
iWay Transaction Adapter
for CICS User's Guide
 Version 7.0.x and Higher

August 16, 2018

Active Technologies, EDA, EDA/SQL, FIDEL, FOCUS, Information Builders, the Information Builders logo, iWay, iWay
Software, Parlay, PC/FOCUS, RStat, Table Talk, Web390, WebFOCUS, WebFOCUS Active Technologies, and WebFOCUS
Magnify are registered trademarks, and DataMigrator and Hyperstage are trademarks of Information Builders, Inc.

Adobe, the Adobe logo, Acrobat, Adobe Reader, Flash, Adobe Flash Builder, Flex, and PostScript are either registered
trademarks or trademarks of Adobe Systems Incorporated in the United States and/or other countries.

Due to the nature of this material, this document refers to numerous hardware and software products by their
trademarks. In most, if not all cases, these designations are claimed as trademarks or registered trademarks by their
respective companies. It is not this publisher's intent to use any of these names generically. The reader is therefore
cautioned to investigate all claimed trademark rights before using any of these names other than to refer to the product
described.

Copyright © 2018, by Information Builders, Inc. and iWay Software. All rights reserved. Patent Pending. This manual, or
parts thereof, may not be reproduced in any form without the written permission of Information Builders, Inc.

Contents

Preface . 7

Documentation Conventions .8

Related Publications . 9

Customer Support . 9

Help Us to Serve You Better .9

User Feedback . 12

Information Builders Consulting and Training . 12

1. Introducing the iWay Transaction Adapter for CICS . 13

iWay Transaction Adapter for CICS Overview .13

The iWay Transaction Adapter for CICS . 15

CICS Programs. 16

Software Requirements for the Adapter. 16

Deployment Information for Your iWay Adapter .17

iWay Service Manager. 17

iWay Explorer. .17

iWay Business Services Provider (iBSP). 17

iWay Transaction Adapter for CICS Information Roadmap .18

2. Configuring the iWay Transaction Adapter for CICS .19

Starting iWay Explorer (Java Servlet) .19

Configuring a Connection to CICS . 20

Managing a Connection to CICS . 28

3. Creating XML Schemas and iWay Business Services .31

Creating an Adapter Transaction . 31

Sample Program IWAYSRV0. 32

Side File Support. 38

COBOL Descriptions for Input and Output Communications. 40

Modifying COBOL DD Field Definitions. 40

Creating Schemas for an Adapter Transaction . 43

Understanding iWay Business Services . 44

Creating a Web Service. 45

Testing the Web Service. 47

iWay Transaction Adapter for CICS User's Guide 3

Generating WSDL From a Web Service. 48

Identity Propagation. 50

4. Event Processing With the CICS Adapter .51

Understanding CICS Events . 51

Message Format. .53

Supported Environments. 53

Configuring CICS Events . 53

Creating and Modifying an Event Port .57

Creating and Modifying a Channel .71

Testing CICS Events . 77

Running CICS Events .78

A. Configuring the Transaction Adapter for CICS in an iWay Environment81

Configuring the Transaction Adapter for CICS in Service Manager .81

B. Running the Adapter Using LU6.2 Communication . 85

MVS OS/390 APPC Communication .85

LU6.2 Set up on MVS. 85

LU6.2 Set up on CICS. 86

Microsoft SNA Server Communication . 87

LU6.2 Setup on a Windows SNA Server. 87

Application Run-Time Requirements . 89

C. Running the Adapter Using TCP/IP Communication .91

MVS OS/390 TCP/IP Communication . 91

TCP/IP Requirements. .91

D. Using Adabas/Natural Programs . 93

Adabas/Natural Programs Overview . 93

Installing the Adabas/Natural Interface . 94

Writing and Configuring a Natural Program . 96

E. Installing the Sample IWAYIVP and IWAYSRV0 Programs in CICS 103

Installing and Configuring IWAYIVP . 103

Installing and Configuring IWAYSRV0 . 106

F. Sample Requests, Schemas, and COBOL File Descriptions . 111

Contents

4 Information Builders

Request Document for the Generic Transaction, IWAYIVP . 111

Request Schema for IWAYIVP . 112

Response Schema for IWAYIVP .112

Request Documents for IWAYSRV0 . 113

Request Schema for IWAYSRV0 . 114

Response Schema for IWAYSRV0 .114

Request Document for AASNATN . 116

Request Schema for AASNATN . 116

Response Schema for the Program AASNATN . 116

Sample COBOL File Descriptions . 117

G. Sample CICS Programs . 119

IWAYIVP Program .119

IWAYSRV0 Program .121

IWAYEVT0 Program . 124

IWAYEVT1 Program . 129

Natural Program .132

H. Transaction Adapter for CICS Debugging and Troubleshooting 137

Transaction Adapter for CICS Troubleshooting . 137

CICS Data Type Conversions . 139

Contents

iWay Transaction Adapter for CICS User's Guide 5

Contents

6 Information Builders

Preface

This documentation describes how to configure and use the iWay Transaction Adapter for
CICS.

