
TIBCO iWay® Service Manager

Copyright © 2021. TIBCO Software Inc. All Rights Reserved.

Cross-Channel Services Guide

Version 8.0 and Higher
March 2021
DN3502287.0321

Contents

1. Introducing iWay Service Manager Cross-Channel Services . 5

Cross-Channel Services Overview . 5

Available Listeners Reference . 8

Available Services Reference . 9

2. Internal Queue Processing . 11

Internal Queue Processing Overview .11

Configuring an Internal Queue Listener . 12

Configuring an Internal Emit Service .17

3. Ordered Queue Processing .27

Ordered Queue Processing Overview . 27

Introducing the Ordered Queue Facility .28

Configuring an Ordered Queue Listener . 28

Pended Messages. 29

Immediate Mode Queues. 30

Batch Mode Queues. .31

Stopping the Server. 33

Restarting the Server. 33

Configuring an Ordered Emit Service . 39

4. Reverse Invocation Queue Processing . 51

Reverse Invocation Queue Processing Overview .51

Proxy Service. 52

Execution Service. 52

Reverse Invocation Process. 53

Sample Scenario. 58

Configuring the RVIAttach Listener . 61

Configuring the RVI Relay Service . 62

Configuring the RVIGateway Listener . 64

Configuring a Service to Test the Reverse Invocation . 66

5. Asynchronous Forward Transfer Invocation Queue Processing 75

Asynchronous Forward Transfer Invocation Overview . 75

Configuring a Marshalls a Message Service . 77

Cross-Channel Services Guide 3

Configuring an Unmarshalls a Message Service .78

6. Configuring iWay Service Manager Components .81

Configuring a Listener Using iWay Integration Tools .81

Configuring a Service Using iWay Integration Tools . 87

7. Common Configuration Parameters .95

Listener Configuration Parameters . 95

Service Configuration Parameters .99

8. Deploying iWay in a High Availability Environment . 101

High Availability Overview . 101

Failover . 101

Scaling and Load Balancing .102

Implementing High Availability .102

Simple Failover Using iWay Heartbeat. 103

Simple Failover Using Third-Party Tools. 104

IP-based Horizontal Scaling . 104

Web-based Horizontal Scaling. 105

Web-based Horizontal Scaling Using iWay Performance Monitor . 105

Horizontal Scaling for Queuing. 105

Horizontal Scaling and Transactions. 105

iWay Reverse Invocation Proxy and High Availability . 105

Legal and Third-Party Notices . 107

Contents

4

Chapter1 Introducing iWay Service Manager Cross-
Channel Services

This section provides an introduction to iWay Service Manager (iSM) cross-channel
services. For more information on additional queuing protocol adapters that are
supported by iSM, see the iWay Service Manager Protocol Guide.

In this chapter:

Cross-Channel Services Overview

Available Listeners Reference

Available Services Reference

Cross-Channel Services Overview

iWay Service Manager (iSM) provides channels that link processes within iSM to other
processes in the same or another instance of iSM. This contrasts with channels that acquire
messages from external media, such as a File or FTP connection. These channels divide the
message execution process into stages for application purposes, such as:

Exchanging messages with other servers.

Dividing the application into more manageable portions.

Changing threading models based on specific sections of the application.

Performance tuning.

Cross-channel message exchanges can be used to facilitate application modularization. In
addition to simplifying application development and maintenance, an application that is
composed of modular sections provides horizontal and vertical scaling. The modular sections
can be executed:

Within the same JVM, which facilitates the selection of the appropriate threading model for
that portion of the application.

Across JVMs on the same computer to take advantage of the dispatching mechanisms that
belong to this computer.

Across computers, which allows several computer systems to work on the application
simultaneously.

Cross-Channel Services Guide 5

The mechanisms that support cross-channel message exchanges provide opportunities for
workload balancing and backup/recovery when used in appropriately designed applications.

The application design that is best oriented for the use of cross-channel distributions is called
the multi-channel architecture, which is a common architecture for iSM-based applications. For
example, consider the following modularized breakdown of a typical application:

1. A message arrives from an external source. This message is examined and transformed,
routed to a section of the application that processes the payload, and then passed to a
section that emits the final result.

2. A special error handler is configured to report on application issues that are not handled
specifically in other portions of the application.

Cross-Channel Services Overview

6

3. An error handler channel receives messages through the errorTo facility of each channel
using an Internal emit service to direct the error messages that are not handled within the
application channel.

1. Introducing iWay Service Manager Cross-Channel Services

Cross-Channel Services Guide 7

The following channel types are available:

Internal. Passes messages between channels for asynchronous or synchronous execution.
For more information, see Internal Queue Processing on page 11.

Ordered. Passes messages between channels for asynchronous execution, maintaining
execution order and batch control. For more information, see Ordered Queue Processing on
page 27.

Reverse Invocation (RVI). Exchanges messages between two or more instances of iSM,
with support for reverse connections. This allows full protection of the iSM instances
behind outbound-only firewalls. For more information, see Reverse Invocation Queue
Processing on page 51.

Asynchronous Forward Transfer Invocation (AFTI). Marshalls and unmarshalls messages
and their context to be exchanged over protocols other than the existing cross-channel
protocols that are provided by iSM. For more information, see Asynchronous Forward
Transfer Invocation Queue Processing on page 75.

All of the cross-channel links pass messages and full execution context. Additionally, all
messages and contexts can be compressed and encrypted for secure processing.

Available Listeners Reference

The following table provides a quick reference to the iSM listeners that are defined in this
documentation for cross-channel services.

Listener Name

Internal Queue (See Configuring an Internal Queue Listener on page 12.)

Ordered Queue (See Configuring an Ordered Queue Listener on page 28.)

RVIAttach (See Configuring the RVIAttach Listener on page 61.)

RVIGateway (See Configuring the RVIGateway Listener on page 64.)

Available Listeners Reference

8

Available Services Reference

The following table provides a quick reference to the iSM services that are defined in this
documentation for cross-channel services.

Service Name

Internal Emit Agent (com.ibi.agents.XDInternalEmitAgent)

(See Configuring an Internal Emit Service on page 17.)

Ordered Emit Agent (com.ibi.agents.XDOrderedEmitAgent)

(See Configuring an Ordered Emit Service on page 39.)

Marshalls a message Agent (com.ibi.agents.XDMarshallAgent)

(See Configuring a Marshalls a Message Service on page 77.)

RVI Relay (com.ibi.agents.RVIRelay)

(See Configuring the RVI Relay Service on page 62.)

Unmarshalls a message Agent (com.ibi.agents.XDUnmarshallAgent)

(See Configuring an Unmarshalls a Message Service on page 78.)

1. Introducing iWay Service Manager Cross-Channel Services

Cross-Channel Services Guide 9

Available Services Reference

10

Chapter2
Internal Queue Processing

This section describes how to configure Internal queue processing.

In this chapter:

Internal Queue Processing Overview

Configuring an Internal Queue Listener

Configuring an Internal Emit Service

Internal Queue Processing Overview

Some designs require that a message be passed from one process to another. For example, a
process might receive a message on a protocol, process it, and then desire another listener
(thread) to complete the message operation. Frequently, such messages are stored in the file
system using the File emit service, and then picked up using the File listener.

As an alternative, iWay Service Manager offers the Internal Queue listener. Messages are
stored in memory by the Internal emit service and held until picked up by the Internal Queue
listener. Messages can be made to persist in the event that the server fails or is terminated
before all held messages are processed.

Each listener is associated with one internal queue that has been assigned a name. The flow
that is required to store a message in the queue configures an Internal emit service to that
assigned name. The listener picks up the stored messages by First In, First Out (FIFO) method,
and passes them for execution.

As the queue grows and shrinks, the Internal Queue listener can manage the listeners feeding
the queue to maintain an average, desirable size. This is referred to as rubber banding or back
pressure. The low and high mark configuration values control this.

A common use of the internal emitter is to pass a message to one or more work flows that
operate asynchronously. For example, each Internal Queue listener flow may update a different
database or may access records from a single database based upon a computed modulus key.

Cross-Channel Services Guide 11

As with all protocols, it is possible to either emit to the protocol following completion of the
message flow or to emit immediately using an emit service
(com.ibi.agents.XDInternalEmitAgent) within the flow, which can be configured using a Queue
object for Internal Emit. If the service approach is used, then the handling of the message by
the Internal Queue listener can proceed asynchronously with the flow that originated the
message.

Once a message has been passed to an Internal Queue listener, it is separated from its
originator and the originator can neither await its execution or obtain response values.

The following is a list of additional scenarios where Internal Queue processing can be
implemented:

Dividing an application into multiple steps simplifies development efforts. iWay Business
Activity Monitor (BAM) can restart the message processing between steps.

There are several applications that must emit to SAP through a single access connection.

HTTP messages are currently being received on many slow speed lines. There is a
requirement to multiplex the messages for effective use on a single high speed line to a
third party.

A high performance application needs to take advantage of channel throttling and control
between application steps to improve overall throughput.

There is a requirement to consolidate error handling into a single channel.

Configuring an Internal Queue Listener

To configure an Internal Queue listener, you must create a channel for your application project
using the Channel Builder in iWay Integration Tools (iIT) and select Internal Queue as the
listener type for your inlet. For more information, see Configuring a Listener Using iWay
Integration Tools on page 81.

For a complete description of the configuration parameters that are available for the Internal
Queue listener, see Internal Queue Listener Configuration Parameters on page 12.

For a complete description of the Internal Queue listener Special Registers (SREGs), see
Internal Queue Listener Special Registers on page 16.

Reference: Internal Queue Listener Configuration Parameters

The following table lists and describes parameters for the Internal Queue listener.

Configuring an Internal Queue Listener

12

Parameters that are common to queue listeners are described in Listener Configuration
Parameters on page 95.

Property Description

Name of Internal Queue (required) A simple, case-sensitive name used to tie the emit
service and the listener. This name must be unique
to the listener, but can be specified as the
destination for any number of emit services.

Persistent If enabled, messages are persisted. Persistent
messages are held in the safestore until completion
and can be recovered if the server is restarted.

Select one of the following options from the drop-
down list:

none {false}

rdbms {rdbms}

file {true}

The default value is none {false}.

The rdbms option enables the application to persist
messages to a remote database location where, in
the event of a failover situation, a secondary server
running remotely can continue processing persisted
messages without any business interruption.

To use RDBMS persistence, you must create the
iway_queues table in the JDBC provider, using the
DDL script in the etc/setup directory. A hot backup
channel can be configured to use the same RDBMS
safestore.

Safestore Location If persistent, this is the location in the file system
to which documents are safestored.

2. Internal Queue Processing

Cross-Channel Services Guide 13

Property Description

Compress Persistent If the queue is persistent, the documents written to
the safestore can be compressed. Select one of the
following options from the drop-down list:

smallest {best}

none {none}

fastest {speed}

standard {std}

The default value is to not compress (none).

Low Mark If the size of the named queue falls below this
value from above the value, the named listeners in
the Control List are sent an activate message. The
default value is 0.

High Mark If the size of the named queue goes above this
value, a passivated message is sent to the
listeners in the Control List. The default value is 0.

