	_fmtdate(): Format a Date/Time from a Millisecond Time Value
	_dateof(): Return the Timestamp for a Passed Time
	_dateadd(): Add Offset to a Date and Return a Timestamp
	_datesub(): Subtract Offset to a Date and Return a Timestamp

	Math Functions
	_add(): Add a List of Terms
	_sub(): Subtract
	_mod(): Returns the Modulus
	_mul(): Multiply a Number
	_div(): Divide a Number
	_iadd(): Add a List of Terms, Integer
	_isub(): Subtract, Integer
	_imul(): Multiply a Number, Integer
	_idiv(): Divide a Number
	_int(): Cast to Integer
	_intmask(): Inserts a Number into a Character Mask
	_max(): Maximum of a List of Terms
	_min(): Minimum of a List of Terms
	_random(): Generate a Random Number
	_floor(): Obtain the Floor of a Number
	_ceil(): Obtain the Ceil of a Number
	_round(): Round a Number to an Integer

	Decimal Math Functions
	_dadd(): Add a Number
	_dsub(): Subtract a Number
	_dmul(): Multiply a Number
	_ddiv(): Divide a Number

	Encoding Functions
	_mod10(): Mod10 Check Digit Operations
	_url(): Convert String to MIME Format
	_urlencode(): Convert String to MIME Encoding
	_urldecode():Decode a String in MIME Format
	_hex(): Encode a String to Hexadecimal
	_fromhex(): Decode a String from Hexadecimal
	_base64():Encode Into Base64
	_frombase64():Decode From Base64
	_encode64():Conditionally Encode Into Base64
	_decode64(): Conditionally Decode From Base64
	_fmtdec(): Insert an Integer Into a Pattern Mask
	_fmtint(): Insert an Integer Into a Pattern Mask
	_urlparse() Extract Portions of a URL/URI
	_deflate(): Compress (Deflate) a Value
	_inflate(): Inflate a Value
	Working with BLOBs and Varbinary

	File Functions
	_file(): Get File Contents
	_filegdg(): Make File Generations
	_fileinfo(): Information About a File
	_fileexists(): Does File Exist

	System Information Functions
	_sysinfo(): Information About the Server
	_chaninfo(): Information About a Channel

	Security Functions
	_aes(): Encode and Decode a Value Using the Advanced Encryption Standard With Salt
	_hasrole(): Is This Authority Available
	_getprin(): Get Information from This Principal
	_encr(): Mask the Value
	_md5(): Generate an MD5 Hash
	_sha1(): Generate a SHA1 Hash
	_sha256(): Generate a SHA256 Hash

	Other Functions
	_excel(): Get Value From a Workbook Spreadsheet
	_excelsheets(): Get the List of Workbook Worksheets
	_fetch(): Access a Remote Library
	_manifest(): Read an Attribute From a Java Archive (JAR) Manifest
	_parmof(): Get Parameter Setting From Another (Component) Parameter
	_script(): Invoke Scripts
	_scriptlist(): Generate a Scripting Array
	_eval(): Evaluate a String
	_log(): Write a Message to the Trace Log
	_cond(): Perform Conditional Test
	_xquery: Evaluate an XQuery Expression
	_exists(): Does Value Exist
	_exists1(): Does Value Exist
	_isendpoint (): Create Special Registers for Placeholders
	_iwexists(): Does Value Exist
	_ldap(): Get LDAP Contents
	_if(): Obtain Value Conditionally
	_lock(): Obtain Value Under Lock
	_jdbc(): Get A Relational Value from a Table
	_unq(): Generate a Unique Identifier
	_uuid(): Generate a Unique Identifier
	_savedoc(): Save a Document or its Payload for Later Restoration
	_restoredoc(): Restore a Saved Document

	Arithmetic Expressions
	Example: Arithmetic Expression With Special Register

	Function Syntax and Return Values
	Reference: COND() Operators and Operands

	IWXPATH Language Support
	Steps
	Predicates
	Arithmetic
	Final Functions

	Legal and Third-Party Notices