Note: This Release 7.0.x content is currently being updated to support iWay Release 8.0.x
software. In the meantime, it can serve as a reference for your use of iWay Release 8. If you
have any questions, please contact Customer_Success@ibi.com.

How This Manual Is Organized

This manual includes the following chapters:

Chapter/Appendix Contents

1 Introducing the iWay
Transaction Adapter for CICS

Introduces the adapter environment.

2 Configuring the iWay
Transaction Adapter for CICS

Describes how to configure a connection to the
adapter.

3 Creating XML Schemas and
iWay Business Services

Describes how to create transactions for the
adapter. It also provides information on how to use
the generated schemas to create iWay Business
Services, which expose functionality as web
services.

4 Event Processing With the
CICS Adapter

Describes how to configure and use CICS Events.

A Configuring the Transaction
Adapter for CICS in an iWay
Environment

Describes how to configure the adapter in the
Service Manager.

B Running the Adapter Using
LU6.2 Communication

Contains technical information that you can use as
a guide to ensure LU6.2 communication to the CICS
region.

C Running the Adapter Using
TCP/IP Communication

Contains technical information that you can use as
a guide to ensure TCP/IP communication to the
CICS region.

D Using Adabas/Natural
Programs

Describes how to use Adabas/Natural programs
with the iWay Transaction Adapter for CICS.

iWay Transaction Adapter for CICS User's Guide 7

mailto:Customer_Success@ibi.com

Chapter/Appendix Contents

E Installing the Sample
IWAYIVP and IWAYSRV0
Programs in CICS

Describes how to verify correct installation of the
adapter.

F Sample Requests, Schemas,
and COBOL File Descriptions

Provides documents and schemas for the sample
programs and the COBOL descriptions used as
input for the sample CICS transactions.

G Sample CICS Programs Describes sample CICS programs provided with the
installation.

H Transaction Adapter for CICS
Debugging and
Troubleshooting

Includes tips and techniques for debugging the
adapter.

Documentation Conventions

The following table describes the documentation conventions that are used in this manual.

Convention Description

THIS TYPEFACE or
this typeface

Denotes syntax that you must enter exactly as shown.

this typeface Represents a placeholder (or variable), a cross-reference, or an
important term. It may also indicate a button, menu item, or dialog
box option that you can click or select.

underscore Indicates a default setting.

Key + Key Indicates keys that you must press simultaneously.

{ } Indicates two or three choices. Type one of them, not the braces.

| Separates mutually exclusive choices in syntax. Type one of them,
not the symbol.

... Indicates that you can enter a parameter multiple times. Type only
the parameter, not the ellipsis (...).

Documentation Conventions

8 Information Builders

Convention Description

.

.

.

Indicates that there are (or could be) intervening or additional
commands.

Related Publications

Visit our Technical Content Library at http://documentation.informationbuilders.com. You can
also contact the Publications Order Department at (800) 969-4636.

Customer Support

Do you have questions about this product?

Join the Focal Point community. Focal Point is our online developer center and more than a
message board. It is an interactive network of more than 3,000 developers from almost every
profession and industry, collaborating on solutions and sharing tips and techniques. Access
Focal Point at http://forums.informationbuilders.com/eve/forums.

You can also access support services electronically, 24 hours a day, with InfoResponse
Online. InfoResponse Online is accessible through our website, http://
www.informationbuilders.com. It connects you to the tracking system and known-problem
database at the Information Builders support center. Registered users can open, update, and
view the status of cases in the tracking system and read descriptions of reported software
issues. New users can register immediately for this service. The technical support section of
http://www.informationbuilders.com also provides usage techniques, diagnostic tips, and
answers to frequently asked questions.

Call Information Builders Customer Support Services (CSS) at (800) 736-6130 or (212)
736-6130. Customer Support Consultants are available Monday through Friday between 8:00
a.m. and 8:00 p.m. EST to address all your questions. Information Builders consultants can
also give you general guidance regarding product capabilities. Please be ready to provide your
six-digit site code number (xxxx.xx) when you call.

To learn about the full range of available support services, ask your Information Builders
representative about InfoResponse Online, or call (800) 969-INFO.