Control List If a high or low mark value is crossed, the
appropriate message is sent to each listed listener.
For example, if two listeners LISA and LISB are
feeding the internal queue, listing them as
LISA,LISB will cause each to receive the appropriate
message.

Inhibit Add If set, the queue will not accept new messages
when its size reaches the high mark, and will
resume accepting messages when the number of
messages on the queue reaches the low mark. The
effect of this inhibition can cascade through the
application, controlling overall performance. The
default value is false.

Configuring an Internal Queue Listener

14

Property Description

External Mark When set to a number greater than 0, this causes
the message to be stored in memory up to the
specified number. When the queue grows larger
than the specified number, the message is stored
on disk. This is equivalent to splitting the memory
and performance optimization for the messages in
the queue, and is effective for large lists that may
fill memory. The default value is 0.

Duration Maximum time in seconds (allows xhxxmxxs format)
that a document can remain in this channel,
starting from when the document is added to the
queue, including pends and retries. The default
value is 24 hours.

Support Pending If set, messages can be pended for later execution
if the process flow calls for a Fail/Pending
operation. Pending messages persist for a specified
time and are retried at a specific interval. You might
use a pending operation in the event that a
message cannot be processed because an external
resource is currently unavailable. The default value
is false.

Retry Interval Determines the interval (in seconds) between
retrying pending requests. The default value is 600
seconds (10 minutes).

Note: Passivation and Inhibition affect the threading model and the movement of messages
within an application. Using these facilities, performance can be improved by avoiding queue
congestion. For more information on passivation and inhibition, see Chapter 1, Introducing
iWay Service Manager in the iWay Service Manager User's Guide.

2. Internal Queue Processing

Cross-Channel Services Guide 15

Reference: Internal Queue Listener Special Registers

The following table lists and describes the Special Registers (SREGs) available on the Internal
Queue listener. These values can be used in the application for message routing and
processing.

Name Source Level Type Description

iway.channel Listener System String Full name of the channel (may
include
channelname.inlet.listener).

iway.channelname Listener System String Channel name portion of the
name from the full channel
name of
channelname.inlet.listener.

iway.inletname Listener System String Inlet name portion of the name
from the full channel name of
channelname.inletname.listener.

iway.listener Listener System String Name of the listener.

iway.pid System System String Process ID of the server, if
available.

iway.serverfullhost System System String Full host name of the server
(includes domain).

iway.serverhost System System String Host name of the server.

iwayconfig System System String Current active configuration
name.

iwayhome System System String Base at which the server is
loaded.

iwayversion System System String Release version of the server.

iwayworkdir System System String Path to the base of the current
configuration.

Configuring an Internal Queue Listener

16

Name Source Level Type Description

msgsize Listener Document Integer Physical length of the message
payload.

name Listener System String Assigned name of the master
(same as iway.channel).

protocol Listener System String Protocol on which the message
was received.

Configuring an Internal Emit Service

Messages are sent to particular destinations at the completion of a workflow. The state of the
document determines which particular destination is used. The order in which the destinations
are used cannot be predicted.

To route an output document or error message to a protocol other than that of the listener
destination, you must configure an emit service in your application or an emitter as part of the
Channel Outlet. For example, an application can receive input over FTP, but want to route the
output to an Internal Queue listener.

The associated emit service is used to place messages onto the internal queue. Enter the
name of the queue as the destination. The queue you specify must be an Internal Queue
listener that has already been defined.

It is also possible to emit to multiple queues in a single emit operation. To do this, list the
queues, separated by commas (,). For example, internalqueue1, internalqueue2,
internalqueue3. This will emit to three queues, which are handled by three Internal listeners.

For a complete description of the configuration parameters that are available for the Internal
emit service, see Internal Emit Service Parameters on page 23.

For a complete description of the edges that are returned by the Internal emit service, see
Internal Emit Service Edges on page 24.

Procedure: How to Configure an Internal Emit Service

To configure an Internal emit service, you must create a process flow in your application
project using iWay Integration Tools (iIT) and use the Queue (Out) object from the Palette,
under Connectors, to emit to the internal queue (iWay queue - send a message) action.

2. Internal Queue Processing

Cross-Channel Services Guide 17

Note: The Queue Out object implements the iWay queue - send a message action using the
Internal emit service (com.ibi.agents.XDInternalEmitAgent).

1. Expand the Connectors category in the Palette and drag the Queue (Out) object to your
process flow, as shown in the following image.

2. In the Properties tab, under Configuration, select iWay queue - send a message from the
Select Action drop-down list, as shown in the following image.

Configuring an Internal Emit Service

18

3. Click the Create a configuration icon to the right of the Configuration field to configure a
new generic for this object, as shown in the following image.

The New Generic dialog box opens, as shown in the following image.

4. Specify a name for this generic in the Generic Name field, or accept the default.

5. In the Queue Settings tab, specify values for the following configuration parameters:

Name. Name of the internal queue for which to post messages.

Priority. Priority is an integer between 0 and 9, inclusive. The lowest priority is 0. The
highest, most expedited priority, is 9. The default value is 4.

2. Internal Queue Processing

Cross-Channel Services Guide 19

Put Timeout. Time, in milliseconds, to wait for the queue to become available when
attempting to put a message on the queue. You can enter zero (0) for an unlimited
wait, but this is not recommended. If no value is supplied, timeout will be set to 3000
milliseconds.

The Registers (Sent) tab is shown in the following image.

By default, the Apply parameter is set to false. User registers are processing variables and
their values. If you want these registers to be emitted with the message, set this to true.
In resubmit operations, this is set to false.

The Namespace parameter in this tab is used for synchronous or asynchronous
processing. A namespace or list of namespaces containing registers will be made
available to the Internal Queue listener. Select Default Namespace from the drop-down list
for all registers in default (no prefix), None to send no registers, or All for registers from all
namespaces. The default value is none.

Configuring an Internal Emit Service

20

The Registers (Returned) tab is shown in the following image.

In synchronous processing, registers set by the Internal Queue listener in the return
namespace will be made available to the calling process. If a value is supplied for the
Namespace parameter in this tab, then response registers will be copied to the specified
namespace. Leave this parameter blank to store response registers in the return
namespace.

6. Click Finish.

You are returned to the Properties tab.

2. Internal Queue Processing

Cross-Channel Services Guide 21

7. Expand Queue Settings, as shown in the following image.

8. Specify values for the following configuration parameters:

Respect Transactionality. Determines whether to respect existing transactionality. The
default value is true.

Timeout. Determines how many seconds to wait for synchronous response. Set to zero
(0) or leave blank to wait indefinitely. The default value is 0.

9. Expand Post Action, as shown in the following image.

10. Specify a value for the following configuration parameter:

Return. Select one of the following options from the drop-down list:

status. The status document will be the output document. This is the default value.

input. The input document will become the output document.

11. Save your process flow.

Configuring an Internal Emit Service

22

Reference: Internal Emit Service Parameters

The following table lists and describes parameters for the Internal emit service.

Note: Parameters that are common to emit services are described in Service Configuration
Parameters on page 99.

Parameter Description

Queue Name (required) Name of the internal queue for which to post messages.

Want User Registers User registers are processing variables and their values.
If you want these registers to be emitted with the
message, set this to true. In resubmit operations, this is
set to false. The default value is false.

Priority Priority is an integer between 0 and 9 inclusive. The lower
Priority is 0. The highest most expedited priority is 9. The
default value is 4.

Put Timeout Time, in milliseconds, to wait for the queue to become
available when attempting to put a message on the
queue. You can enter 0 for an unlimited wait, but this is
not recommended. If no value is supplied, timeout will be
set to 3000 milliseconds.

Request Context Namespace For synchronous or asynchronous processing, namespace
or list of namespaces containing registers that will be
made available to the Internal Queue listener. Select
Default Namespace for all registers in default (no prefix)
or None to send no registers at all. Enter an asterisk (*)
for registers from all namespaces. The default value is
default.

Response Context Namespace In synchronous processing, registers set by Internal
Queue listener in the return namespace will be made
available to the calling process. If a value is supplied
here, then response registers will be copied to the
specified namespace. Leave this parameter blank to
store response registers in the return namespace.

2. Internal Queue Processing

Cross-Channel Services Guide 23

Parameter Description

Return (required) Select one of the following options from the drop-down
list:

status. The status document will be the output
document. This is the default value.

input. The input document will become the output
document.

response. Awaits synchronous output from the Internal
Queue listener.

Note: The response option is not compatible with local
transactions.

Timeout Determines how many seconds to wait for synchronous
response. Set to 0 or leave blank to wait indefinitely. The
default value is 0.

Reference: Internal Emit Service Edges

The following table lists and describes the edges that are returned by the Internal emit service.

Edge Description

OnSuccess Operation was successful.

OnFailure Fail condition occurred during execution.

OnError Exception occurred during execution.

OnParseError Could not parse a document.

OnNotFound Resource was not found. This may or may not be a failure.

OnTimeOut Operation timed out.

OnCancelled Service has responded to a cancellation request.

OnNotFound Resource was not found and this is considered an error.

Configuring an Internal Emit Service

24

Edge Description

OnFailedOperation Could not perform the operation requested.

2. Internal Queue Processing

Cross-Channel Services Guide 25

Configuring an Internal Emit Service

26

Chapter3
Ordered Queue Processing

This section describes how to configure Ordered queue processing.

In this chapter:

Ordered Queue Processing Overview

Introducing the Ordered Queue Facility

Configuring an Ordered Queue Listener

Configuring an Ordered Emit Service

Ordered Queue Processing Overview

A common application requirement is to present messages to a channel for processing in an
order that is not directly related to the order of their arrival at the prior channel. For example:

Retail Applications. EDI messages for shipping arrive from the warehouse in random order,
and must be dispatched to the appropriate customer record for invoicing.

Medical Applications. Test results are generated by a lab in the order of processing, but
need to be dispatched to the record of a patent as a group (all or none).

Shipping Applications. Messages must be sent to a remote location in processing order. If
the entire message set cannot be created, then none of the messages should be sent.

Cross-system Message Exchange Application. Sequenced messages are sent across the
web to another system. The arrival order at the destination cannot be predicted, and the
messages must be processed in a particular sequence that is not related to their arrival
time.

Unordered batches must be processed in a specific order. Incoming messages, perhaps
from an iterator over an incoming message, must process portions of a message in a
sequence that is different from the defined order of the elements in the original message.

Underlying these types of requirements is a system that receives in some intermixed
sequence, is charged with not losing any messages, and desires to process the incoming
messages in parallel. Parallelism loses the input ordering. However, single threading has an
adverse impact on performance.

Cross-Channel Services Guide 27

The Ordered listener is an iWay Service Manager (iSM) channel that alleviates these concerns
of parallelism, retaining the required order, and collecting messages for a specific purpose for
dispatch to the next channel. Messages can be dispatched as they become available, while
retaining the order, or as an ordered group when the final message of the group is recognized.
With the exception of the ordering facility, an ordered queue is similar to the commonly used
internal queue, and it retains the characteristics of that type of channel. This includes support
for low and high watermark tracking, passivation, inhibition, and so on.

It is the responsibility of the application designer to determine the type of queue required and
to place messages on the queue appropriately for the application.

Introducing the Ordered Queue Facility

The ordered queue facility of iSM collects messages for dispatch and ensures that they are
dispatched in the appropriate order. It is a variation of the Internal Queue listener and emit
service, and supports the complete set of capabilities of the internal queuing facility.

In the internal queuing facility, messages are emitted to the queue, where they are selected for
execution generally in the order of arrival. Multiple subchannels can be defined to process the
messages in parallel. Pended messages are placed back on the queue as they are selected to
be retried. The use of multiple subchannels (threads) and the use of pending prevent any
control of message ordering. To maintain ordering, applications frequently define a single
subchannel and avoid use of the pending facility. This technique maintains ordering, but at the
expense of performance and complexity. This is the issue that the ordered internal queue
facility is intended to address.

The ordered queue facility allows messages to be categorized by group. A group is any value of
meaning to the application. For example, a patient ID, a transaction ID, a shipment number,
and so on. The group identifier is passed along with the message from the emit service.
Messages within the group will be dispatched by the Ordered Queue listener in the order they
are received. The group is defined when it is first presented for a message. There is no need
to predefine the group during configuration.

Within a group, subsorting by a designated sequencing field is possible, allowing the ordered
queue to resort the messages before passing them to the application process flow. This allows
situations, such as the unpredictability of input order due to communication delays for some
messages or unsorted input in general to be handled. The intra-batch subsort key is presented
by the emit service. For non-batching queues, subsorting is not available.

Configuring an Ordered Queue Listener

The Ordered Queue listener is used to manage an ordered queue. In this section, the term
queue refers to the entire set of messages that are awaiting transfer to a subchannel.

Introducing the Ordered Queue Facility

28

The ordered queue is a collection of queuelets. Each queuelet collects the messages of one
group in the order they were received. A new queuelet is created automatically when a
message comes in with a key that has no associated queuelet. A queuelet is automatically
deleted when it becomes empty, that is, when all the messages in that group have completed
execution. Messages are deleted from the queuelet after their execution is completed. This
ensures that messages cannot be lost when the queue is configured to be persistent, and
maintains the ordering should a message arrive for the group while execution of the last
message is proceeding.

This section will address differences in configuration between the simpler internal queue and
the ordered queue. For more information on how the ordered queue system works for the
ordering of messages, see Introducing the Ordered Queue Facility on page 28.

To configure an Ordered Queue listener, you must create a channel for your application project
using the Channel Builder in iWay Integration Tools (iIT) and select Ordered Queue as the
listener type for your inlet. For more information, see Configuring a Listener Using iWay
Integration Tools on page 81.

For a complete description of the configuration parameters that are available for the Ordered
Queue listener, see Ordered Queue Listener Configuration Parameters on page 34.

For a complete description of the Ordered Queue listener Special Registers (SREGs), see
Ordered Queue Listener Special Registers on page 38.

Pended Messages

Pended messages are always executed in the proper order within the group. The implication is
that it is the group itself that is pended rather than the individual message. Consistent with
the normal server rules, if the pended message times out or fails, then it is considered to be
complete and the next message in the queuelet is made available for dispatch.

3. Ordered Queue Processing

Cross-Channel Services Guide 29

Immediate Mode Queues

In immediate mode, the messages are available for dispatch to the subchannel (process flow)
immediately upon their arrival at the listener.

Configuring an Ordered Queue Listener

30

Batch Mode Queues

In batching mode, a new message is put in its queuelet. However, the queuelet simply collects
the messages without making them available for dispatch. When the end of group signal is
received for that group, the queuelet becomes available for execution, just like in immediate
mode.

A delete group message can be sent to delete an unended group. A delete message cannot be
used for an ended group.

In persistent mode, the end of group signal is pended along with the messages, thus
instructing the channel to correctly end the group when reloading it from safe store. An
unended group is reloaded as an unended group. Application logic must decide whether to end
that group or delete it.

3. Ordered Queue Processing

Cross-Channel Services Guide 31

Control signals, such as delete group, are sent through the Ordered emit service
(com.ibi.agents.XDOrderedEmitAgent), which is configured using the Queue Out object in the
iWay Process Flow Designer and selecting the iWay queue (ordered) - send a message action.
Available signals are listed and described in the following table:

Signal Description

Document {doc} Current document message is to be
enqueued for its group key.

Delete {del} Batch queue is to be deleted.

End Signal {end} Final message has been enqueued for this
group, and the batch queue is to be made
available for dispatching.

Keep Alive {keepalive} Resets the timeout period for a batch
queue.

Last Document {docend} Effects a document and end operation.
Signals that this message is the final
message and the queue is to be made
available for dispatching.

The following table lists and describes the general set of special registers (SREGs):

Special Register Description

endofgroup Set to true when the last message of a batching queuelet is
dispatched to the process flow. This register is set to true for this
final message. Emitted signals, such as the end of group signal are
not dispatched to the associated process flow.

msgkey Group key associated with this message.

sortkey Sort key for non-immediate processing. Not applicable for non-sorted
immediate processing.

Configuring an Ordered Queue Listener

32

The ordered listener has a parameter to define the timeout before a batching group must be
closed. This is the maximum time between the last message of a group and receipt of the end
of the group signal. The timeout does not apply to queues in immediate mode. The Expired
Group Event Flow parameter holds the name of a process flow to run when the group timeout
expires. If no process flow is specified, then the server writes an error message in the log. The
messages are enqueued to the dead letter destination (assuming one is configured) and the
group is deleted. If a process flow is specified, then the server runs that process flow. The
process flow can send new messages, the delete group message, the end of group signal, or
the keep alive signal to reset the timer for the specified group. If the process flow returns a
success condition, then the server considers the condition to be handled, and no further action
is taken. If the process flow returns a condition other than success, then the server reverts to
the default behavior as if there were no process flow.

The expired group flow receives a signal message in the event of the timeout expiration. This
flow can elect to emit a keep alive or a delete signal message to the group.

<signal errors="0" protocol="ordered" timestamp="2018-10-24T17:56:30.730Z"
type="expired" version="2">
 <parms count="2">
 <parm name="queue">ordered</parm>
 <parm name="key">patient1</parm>
 </parms>
</signal>

The type of the signal document is expired and specifies the queue and group names, which in
this example are ordered and patient1.

Stopping the Server

If the channel in immediate mode is stopped, then the messages behave as defined for the
Internal Queue listener.

A persistent queue is stopped immediately upon completion of any messages that are in
process. The persisted messages are available once the server is restarted.

A non-persistent queue will complete messages that are in the queue before stopping the
channel.

Restarting the Server

When the server starts, it searches for persisted messages awaiting execution. The queuelets
are reconstructed to their status prior to the when the server was stopped. Immediate mode
and ended batch mode queuelets begin dispatching messages immediately, while unended
batch mode queuelets wait for an end of group signal.

3. Ordered Queue Processing

Cross-Channel Services Guide 33

Application designers are reminded that the timeouts applied to batch mode queues are based
on wall clock time. This can result in the execution of timeout flows, and the application logic
should take this into account.

Reference: Ordered Queue Listener Configuration Parameters

The following table lists and describes parameters for the Ordered Queue listener.

Note: Parameters that are common to queue listeners are described in Listener Configuration
Parameters on page 95.

Property Description

Name of Ordered Queue (required) Name of the ordered queue that is used to identify
the ordered message listener destination.

Queuing Mode Determines how received messages are handled.
Available modes include:

immediate. As messages for a group are
received, they become available for dispatching.

batch. A message becomes available for
dispatching only when the group is closed.

The default value is immediate.

Sorting Mode Applies to batch queues only, and only within the
batch itself. Available options include:

Chronological (default). No intra-batch sorting is
performed, and the order of presentation to the
application is arrival order.

Lexical. The subsort key is sorted in lexical
order. For strings, this is generally considered
alphabetic order.

Numerical. The subsort key is sorted
numerically by value rather than as a string.

The default value is Chronological.

Configuring an Ordered Queue Listener

34

Property Description

Group Timeout Indicates the time that a batching queue can
remain unavailable for dispatching following the
receipt of the latest message. In effect, this is an
inactivity timeout. The default value is 300
seconds.

Expired Group Flow Name of a published process flow that receives
control if an unended group times out.

Persistent If enabled, messages are persisted. Persistent
messages are held in the safestore until completion
and can be recovered if the server is restarted.

Select one of the following options from the drop-
down list:

none {false}

rdbms {rdbms}

file {true}

The default value is none {false}.

The rdbms option enables the application to persist
messages to a remote database location where, in
the event of a failover situation, a secondary server
running remotely can continue processing persisted
messages without any business interruption.

To use RDBMS persistence, you must create the
iway_queues table in the JDBC provider, using the
DDL script in the etc/setup directory. A hot backup
channel can be configured to use the same RDBMS
safestore.

Safestore Location If persistent, this is the location in the file system
to which documents are safestored.

3. Ordered Queue Processing

Cross-Channel Services Guide 35

Property Description

Compress Persistent If the queue is persistent, the documents written to
the safestore can be compressed. Select one of the
following options from the drop-down list:

smallest {best}

none {none}

fastest {speed}

standard {std}

The default option is to not compress (none).

Low Mark If the size of the named queue falls below this
value, then the named listeners that are specified
in the Control List parameter are sent an activate
message.

The low mark value applies to the queue as a
whole, and not to the individual quelelets. The
default value is 0.

High Mark If the size of the named queue goes above this
value, then a passivate message is sent to the
listeners that are specified in the Control List
parameter.

The high mark value applies to the queue as a
whole, and not to the individual quelelets. The
default value is 0.

Control List If a high or low mark value is crossed, the
appropriate message is sent to each listed listener.
For example, if two listeners LISA and LISB are
feeding the internal queue, listing them as
LISA,LISB will cause each to receive the appropriate
message.

Configuring an Ordered Queue Listener

36

Property Description

Inhibit Add If set, the queue will not accept new messages
when its size reaches the high mark, and will
resume accepting messages when the number of
messages on the queue reaches the low mark. The
effect of this inhibition can cascade through the
application, controlling overall performance. The
default value is false.

External Mark When set to a number greater than 0, this causes
the message to be stored in memory up to the
specified number. When the queue grows larger
than the specified number, the message is stored
on disk. This is equivalent to splitting the memory
and performance optimization for the messages in
the queue, and is effective for large lists that may
fill memory. The default value is 0.

Duration Maximum time in seconds (allows xhxxmxxs format)
that a document can remain in this channel,
starting from when the document is added to the
queue, including pends and retries. The default
value is 24 hours.

Support Pending If set, messages can be pended for later execution
if the process flow calls for a Fail/Pending
operation. Pending messages persist for a specified
time and are retried at a specific interval. You might
use a pending operation in the event that a
message cannot be processed because an external
resource is currently unavailable. The default value
is false.

Retry Interval Determines the interval (in seconds) between
retrying pending requests. The default value is 600
seconds (10 minutes).

3. Ordered Queue Processing

Cross-Channel Services Guide 37

Reference: Ordered Queue Listener Special Registers

The following table lists and describes the Special Registers (SREGs) available on the Ordered
Queue listener. These values can be used in the application for message routing and
processing.

Name Source Level Type Description

endofgroup Listener Document Boolean Indicates the last message of a
queuelet group.

iway.channel Listener System String Full name of the channel (may
include
channelname.inlet.listener).

iway.channelname Listener System String Channel name portion of the
name from the full channel
name of
channelname.inlet.listener.

iway.inletname Listener System String Inlet name portion of the name
from the full channel name of
channelname.inletname.listener

iway.listener Listener System String Name of the listener.

iway.pid System System String Process ID of the server, if
available.

iway.serverfullhost System System String Full host name of the server
(includes domain).

iway.serverhost System System String Host name of the server.

iwayconfig System System String Current active configuration
name.

iwayhome System System String Base at which the server is
loaded.

iwayversion System System String Release version of the server.

Configuring an Ordered Queue Listener

38

Name Source Level Type Description

iwayworkdir System System String Path to the base of the current
configuration.

msgkey Listener Document String Batch key being dispatched.

msgsize Listener Document Integer Physical length of the message
payload.

name Listener System String Assigned name of the master
(same as iway.channel).

protocol Listener System String Protocol on which the message
was received.

sortkey Listener Document String Values being sorted for ordered
dispatch, if applicable.

Configuring an Ordered Emit Service

The Ordered emit service is used to send a message to a group that is managed by an ordered
queue. The document is marshaled with its context and then placed on the queue to be
executed by the Ordered Queue listener and channel. The characteristics of message
management and sequencing are controlled by the Ordered Queue listener and channel. The
use of ordered queues is similar to the use of internal queues, which provide no ordering. For
more information, see Internal Queue Processing on page 11.

To configure an Ordered emit service, you must create a process flow for your application
project using iWay Integration Tools (iIT) and use the Queue Out object to emit to the Ordered
Queue (iWay queue (ordered) - send a message). Note that the Queue Out object implements
Ordered Queue operations using com.ibi.agents.XDOrderedEmitAgent.

For a complete description of the configuration parameters that are available for the Ordered
emit service, see Ordered Emit Service Parameters on page 47.

For a complete description of the edges that are returned by the Ordered emit service, see
Ordered Emit Service Edges on page 49.

3. Ordered Queue Processing

Cross-Channel Services Guide 39

Procedure: How to Configure an Ordered Emit Service

To configure an Ordered emit service, you must create a process flow in your application
project using iWay Integration Tools (iIT) and use the Queue (Out) object from the Palette,
under Connectors, to emit to the ordered queue (iWay queue (ordered) - send message) action.

Note: The Queue Out object implements the iWay queue (ordered) - send message action using
the Ordered emit service (com.ibi.agents.XDOrderedEmitAgent).

1. Expand the Connectors category in the Palette and drag the Queue (Out) object to your
process flow, as shown in the following image.

Configuring an Ordered Emit Service

40

2. In the Properties tab, under Configuration, select iWay queue (ordered) - send message
from the Select Action drop-down list, as shown in the following image.

3. Click the Create a configuration icon to the right of the Configuration field to configure a
new generic for this object, as shown in the following image.

3. Ordered Queue Processing

Cross-Channel Services Guide 41

The New Generic dialog box opens, as shown in the following image.

4. Specify a name for this generic in the Generic Name field, or accept the default.

5. In the Queue Settings tab, specify values for the following configuration parameters:

Name. Name of the ordered queue that is serviced by an Ordered Queue listener. The
queue is created when the channel is started and exists as long as the server is
running.

Put Timeout. Determines the amount of time that the emit will wait for the ordered
channel to accept the message. If the ordered queue is inhibited, the emit is paused
until the message can be accepted. If the timeout period expires, a status message is
sent down the timeout edge, where your application might chose to pend the message.
For more information on using inhibition to provide cascading flow congestion
management, see the Introducing iWay Service Manager chapter in the iWay Service
Manager User's Guide. If no value is supplied, timeout is set to 3000 milliseconds.

Configuring an Ordered Emit Service

42

The Registers (Sent) tab is shown in the following image.

By default, the Apply parameter is set to false. If set to true, user-type registers are
passed to the ordered queue. DOC and HDR registers are always transferred with the
message. By specifying a value for the Namespace parameter in this tab, registers in that
namespace will be sent to the ordered queue. This is used to limit the registers to those
of interest to the message process.

3. Ordered Queue Processing

Cross-Channel Services Guide 43

The Registers (Returned) tab is shown in the following image.

The Namespace parameter in this tab is used only for synchronous emits. If set, registers
returned from the ordered channel are placed into the specified namespace.

6. Click Finish.

You are returned to the Properties tab.

Configuring an Ordered Emit Service

44

7. Expand Message, as shown in the following image.

8. Specify values for the following configuration parameters:

Type. Classification of the message that is being sent to the ordered queue. Select
one of the following message types from the drop-down list:

Delete {del}. The batch queue is to be deleted. Has no effect for an immediate
queue.

Document {doc}. The current document message is to be enqueued for its group
key. This is the default value.

Last Document {docend}. Affects a document and end operation. Signals that this
message is the final message and the queue is to be made available for
dispatching.

End Signal {end}. The final message has been enqueued for this group, and the
batch queue is to be made available for dispatching. Has no effect for an
immediate queue.

Keep Alive {keepalive}. Resets the timeout period for a batch queue. Has no effect
for an immediate queue.

Group Key. Identifies the group for this message. Groups are created in the ordered
queue when a new key is presented, and are deleted when the last message for that
group has completed execution.

3. Ordered Queue Processing

Cross-Channel Services Guide 45

Sort Key. Applied only for non-chronological batching queues. Passes the key to be
used for the intra-batch sorting. Usually this will be an iFL statement extracting some
value from the message itself, such as a sequence number.

9. Expand Queue Settings, as shown in the following image.

10. Specify a value for the following configuration parameter:

Respect Transactionality. Determines whether to respect existing transactionality. The
default value is true.

11. Expand Post Action, as shown in the following image.

12. Specify a value for the following configuration parameter:

Return. Select one of the following options from the drop-down list:

response. The response document will be the output document. This is the default
value.

Configuring an Ordered Emit Service

46

status. A status document is returned showing the success of the queuing
operation.

input. The input document that originally came into the emit service is returned.

13. Save your process flow.

Reference: Ordered Emit Service Parameters

The following table lists and describes parameters for the Ordered emit service.

Note: Parameters that are common to emit services are described in Service Configuration
Parameters on page 99.

Parameter Description

Queue Name (required) Name of the ordered queue that is serviced by an Ordered
Queue listener. The queue is created when the channel is
started and exists as long as the server is running.

Group Key (required) Identifies the group for this message. Groups are created in
the ordered queue when a new key is presented, and are
deleted when the last message for that group has completed
execution.

3. Ordered Queue Processing

Cross-Channel Services Guide 47

Parameter Description

Message Type Classification of the message that is being sent to the ordered
queue. Select one of the following message types from the
drop-down list:

Delete {del}. The batch queue is to be deleted. Has no
effect for an immediate queue.

Document {doc}. The current document message is to be
enqueued for its group key. This is the default value.

Last Document {docend}. Affects a document and end
operation. Signals that this message is the final message
and the queue is to be made available for dispatching.

End Signal {end}. The final message has been enqueued
for this group, and the batch queue is to be made available
for dispatching. Has no effect for an immediate queue.

Keep Alive {keepalive}. Resets the timeout period for a
batch queue. Has no effect for an immediate queue.

Sort Key Applied only for non-chronological batching queues. Passes
the key to be used for the intra-batch sorting. Usually this will
be an iFL statement extracting some value from the message
itself, such as a sequence number.

Want User Registers If set to true, user-type registers are passed to the ordered
queue. DOC and HDR registers are always transferred with the
message. The default value is false.

Configuring an Ordered Emit Service

48

Parameter Description

Put Timeout Determines the amount of time that the emit will wait for the
ordered channel to accept the message. If the ordered queue
is inhibited, the emit is paused until the message can be
accepted. If the timeout period expires, a status message is
sent down the timeout edge, where your application might
chose to pend the message. For more information on using
inhibition to provide cascading flow congestion management,
see the Introducing iWay Service Manager chapter in the iWay
Service Manager User's Guide.

If no value is supplied, timeout is set to 3000 milliseconds.

Request Context
Namespace

By specifying a namespace, registers in that namespace will
be sent to the ordered queue. This is used to limit the
registers to those of interest to the message process.

Return (required) Select one of the following options from the drop-down list:

status. A status document is returned showing the
success of the queuing operation.

input. The input document that originally came into the
emit service is returned.

The default value is status.

Response Context
Namespace

This parameter is used only for synchronous emits. If set,
registers returned from the ordered channel are placed into
this namespace.

Reference: Ordered Emit Service Edges

The following table lists and describes the edges that are returned by the Ordered emit
service.

Edge Description

OnSuccess Operation was successful.

3. Ordered Queue Processing

Cross-Channel Services Guide 49

Edge Description

OnFailure Fail condition occurred during execution.

OnError Exception occurred during execution.

OnParseError Could not parse a document.

OnNotFound Resource was not found. This may or may not be a failure.

OnTimeOut Operation timed out.

OnCancelled Service has responded to a cancellation request.

OnNotFound Resource was not found and this is considered an error.

OnFailedOperation Could not perform the operation requested.

Configuring an Ordered Emit Service

50

Chapter4
Reverse Invocation Queue Processing

This section describes how to configure Reverse Invocation (RVI) queue processing.

In this chapter:

Reverse Invocation Queue Processing Overview

Configuring the RVIAttach Listener

Configuring the RVI Relay Service

Configuring the RVIGateway Listener

Configuring a Service to Test the Reverse Invocation

Reverse Invocation Queue Processing Overview

Reverse Invocation (RVI) queue (also referred to as gateway) processing links two or more iWay
Service Manager (iSM) instances in a message receiver or a message executor relationship to
tunnel through secure firewalls.

To configure RVI queue (gateway) processing, you must:

1. Install the iWay Gateway extension on the iWay Proxy server and the execution engine.

To install the iWay RVI Proxy, you must add the Gateway extension to your iSM instance
during the iSM installation. For more information on installing iSM, see the iWay Installation
and Configuration Guide.

After the Gateway extension is installed, the RVIAttach listener, RVIGateway listener, and
RVIRelay service are added to the design-time registry and run time configurations.

2. Configure the RVIAttach listener on the iWay Proxy server.

3. Add the RVIRelay service to the appropriate listener(s) configured on the iWay Proxy server.

4. Configure the RVIGateway listener on the execution engine.

iSM horizontal scaling through reverse invocation allows a message received by one iSM
configuration to be processed on another configuration. Configurations are expected to be on
separate machines, but this is not a requirement. Messages can be distributed over an
arbitrary number of associated configurations to balance workload and provide for high
availability of processing services.

Cross-Channel Services Guide 51

Messages are received at a receiving engine (the iWay Proxy) and executed at an execution
engine. Each message arriving at the iWay Proxy is assigned to a named service. This
assignment can be configured in a fixed manner based on the receiving listener or it can be
assigned using the full services of iSM intelligent routing services. Regardless of how the
assignment is made, the receiving engine locates an execution engine offering the named
service, and passes the message to that engine for execution.

Processing engines connect to the receiving engine on a secure, reverse channel. This enables
the receiving engine to be located across a firewall, enabling execution to be carried on in a
secure environment not open to outside, unauthorized access.

This is also referred to as Reverse Invocation because the execution engine connects to the
receiving engine rather than the receiving engine connecting to the execution engine to pass a
document.

Proxy Service

Messages arrive at the proxy through any of the protocols that are supported by iSM. Each
protocol is managed by a listener. The listener is configured to pass the message to a relay
service, which selects an attached execution service and passes the message to the selected
engine for execution. All other iSM capabilities are supported. For example, intelligent routing
can examine the incoming message to select the appropriate relay service for execution.

Execution Service

The execution engine accepts relayed messages, executes them, and returns the result to the
relay service, which in turn relays the result back to the configured emit service(s). Usually,
ancillary emit operations are performed on the execution engines, though this is not required.

An execution engine is configured with one or more gateway listeners. A gateway is a named
service that attaches to the attach point of a receiving engine. There must be one gateway for
each service name offered, at each receiving engine attach point.

The process flow that is configured on the execution service must return only one result
message. Although a process flow can be developed that returns multiple results, this practice
is not compatible with the execution service.

Reverse Invocation Queue Processing Overview

52

Reverse Invocation Process

This section depicts the reverse invocation process in a step-by-step fashion. In this depiction,
iSM is deployed to two locations, one within the enterprise and one in the demilitarized zone
(DMZ).

1. The iWay Proxy, or Receiving Engine, starts with the RVIAttach listener waiting for
connections to be initiated from the Execution engine, as shown in the following image.

4. Reverse Invocation Queue Processing

Cross-Channel Services Guide 53

2. The connection is initiated by the gateway listener configured on the Execution engine
located in the enterprise, behind the firewall. A service name is defined in the gateway
listener configuration, as shown in the following image.

Reverse Invocation Queue Processing Overview

54

3. After the connection is established, it is added to a pool of connections and can be
referenced by the service name, as shown in the following image.

4. Reverse Invocation Queue Processing

Cross-Channel Services Guide 55

4. When a partner connects to the event listener defined on the iWay Proxy, the message is
routed to the Execution engine through the relay service that is added to the event listener.
The relay service is configured with the service name defined in the gateway listener
configuration, as shown in the following image.

Reverse Invocation Queue Processing Overview

56

5. After the connection between the iWay Proxy and the Execution engine is established,
messages pass securely through the configuration, as shown in the following image.

4. Reverse Invocation Queue Processing

Cross-Channel Services Guide 57

6. Multiple channels can be configured in the same way. Gateway listeners configured on the
Execution engine can spawn services that the iWay Proxy can use to pass data to the
configured gateway listeners, as shown in the following image.

Sample Scenario

As an example of a Reverse Invocation scenario in which the payload is an EDI document, an
AS2 message is routed over the public Internet. The message must be processed securely
within the enterprise, where security certificates reside. The iWay Proxy server receives the
message securely within the DMZ and passes it back for secure processing to an iSM located
inside the enterprise that acts as the Execution engine.

Reverse Invocation Queue Processing Overview

58

The following diagrams depict the process:

1. The Execution engine initiates a connection with the Receiving Engine (iWay Proxy).

2. The session is established.

4. Reverse Invocation Queue Processing

Cross-Channel Services Guide 59

3. The trading partner initiates a connection with the iWay Proxy (the Receiving engine).

4. The connection is established, and the iWay Proxy manages connectivity between the
trading partner and the internal processes hosted by the Execution engine.

From the perspective of a trading partner, a secure connection is established, and information
can safely pass through the firewall for secure processing.

Reverse Invocation Queue Processing Overview

60

Configuring the RVIAttach Listener

Each Relay server maintains a list of attachment points, which is used to direct relayed
messages to available Execution engines. Attachment points are characterized by a service
name, an IP address, and a port. The Relay service channel is configured with the service
name, which is resolved at run time to the target IP and port. Service names should be
descriptive, but need not be related to a message type, channel name or host name. Multiple
attach points for the same service name may be registered with one relay server, in which
case, the connections they represent are assigned to relay events using algorithms which
maintain a balanced work distribution (for example, Least Recently Used).

The purpose of the RVIAttach listener is to process attach messages from running Execution
Channels in order to construct the attachment point list. The RVIAttach logic maintains the
integrity of the attach point list by removing connections which have become unavailable. When
that happens, other attach points offering the same named service are not affected.

To configure the RVIAttach listener, you must create a channel for your application project
using the Channel Builder in iWay Integration Tools (iIT) and select RVIAttach as the listener
type for your inlet. For more information, see Configuring a Listener Using iWay Integration Tools
on page 81.

For a complete description of the configuration parameters that are available for the RVIAttach
listener, see RVIAttach Listener Configuration Parameters on page 61.

Reference: RVIAttach Listener Configuration Parameters

The following table lists and describes parameters for the RVIAttach listener.

Property Description

Port (required) Port on which the attach listener is listening to receive service
attachments.

Local Bind Address On a server with multiple physical network interfaces, this
specifies the interface to which the listener is bound. This can
usually be left blank.

SSL Context Provider Defined iWay Security Provider for SSL Context.

4. Reverse Invocation Queue Processing

Cross-Channel Services Guide 61

Property Description

Allowable Clients Optional host name or IP address, which, if entered, limits
connections to those from the designated host or IP address.
Only one host name or IP address is allowed per RVIAttach
listener. If you wish to allow a set of Executor hosts to
connect, one RVIAttach listener must be configured for each.

Timeout Frequency with which the attach point checks for stop
requests. The default value is 2 seconds.

Keep Alive The interval at which to poll to ensure that a connection is still
available. If an interval is specified, the attach point sends a
keep alive message on each attached link. Care should be
taken in setting this property, as overly short polling intervals
can impact bandwidth and CPU utilization. The default value is
0; 60 seconds is recommended.

Configuring the RVI Relay Service

The RVI Relay service is responsible for passing messages to the Executor Server from a
channel running on the Proxy Server. To accomplish this, the service uses its service name to
find a matching attachment point in the attachment point list. If there are several matching
attachment points, the system applies a load balancing algorithm to select which attachment
point to use. The RVI Relay service may be configured with the service name property defined
as an expression, in which case the expression will be evaluated dynamically for each
invocation (for example, for each message which will be relayed) prior to determining the
attachment point.

The RVI Relay service is added to the iSM channel by implementing and assigning a
corresponding process flow containing the service.

The RVI Relay service is synchronous. Depending on the timeout settings, this service will wait
for a response document from the gateway before proceeding. The response document will
include content, a header, and user special registers (SREGs). To return a SREG from the
gateway, the SREG must be in message scope as local and flow scopes are cleared when the
process flow running on the gateway ends.

Configuring the RVI Relay Service

62

Note: This section describes how to configure an RVI Relay service. To construct a fully
populated iSM channel, incorporate the service into a process and then include the process as
a route of the channel. For more information on how to design and build a channel, see the
iWay Service Manager User's Guide.

To configure the RVI Relay service, you must create a process flow for your application project
using iWay Integration Tools (iIT) and select RVI Relay: send message to gateway service
(com.ibi.agents.RVIRelay) as the agent type for the Server Agent component. For more
information, see Configuring a Service Using iWay Integration Tools on page 87.

For a complete description of the configuration parameters that are available for the RVI Relay
service, see RVI Relay Service Configuration Parameters on page 63.

Reference: RVI Relay Service Configuration Parameters

The following table lists and describes parameters for the RVI Relay service.

Property Description

Service Name (required) Name of the service that is supported by an Executor Server
attach point. Service names should be short and descriptive.
Service names are case-sensitive and may not contain
punctuation or other special characters. This service name
must be identical to the service name that is specified during
the configuration of the gateway listener, since it refers to the
service offered by the gateway.

Tolerance Period to wait for an Execution server offering the correct
service to be available. The default value is 30 seconds.

Timeout Maximum time period to wait for a response from the
executing service. The default value is 30 seconds.

Attempt Retry If set to true, failed connections to the execution server will be
retried. The default value is true.

Output On Failure If the relay operation is unsuccessful, this determines whether
the agent returns the standard error document or its input. If
input is selected, the error document will be stored in the
rvi.status register. The default value is error.

4. Reverse Invocation Queue Processing

Cross-Channel Services Guide 63

Property Description

Method of compression to
use (required)

The form of compression that should be used on the output:

none

smallest

fastest

standard

Huffman

The default value is none.

Configuring the RVIGateway Listener

The RVIGateway listener offers one service to one attach point. Each active RVIGateway
listener offers service attachments to one attach point on a receiving engine. One channel is
offered for each possible simultaneous execution. This is configured as the thread count for
the listener. The number of offered channels will not grow by demand, although the gateway
will attempt to reinstate a failing channel.

To configure the RVIGateway listener, you must create a channel for your application project
using the Channel Builder in iWay Integration Tools (iIT) and select RVIGateway as the listener
type for your inlet. For more information, see Configuring a Listener Using iWay Integration Tools
on page 81.

For a complete description of the configuration parameters that are available for the
RVIGateway listener, see RVIGateway Listener Configuration Parameters on page 64.

Reference: RVIGateway Listener Configuration Parameters

The following table lists and describes parameters for the RVIGateway listener.

Configuring the RVIGateway Listener

64

Note: Parameters that are common to most listeners are described in Listener Configuration
Parameters on page 95.

Property Definition

Attach Point Host
(required)

Host address of the attach point, which can be a list such as:

host1:1234;host2:3456(ipi bind address)

The list can also be stored as a file using the iFL _file() function.

Attach Point Port
(required)

Socket port where the attach point is listening for gateway
connections. This will be the default port, used if a host does not
carry the port as host:port.

Note: The value for the Attach Point Port parameter must not be
zero (0) or blank.

SSL Context Provider Defined iWay Security Provider for SSL Context.

Service Name
(required)

Name of the service that is supported by an Executor Server
attach point. The service name is a locator that identifies the
channel or listener that runs on the specified machine name.
Therefore, it represents a combination of the channel name and
the machine and port name for remote invocation. In addition,
this is the service name that is referred to in the relay service at
the attach point.

Reverify time Period of time (in seconds) to verify the presence of the attach
point. The default value is 120 seconds.

Read Timeout Period, in seconds, to wait for a response from the attach point.
The default value is 1.0 seconds.

Preserve Stream If set to true, an incoming RVI stream message will be processed
as a stream document containing the input stream for the
message. The default value is false.

IP Interface Host Local IP interface from which the outgoing IP socket originates.
This field is usually left blank.

4. Reverse Invocation Queue Processing

Cross-Channel Services Guide 65

Configuring a Service to Test the Reverse Invocation

The gateway listener performs the action requested by the relay service. For example, if a
database operation is required to be performed, but the service is available on the gateway
machine, the gateway listener picks up the message from the relay service and completes the
processing. The result is then returned to the relay service or relay channel that is configured.

Procedure: How to Create a Service on the Gateway

To create a service on the gateway:

1. Configure a new channel (for example, Gateway_Channel) using iWay Integration Tools (iIT).

2. Configure a RVIGateway listener as an inlet for this channel, as shown in the following
image. For more information, see Configuring the RVIGateway Listener on page 64.

3. Create a new process flow (for example, SQLService_Pflow), as shown in the following
image.

4. Add the Server Agent component from the Palette to the process flow, as shown in the
following image.

Configuring a Service to Test the Reverse Invocation

66

4. Reverse Invocation Queue Processing

Cross-Channel Services Guide 67

5. Select SQL Operations (com.ibi.agents.XDSQLAgent) as the service type, as shown in the
following image.

This service would be invoked by the relay service on the proxy machine through the
socket call. In this case, the SQL object (sqlServicedel) is used to perform a database
operation (for example, a delete action), as shown in the following image.

Configuring a Service to Test the Reverse Invocation

68

6. Open the channel that you configured earlier (for example, Gateway_Channel).

7. In the Channel Builder, select process: process.1 under the route node in the left pane and
then click the Resource Selection icon in the right pane, as shown in the following image.

The Resource Selection dialog box opens, as shown in the following image.

8. Expand the Flows subfolder, select the process flow you that configured earlier (for
example, SQLService_Pflow), and then click OK.

4. Reverse Invocation Queue Processing

Cross-Channel Services Guide 69

The process flow is now associated as the route of your channel, as shown in the
following image.

9. Click Save to save all of the changes you made to your channel, as shown in the following
image.

Procedure: How to Configure the RVIAttach Channel

To configure the RVIAttach channel:

1. Configure a new channel (for example, RVIAttach_Channel) in an application project using
iWay Integration Tools (iIT).

2. Configure an RVIAttach listener as an inlet for this channel. For more information, see
Configuring the RVIAttach Listener on page 61.

Configuring a Service to Test the Reverse Invocation

70

3. Configure this channel (RVIAttach_Channel) to perform the initial handshake with the
gateway channel, as shown in the following image. Note that the move route simply
contains a start-end process flow which passes the message along.

4. Save the channel (RVIAttach_Channel).

Procedure: How to Configure the Channel to Invoke the Remote Gateway Service

As an example, assume that a channel exists with a File listener that picks up files from a
specified directory. After the file is picked up, a service on the gateway is invoked through the
attach point and the result is written to an output directory.

To configure the channel to invoke the remote gateway service:

1. Configure a new channel (for example, RelayTestChannel) in an application project using
iWay Integration Tools (iIT).

2. Configure a File listener as an inlet for this channel..

3. Configure a new process flow (for example, ProxyRelay) which includes the RVI Relay
service (com.ibi.agents.RVIRelay). Add this process flow as the route of your channel.

4. Reverse Invocation Queue Processing

Cross-Channel Services Guide 71

4. Configure this channel (RelayTestChannel) to test the remote service on the gateway
machine, as shown in the following image.

5. Save the channel (RelayTestChannel).

Procedure: How to Test the RVI Invocation Using the Attach Point and Gateway

To test the RVI invocation using the attach point and gateway:

1. Deploy the application project that contains the RVIAttach_Channel you configured in
Configure the RVIAttach Channel.

2. If this application project deploys successfully (without any errors), then deploy the
application project that contains the Gateway_Channel on the gateway machine. This is the
channel you configured in How to Create a Service on the Gateway on page 66.

If this application project deploys successfully (without any errors), then a successful
connection between the attach point and the gateway has been established.

3. Deploy the application project that contains the RelayTestChannel to invoke the RVI Relay
service. This is the channel you configured in How to Configure the Channel to Invoke the
Remote Gateway Service on page 71.

4. Place a file in the input directory that was configured for the File listener (Input Path
parameter) in the RelayTestChannel to start the invocation process.

Configuring a Service to Test the Reverse Invocation

72

The file read is successful indicating a success test run on the RVIAttach side. To see if
the gateway service was invoked successfully, check the database to see if the database
operation was completed successfully on the gateway side. If the database operation was
completed, then this indicates that the gateway service ran successfully.

4. Reverse Invocation Queue Processing

Cross-Channel Services Guide 73

Configuring a Service to Test the Reverse Invocation

74

Chapter5 Asynchronous Forward Transfer
Invocation Queue Processing

This section describes how to configure Asynchronous Forward Transfer Invocation (AFTI)
queue processing.

In this chapter:

Asynchronous Forward Transfer Invocation Overview

Configuring a Marshalls a Message Service

Configuring an Unmarshalls a Message Service

Asynchronous Forward Transfer Invocation Overview

The cross-channel protocols that are described in the previous chapters of this documentation
are completely managed by iSM. Sometimes an application requires a cross-channel structure
that must use another protocol, such as MQ Series, MSMQ, FTP, or any other protocol that is
not specific to iSM. To support this requirement, it is necessary to marshall the message and
its context for transmission into a format that iSM can support. Asynchronous Forward Transfer
Invocation (AFTI) allows a service to transfer a message and its context across a channel using
a protocol that is not specific to iSM. There is no restriction on the type of protocol that can be
used.

In iSM terms, marshalling refers to the serialization of the current message and its context
(special registers) for saving or transmission purposes. Unmarshalling takes a marshalled
serialized message and restores its content and context.

AFTI is accomplished through the use of a provided service within a process flow. To send a
context and a message to another party, configure the Marshall preemitter
(com.ibi.preemit.XDMarshall). When the message is received by an iSM channel, it is
automatically unmarshalled. The message context is reestablished and the message flows
through the standard channel functionality.

Additionally, the Marshall service (com.ibi.agents.XDMarshallAgent) is available, which can be
positioned to marshall the message and its context before it is passed to an emit service.

Cross-Channel Services Guide 75

The following image shows that the Queue (Out) object was added to the process flow,
renamed as Send to MQ, and that a message queue type is being specified from the Select
Action drop-down list.

On the receiving side, a simple process flow can deposit the unmarshalled message into the
desired internal queue. A best practice can be to put the name of the desired queue in a
Special Register (SREG) if the process flow can deposit into different queues.

AFTI offers optional data compression and encryption through AES. Encryption is offered, since
the marshalled message may reside on an intermediate media (for example, a file system).
Any message-bearing protocol can be used. If the marshalled message will never be serialized
to external media, then encryption is probably not required. While decompression is handled
automatically by the receiving channel, the encryption key must be supplied to the receiver.
This is the purpose of the AES Key parameter, which is available for all iSM listeners.

Asynchronous Forward Transfer Invocation Overview

76

Configuring a Marshalls a Message Service

To configure a Marshalls a message service, you must create a process flow for your
application project using iWay Integration Tools (iIT) and select Marshalls a message
(com.ibi.agents.XDMarshallAgent) as the agent type for the Server Agent component. For more
information, see Configuring a Service Using iWay Integration Tools on page 87.

For a complete description of the configuration parameters that are available for the Marshall
service, see Marshall Service Parameters on page 77.

For a complete description of the edges that are returned by the Marshall service, see
Marshalls a Message Service Edges on page 78.

Reference: Marshall Service Parameters

The following table lists and describes parameters for the Marshalls a message service.

Parameter Description

Compress Messages
(required)

Supports optional compression. The default value is true.

Marshall User Special
Registers

Set to true if the marshalling is to include user registers.
Normally the marshaller passes header, document, and system
registers associated with the message. The default value is
false.

Namespace If empty or an asterisk character (*) is entered, then all
namespaces are marshalled. If a namespace is entered, then
only registers in the specified namespace are marshalled.

Use Encryption
(required)

Set to true if the marshalled messages should be encrypted
after compression. The AES Key parameter must also be
configured if this parameter is set. The default value is false.

5. Asynchronous Forward Transfer Invocation Queue Processing

Cross-Channel Services Guide 77

Parameter Description

AES Key Must be the same value on both sides. Maximum length is 16
characters, but can include escapes to allow the use of binary
values. For more information, see the _aes() iFL function in the
iWay Functional Language Reference Guide.

This key can be generated by an iFL statement, such as storing
the key in a special register accessed at runtime. Once set, the
key cannot be altered. Use of AES encryption can be slow, and
should only be used when the marshalled message can appear
in a publicly accessible area.

Reference: Marshalls a Message Service Edges

The following table lists and describes the edges that are returned by the Marshalls a
message service.

Edge Description

OnSuccess Operation was successful.

OnFailure Fail condition occurred during execution.

OnError Exception condition occurred during execution.

OnFailedOperation Could not perform the operation requested.

Configuring an Unmarshalls a Message Service

To configure an Unmarshalls a message service, you must create a process flow for your
application project using iWay Integration Tools (iIT) and select Unmarshalls a message
(com.ibi.agents.XDUnmarshallAgent) as the agent type for the Server Agent component. For
more information, see Configuring a Service Using iWay Integration Tools on page 87.

For a complete description of the configuration parameters that are available for the
Unmarshall service, see Unmarshalls a Message Service Parameters on page 79.

For a complete description of the edges that are returned by the Unmarshall service, see
Unmarshalls a Message Service Edges on page 79.

Configuring an Unmarshalls a Message Service

78

Reference: Unmarshalls a Message Service Parameters

The following table lists and describes parameters for the Unmarshalls a message service.

Parameter Description

Use encryption
(required)

Set to true if the unmarshalled messages should be encrypted after
compression. The AES Key parameter must also be configured if this
parameter is set. The default value is false.

AES Key Must be the same value on both sides. Maximum length is 16
characters, but can include escapes to allow the use of binary values.
For more information, see the _aes() iFL function in the iWay Functional
Language Reference Guide.

This key can be generated by an iFL statement, such as storing the key
in a special register accessed at runtime. Once set, the key cannot be
altered. Use of AES encryption can be slow, and should only be used
when the unmarshalled message can appear in a publicly accessible
area.

Reference: Unmarshalls a Message Service Edges

The following table lists and describes the edges that are returned by the Unmarshalls a
message service.

Edge Description

OnSuccess Operation was successful.

OnFailure Fail condition occurred during execution.

OnError Exception condition occurred during execution.

OnFailedOperation Could not perform the operation requested.

5. Asynchronous Forward Transfer Invocation Queue Processing

Cross-Channel Services Guide 79

Configuring an Unmarshalls a Message Service

80

Chapter6 Configuring iWay Service Manager
Components

During the cross-channel services configuration process, you are required to configure
listeners and services using iWay Integration Tools (iIT). This section provides the steps
that are needed to access and configure these iSM components. Descriptions of the
parameters for each component is provided within the corresponding sections.

In this chapter:

Configuring a Listener Using iWay Integration Tools

Configuring a Service Using iWay Integration Tools

Configuring a Listener Using iWay Integration Tools

This section describes how to configure a listener using iWay Integration Tools (iIT).

Procedure: How to Configure a Listener Using iWay Integration Tools

1. Using iWay Integration Tools, create a new channel within an application project. Right-
click the Channels subfolder under your application project, select New, and then click
Channel from the context menu, as shown in the following image.

Cross-Channel Services Guide 81

The Channel Object dialog box opens, as shown in the following image.

2. Specify a name (required) and a brief description (optional) for your channel and then click
Finish.

Configuring a Listener Using iWay Integration Tools

82

The new channel appears as a node under your Channels subfolder in the left pane. The
Channel Builder also opens as a new tab in the workspace area. The name of this tab
corresponds to the channel name you specified (for example, Sample_Channel), as shown
in the following image.

3. In the left pane of the Channel Builder, click listener: listener.1 under the inlet:inlet.1 node,
and then click change type, as shown in the following image.

6. Configuring iWay Service Manager Components

Cross-Channel Services Guide 83

The Modify listener type dialog box opens, as shown in the following image.

4. Scroll through the list of available listeners and select the specific listener that you want
to configure (for example, Internal Queue).

Configuring a Listener Using iWay Integration Tools

84

Note: You can also quickly filter through the list by typing part of the listener name in the
filter field, as shown in the following image.

5. After you have selected your listener in the Modify listener type dialog box, click Finish.

The Channel Builder is refreshed with your selected listener, as shown in the following
image.

6. Configuring iWay Service Manager Components

Cross-Channel Services Guide 85

Notice that the name of the listener is appended to the listener: listener.1 node in the left
pane. Configuration parameters for the selected listener are organized into expandable
groups, which can be accessed in the right pane.

In the following image, the Main configuration parameter group has been expanded. The
name of any required parameter appears in red.

6. Provide the appropriate values for the configuration parameters as required for the
selected listener.

7. Click Save to save any changes you made to your listener and/or channel, as shown in the
following image.

Configuring a Listener Using iWay Integration Tools

86

To modify your listener and/or channel at any point, double-click the channel under your
application project, as shown in the following image.

The Channel Builder will open as a tab in the workspace area.

Configuring a Service Using iWay Integration Tools

This section describes how to configure a service using iWay Integration Tools (iIT).

Procedure: How to Configure a Service Using iWay Integration Tools

1. Using iWay Integration Tools, create a new process flow within an application project.
Right-click the Flows subfolder under your application project, select New, and then click
Flow from the context menu, as shown in the following image.

6. Configuring iWay Service Manager Components

Cross-Channel Services Guide 87

The New Flow Wizard opens, as shown in the following image.

2. Specify a name (required) and a brief description (optional) for your process flow and then
click Finish.

Configuring a Service Using iWay Integration Tools

88

The process flow opens as a new tab in the workspace area. The name of this tab
corresponds to the process flow name you specified (for example, Sample_Pflow), as
shown in the following image.

The new process flow also appears as a node under your Flows subfolder in the left pane.

3. From the Palette located on the right pane, expand the Components category.

4. Click and drag the Server Agent component to the workspace area between the Start and
End objects, as shown in the following image.

6. Configuring iWay Service Manager Components

Cross-Channel Services Guide 89

The Server Agent Object Properties pane opens as a tab below the workspace area, as
shown in the following image.

5. Click the ellipses button next to the Agent Type field.

Configuring a Service Using iWay Integration Tools

90

The Server Agent Type dialog box opens, as shown in the following image.

6. Scroll through the list of available services (agents) and select the specific service that
you want to configure. For example, Marshalls a message
(com.ibi.agents.XDMarshallAgent).

6. Configuring iWay Service Manager Components

Cross-Channel Services Guide 91

Note: You can also quickly filter through the list by typing part of the service name in the
filter field, as shown in the following image.

7. After you have selected your service in the Server Agent Type dialog box, click OK.

The Server Agent Object Properties pane is refreshed with your selected service, as shown
in the following image.

Configuration parameters for the selected service are organized into expandable groups.

Configuring a Service Using iWay Integration Tools

92

In the following image, the Main configuration parameter group has been expanded. The
name of any required parameter appears in red.

8. Provide the appropriate values for the configuration parameters as required for the
selected service.

9. Click Save to save any changes you made to your service and/or process flow, as shown
in the following image.

6. Configuring iWay Service Manager Components

Cross-Channel Services Guide 93

To modify your process flow at any point, double-click the process flow under the Flows
subfolder of your application project, as shown in the following image.

The process flow will open as a tab in the workspace area.

Configuring a Service Using iWay Integration Tools

94

Chapter7
Common Configuration Parameters

This section provides a reference for common configuration parameters used by iWay
Service Manager (iSM) components (for example, listeners and services).

In this chapter:

Listener Configuration Parameters

Service Configuration Parameters

Listener Configuration Parameters

The following table lists and describes common parameters used by the Internal, Ordered, and
RVI Queue listeners.

Tuning Parameters

Parameter Description

Multithreading Indicates the number of worker threads (documents or
requests) that iWay Service Manager can handle in
parallel. Setting this to a value of greater than 1 enables
the listener to handle a second request while an earlier
request is still being processed. The total throughput of a
system can be affected by the number of threads
operating. Increasing the number of parallel operations
may not necessarily improve throughput.

The default value is 1.

The maximum value is 99.

Maximum Threads The parallel threads can grow to this count automatically
on demand. Over time, the worker count will decrease
back to the multithreading level. Use this parameter to
respond to bursts of activity. The default value is 1.

Cross-Channel Services Guide 95

Parameter Description

Optimize Favoring Use this option to customize how the listener performs.
For smaller transactions, select performance. For large
input documents that could monopolize the amount of
memory used by iWay Service Manager, select memory.
The default value is performance.

Polling Interval The maximum wait interval (in seconds) between checks
for new requests or commands. The higher this value, the
longer the interval, and the fewer system resources that
are used. The side effect of a high value is that the worker
thread will not be able to respond to a stop command.

The default value is 2.0 seconds.

Events Parameters

Parameter Description

Expired Retry Flow Name of a published process flow to run if a message on
the retry queue has expired.

Failed ReplyTo Flow Name of a published process flow to run if a message
cannot be emitted on an address in its reply address list.

Dead Letter Flow Name of a published process flow to run if an error cannot
be emitted on an address in its error address list.

Channel Failure Flow Name of a published process flow to run if this channel
cannot start or fails during message handling. iWay
Service Manager will attempt to call this process flow
during channel shut down due to the error.

Parse Failure Flow Name of a published process flow to run if XML or JSON
parsing fails for the incoming message.

Channel Startup Flow Name of a published process flow to run prior to starting
the channel.

Listener Configuration Parameters

96

Parameter Description

Channel Shutdown Flow Name of a published process flow to run when the
channel is shut down.

Startup Dependencies A comma-separated list of channel names that must be
started before this one is called.

Other Parameters

Parameter Description

Whitespace Normalization Specifies how the parser treats whitespace in Element
content. Choose preserve to turn off all normalization as
prescribed by the XML Specification. Choose trim to
remove extra whitespace in pretty printed documents and
for compatibility with earlier versions. The default value is
preserve.

Input Format If set to true, the input data is sent directly to the
business logic step. The data is not preparsed, parsed, or
validated. This flag is used primarily to send non-XML to
the business logic or replyTo without processing it. Select
one of the following options from the drop-down list:

No parse, input is flat {flat}

Parse as JSON {json}

Parse as XML {xml)

The default value is XML.

Execution Time Limit The maximum time that a request may take to complete.
Used to prevent runaway requests. Any request that takes
longer to complete than this value will be attempted to be
terminated.

Default Java File Encoding The default encoding if the incoming message is not self-
declaring (that is, XML).

7. Common Configuration Parameters

Cross-Channel Services Guide 97

Parameter Description

Agent Precedence Sets the order by which iWay Service Manager selects
agents. iWay Service Manager selects the agent or agents
to process the document by searching through the
configuration dictionary. Usually, it looks for a document
entry in the configuration and when a match is found, the
agent specified in that document entry is selected. If a
matching document entry is not found, or no agent is
specified, the engine looks in the input protocol
configuration (listener). To have the processing agent
taken directly from the listener (thus ignoring the
document entry), use <listener> overrides <document>.

Possible values are <document> overrides <listener> and
<listener> overrides <document>.

The default value is <document> overrides <listener> {1}.

Always reply to listener default If set to true, the default reply definition is used in
addition to defined reply-to and error-to destinations. The
default value is false.

Error Documents treated
normally

If set to true, error documents are processed by any
configured preemitters. The default value is false.

Listener is Transaction
Manager

If set to true, agents run within a local transaction. The
default value is false.

Record in Activity Log(s) If set to true, activity on this channel will be recorded in
the activity logs, otherwise the activity will not be
recorded. The default value is true.

AES Key If the channel will receive encrypted AFTI messages, set
the AES key (maximum 16 characters) to be used for
decrypting.

Startup Dependencies A comma-separated list of channel names that must be
started before this one is called.

Listener Configuration Parameters

98

Service Configuration Parameters

The following table lists and describes common parameters used by the Internal and Ordered
emit services.

Parameter Description

Avoid Preemitter Determines whether any preemitter should be avoided. Select
one of the following options from the drop-down list:

true (default)

false

The default value is true.

Respect Transactionality Determines whether this emit service should post messages
regardless of the commit/rollback state of the transaction.
For example, you may not want to respect transactionality
when passing messages that reflect the progress of an
application or errors within the application. The default value
is true.

Call at EOS? In a streaming environment, EOS (End of Stream) is the short
message that is sent after the last document, which signifies
the EOS. This parameter determines whether this service
should be called for the EOS message. The default value is
false.

7. Common Configuration Parameters

Cross-Channel Services Guide 99

Service Configuration Parameters

100

Chapter8 Deploying iWay in a High Availability
Environment

The following section describes how to deploy iWay Service Manager in a high availability
environment and manage server failover.

In this chapter:

High Availability Overview

Failover

Scaling and Load Balancing

Implementing High Availability

IP-based Horizontal Scaling

Web-based Horizontal Scaling Using iWay Performance Monitor

iWay Reverse Invocation Proxy and High Availability

High Availability Overview

High Availability (HA) describes the ability of a system to accept and process transactions a
great percent of the time, achieving as close to 100% as technically possible. The features
and characteristics of a specific software product are not solely responsible for the ability of a
system to be highly available. For example, choosing high reliability hardware, and ensuring
uninterruptible power, network connectivity, and sufficient capacity and throughput are all
essential to achieving high availability.

There are specific architectural mechanisms and design patterns employed to make a system
highly available, the most important being failover and scaling. iWay is compatible with
architectures comprising third-party HA solutions and also has its own native features to
facilitate HA.

Failover

Failover is the capability to switch over automatically to a redundant or hot standby host or
subsystem upon the failure or abnormal termination of the primary host or subsystem. Ideally,
failover is accomplished without manual intervention since failures generally occur without
warning.

Cross-Channel Services Guide 101

Scaling and Load Balancing

Vertical Scaling refers to increasing the processing capability of a host system. This is
accomplished by adding processors, memory, faster storage, and so on. Vertical scaling is
primarily a hardware effort that does not affect the system topology or software configuration.

Horizontal Scaling refers to increasing the number of hardware systems hosting the software.
For example, two hardware hosts running iWay achieve roughly double the throughput of one,
assuming other dependent resources are available and adequately performing. Effectively
distributing the workload across two or more iWay Service Manager instances is referred to as
load balancing and is a key factor in achieving maximum throughput with horizontal scaling.
Supporting adequate throughput is an important aspect of HA, because while a system may be
online, if it is running at or close to capacity, it may appear unavailable to clients. Scaling
directly addresses the throughput issue, and also provides some of the benefits of failover
because it eliminates a single point of failure. Failure of one host (out of two or more) will not
make the supported service(s) unavailable, although it may impact throughput and response
times until the failed host has failed over to its backup or is brought back online.

Implementing High Availability

There are a number of strategies and techniques you can use to implement high availability in
your environment, including:

Simple failover using iWay heartbeat

Simple failover using third-party tools

IP-based horizontal scaling

Web-based horizontal scaling

Web-based scaling using iWay Performance Monitor

Horizontal scaling for queuing

Horizontal scaling and transactions

The following section describes each of these strategies and techniques.

Scaling and Load Balancing

102

Simple Failover Using iWay Heartbeat

iWay Service Manager (iSM) can be deployed to automatically fail over to another waiting
machine usually referred to as a hot backup host. In this model, configuration and repository
files are shared so that the backup iSM behavior is identical to the primary iWay Service
Manager. Simple failover relies on the native functionality of iWay to emit and respond to
heartbeat messages which signify normal operation of the primary server. When a failure is
detected, the backup host executes a process which manages the switch-over (sending an
appropriate message to the router to reconfigure itself, posting an email to the SysOp, and so
on) and then assumes the workload of the primary server. It should be noted that the primary
and backup servers need not be located in the same data center, for example, they may be
geographically dispersed.

8. Deploying iWay in a High Availability Environment

Cross-Channel Services Guide 103

Simple Failover Using Third-Party Tools

A third-party tool clustering or failover product, such as Veritas Cluster Server, can replace the
iWay heartbeat, monitoring, and failover process flow logic. In this case, iWay is unaware of
the failover management and is run in stand-alone mode. The topology, configuration, and
other requirements will be dictated by the needs of the third-party tool.

IP-based Horizontal Scaling

IP traffic is very easy to redirect and load balance, and there are very efficient and robust
solutions for managing communications at this level in the protocol stack. Because the
content of messages is not inspected, this method of work distribution is extremely fast.
Devices such as Cisco 7500 series routers can provide round-robin address translation to
distribute requests across several identical iWay Service Managers. In the case of a single
server stoppage, the router detects the failure and processing continues on the remaining
servers. Sharing of iWay repositories (not shown in the diagram) may also be part of this
solution. For maximum reliability, each of the iWay instances can have hot backup failover,
implemented either using iWay or a third-party tool.

IP-based Horizontal Scaling

104

Web-based Horizontal Scaling

For web traffic (for example, web services, HTTP), a web router can be used to distribute or
load balance across the target iWay Service Managers. Stateful transactions can be supported
by the use of session affinity.

Web-based Horizontal Scaling Using iWay Performance Monitor

iWay Performance Monitor is a web service monitoring and routing solution. Policy-based
routing can be used to manage traffic and distribute workloads across iWay instances in
complex ways. In a HA environment, the iWay Performance Monitor node should be deployed
with hot backup so there is no single point of failure.

Horizontal Scaling for Queuing

An extensive explanation of configuring third-party message queuing products for the HA
environment is beyond the scope of this appendix. All mature queuing products support the
configuration options needed to scale horizontally without adversely affecting guaranteed, non-
duplicated message delivery. The simplest approaches entail allowing multiple consumers to
access a queue and message filtering to balance the load between iWay listeners. If that is
inappropriate, stateless horizontal scaling can be achieved by using additional instances of
iSM and redistributing existing clients to these instances. Stateful horizontal scaling is
generally achieved by connecting instances of iSM into a cluster, which allows those instances
to communicate with each other, as well as to the application clients.

Horizontal Scaling and Transactions

iWay is optimized for handling stateless processes. Scaling and load balancing may affect the
order of processing of messages and may allow a series of related messages to execute on
different iWay instances. Because of this, moving to a HA architecture can reveal
idiosyncrasies and/or limit design assumptions in the application. Applications that have
implied transactions or implied message order dependence may behave differently in the HA
environment. Note that iWay is not the source of this changed behavior; any middleware
deployed for HA will reveal these types of application flaws. In situations where a web router is
part of the iWay HA solution, enabling session affinity may ensure correct application behavior.

iWay Reverse Invocation Proxy and High Availability

The iWay Reverse Invocation Proxy has the ability to distribute transactions to multiple iWay
worker instances on other hosts. The workers register themselves with the relay, informing it
about which services they (the workers) can provide. Workers may register for mutually
exclusive services; workers may register to handle the same services; or workers may do a
combination of both, resulting in partially overlapping areas of responsibility.

8. Deploying iWay in a High Availability Environment

Cross-Channel Services Guide 105

The proxy is intended for applications where direct connection from the internet/DMZ to the
enterprise intranet is not permitted for security reasons. The proxy itself may be horizontally
scaled and/or set up to support failover using the mechanisms previously discussed.

iWay Reverse Invocation Proxy and High Availability

106

Legal and Third-Party Notices

SOME TIBCO SOFTWARE EMBEDS OR BUNDLES OTHER TIBCO SOFTWARE. USE OF SUCH
EMBEDDED OR BUNDLED TIBCO SOFTWARE IS SOLELY TO ENABLE THE FUNCTIONALITY (OR
PROVIDE LIMITED ADD-ON FUNCTIONALITY) OF THE LICENSED TIBCO SOFTWARE. THE
EMBEDDED OR BUNDLED SOFTWARE IS NOT LICENSED TO BE USED OR ACCESSED BY ANY
OTHER TIBCO SOFTWARE OR FOR ANY OTHER PURPOSE.

USE OF TIBCO SOFTWARE AND THIS DOCUMENT IS SUBJECT TO THE TERMS AND CONDITIONS
OF A LICENSE AGREEMENT FOUND IN EITHER A SEPARATELY EXECUTED SOFTWARE LICENSE
AGREEMENT, OR, IF THERE IS NO SUCH SEPARATE AGREEMENT, THE CLICKWRAP END USER
LICENSE AGREEMENT WHICH IS DISPLAYED DURING DOWNLOAD OR INSTALLATION OF THE
SOFTWARE (AND WHICH IS DUPLICATED IN THE LICENSE FILE) OR IF THERE IS NO SUCH
SOFTWARE LICENSE AGREEMENT OR CLICKWRAP END USER LICENSE AGREEMENT, THE
LICENSE(S) LOCATED IN THE "LICENSE" FILE(S) OF THE SOFTWARE. USE OF THIS DOCUMENT
IS SUBJECT TO THOSE TERMS AND CONDITIONS, AND YOUR USE HEREOF SHALL CONSTITUTE
ACCEPTANCE OF AND AN AGREEMENT TO BE BOUND BY THE SAME.

This document is subject to U.S. and international copyright laws and treaties. No part of this
document may be reproduced in any form without the written authorization of TIBCO Software
Inc.

TIBCO, the TIBCO logo, the TIBCO O logo, FOCUS, iWay, Omni-Gen, Omni-HealthData, and
WebFOCUS are either registered trademarks or trademarks of TIBCO Software Inc. in the
United States and/or other countries.

Java and all Java based trademarks and logos are trademarks or registered trademarks of
Oracle Corporation and/or its affiliates.

All other product and company names and marks mentioned in this document are the property
of their respective owners and are mentioned for identification purposes only.

This software may be available on multiple operating systems. However, not all operating
system platforms for a specific software version are released at the same time. See the
readme file for the availability of this software version on a specific operating system platform.

THIS DOCUMENT IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

THIS DOCUMENT COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS.
CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL
BE INCORPORATED IN NEW EDITIONS OF THIS DOCUMENT. TIBCO SOFTWARE INC. MAY MAKE
IMPROVEMENTS AND/OR CHANGES IN THE PRODUCT(S) AND/OR THE PROGRAM(S)
DESCRIBED IN THIS DOCUMENT AT ANY TIME.

 107

THE CONTENTS OF THIS DOCUMENT MAY BE MODIFIED AND/OR QUALIFIED, DIRECTLY OR
INDIRECTLY, BY OTHER DOCUMENTATION WHICH ACCOMPANIES THIS SOFTWARE, INCLUDING
BUT NOT LIMITED TO ANY RELEASE NOTES AND "READ ME" FILES.

This and other products of TIBCO Software Inc. may be covered by registered patents. Please
refer to TIBCO's Virtual Patent Marking document (https://www.tibco.com/patents) for details.

Copyright © 2021. TIBCO Software Inc. All Rights Reserved.

108

	Contents
	1. Introducing iWay Service Manager Cross-Channel Services
	Cross-Channel Services Overview
	Available Listeners Reference
	Available Services Reference

	2. Internal Queue Processing
	Internal Queue Processing Overview
	Configuring an Internal Queue Listener
	Reference: Internal Queue Listener Configuration Parameters
	Reference: Internal Queue Listener Special Registers

	Configuring an Internal Emit Service
	Procedure: How to Configure an Internal Emit Service
	Reference: Internal Emit Service Parameters
	Reference: Internal Emit Service Edges

	3. Ordered Queue Processing
	Ordered Queue Processing Overview
	Introducing the Ordered Queue Facility
	Configuring an Ordered Queue Listener
	Pended Messages
	Immediate Mode Queues
	Batch Mode Queues
	Stopping the Server
	Restarting the Server
	Reference: Ordered Queue Listener Configuration Parameters
	Reference: Ordered Queue Listener Special Registers

	Configuring an Ordered Emit Service
	Procedure: How to Configure an Ordered Emit Service
	Reference: Ordered Emit Service Parameters
	Reference: Ordered Emit Service Edges

	4. Reverse Invocation Queue Processing
	Reverse Invocation Queue Processing Overview
	Proxy Service
	Execution Service
	Reverse Invocation Process
	Sample Scenario

	Configuring the RVIAttach Listener
	Reference: RVIAttach Listener Configuration Parameters

	Configuring the RVI Relay Service
	Reference: RVI Relay Service Configuration Parameters

	Configuring the RVIGateway Listener
	Reference: RVIGateway Listener Configuration Parameters

	Configuring a Service to Test the Reverse Invocation
	Procedure: How to Create a Service on the Gateway
	Procedure: How to Configure the RVIAttach Channel
	Procedure: How to Configure the Channel to Invoke the Remote Gateway Service
	Procedure: How to Test the RVI Invocation Using the Attach Point and Gateway

	5. Asynchronous Forward Transfer Invocation Queue Processing
	Asynchronous Forward Transfer Invocation Overview
	Configuring a Marshalls a Message Service
	Reference: Marshall Service Parameters
	Reference: Marshalls a Message Service Edges

	Configuring an Unmarshalls a Message Service
	Reference: Unmarshalls a Message Service Parameters
	Reference: Unmarshalls a Message Service Edges

	6. Configuring iWay Service Manager Components
	Configuring a Listener Using iWay Integration Tools
	Procedure: How to Configure a Listener Using iWay Integration Tools

	Configuring a Service Using iWay Integration Tools
	Procedure: How to Configure a Service Using iWay Integration Tools

	7. Common Configuration Parameters
	Listener Configuration Parameters
	Service Configuration Parameters

	8. Deploying iWay in a High Availability Environment
	High Availability Overview
	Failover
	Scaling and Load Balancing
	Implementing High Availability
	Simple Failover Using iWay Heartbeat
	Simple Failover Using Third-Party Tools

	IP-based Horizontal Scaling
	Web-based Horizontal Scaling

	Web-based Horizontal Scaling Using iWay Performance Monitor
	Horizontal Scaling for Queuing
	Horizontal Scaling and Transactions

	iWay Reverse Invocation Proxy and High Availability

	Legal and Third-Party Notices