Help Us to Serve You Better

To help our consultants answer your questions effectively, be prepared to provide
specifications and sample files and to answer questions about errors and problems.

Preface

iWay Transaction Adapter for CICS User's Guide 9

http://documentation.informationbuilders.com
http://forums.informationbuilders.com/eve/forums
http://www.informationbuilders.com
http://www.informationbuilders.com
http://www.informationbuilders.com

The following tables list the environment information our consultants require.

Platform

Operating System

OS Version

JVM Vendor

JVM Version

The following table lists the deployment information our consultants require.

Adapter Deployment For example, iWay Business Services Provider, iWay
Service Manager

Container For example, WebSphere

Version

Enterprise Information System
(EIS) - if any

EIS Release Level

EIS Service Pack

EIS Platform

The following table lists iWay-related information needed by our consultants.

iWay Adapter

iWay Release Level

iWay Patch

The following table lists additional questions to help us serve you better.

Help Us to Serve You Better

10 Information Builders

Request/Question Error/Problem Details or Information

Did the problem arise through
a service or event?

Provide usage scenarios or
summarize the application that
produces the problem.

When did the problem start?

Can you reproduce this
problem consistently?

Describe the problem.

Describe the steps to
reproduce the problem.

Specify the error message(s).

Any change in the application
environment: software
configuration, EIS/database
configuration, application, and
so forth?

Under what circumstance does
the problem not occur?

The following is a list of error/problem files that might be applicable.

Input documents (XML instance, XML schema, non-XML documents)

Transformation files

Error screen shots

Error output files

Trace files

Service Manager package to reproduce problem

Preface

iWay Transaction Adapter for CICS User's Guide 11

Custom functions and agents in use

Diagnostic Zip

Transaction log

For information on tracing, see the iWay Service Manager User's Guide.

User Feedback

In an effort to produce effective documentation, the Technical Content Management staff
welcomes your opinions regarding this document. You can contact us through our website,
http://documentation.informationbuilders.com/connections.asp.

Thank you, in advance, for your comments.

Information Builders Consulting and Training

Interested in training? Information Builders Education Department offers a wide variety of
training courses for this and other Information Builders products.

For information on course descriptions, locations, and dates, or to register for classes, visit
our website (http://education.informationbuilders.com) or call (800) 969-INFO to speak to an
Education Representative.

User Feedback

12 Information Builders

http://documentation.informationbuilders.com/connections.asp
http://education.informationbuilders.com

Chapter1 Introducing the iWay
Transaction Adapter for CICS

This section describes the iWay Transaction Adapter for CICS. The adapter supports
automatic transaction invocation, message transformation, and error recovery. The
adapter enables applications to call CICS programs and to work with the native features
and syntax of CICS .

In this chapter:

iWay Transaction Adapter for CICS Overview

The iWay Transaction Adapter for CICS

Deployment Information for Your iWay Adapter

iWay Transaction Adapter for CICS Information Roadmap

iWay Transaction Adapter for CICS Overview

The iWay Transaction Adapter for CICS enables you to execute Customer Information Control
System (CICS) programs. The advantages of using this adapter include:

No modification required to existing CICS programs.

No installation of new code required on CICS.

Adapter processing performed off of the mainframe.

Configuration by metadata--no coding required.

Support for older versions of CICS.

Support for CICS COMMAREA programs.

iWay Transaction Adapter for CICS User's Guide 13

The following diagram illustrates the framework for executing CICS programs with iWay Explorer
and the iWay Transaction Adapter for CICS.

The following bidirectional scenarios are supported by the adapter:

CICS services

CICS events

At design-time, you describe the request and response messages by mapping them to COBOL
File Descriptions. You can communicate with CICS through either TCP/IP or CRM gateway.

iWay Transaction Adapter for CICS Overview

14 Information Builders

The iWay Transaction Adapter for CICS

The following diagram shows how a connection is made to the CICS region.

The adapter is the component that connects to CICS. It is hosted in a container that supports
events. The adapter enables the following functions:

Connecting to CICS.

Executing COMMAREA programs.

Mapping XML messages to and from CICS data structures.

Listening for events triggered in CICS.

The adapter enables you to invoke a CICS program by sending a request and retrieving the
response.

The adapter sends the request to execute a transaction over the Multi-Platform Transport
Network (MPTN). This enables the adapter to use TCP/IP to send the request although CICS is
expecting LU6.2 (also known as APPC).

The adapter attaches the CICS Mirror transaction, CPMI, which is the standard External
Communication Interface (ECI) transaction for ASCII clients.

At design-time, you describe the request and response messages by mapping them to COBOL
File Descriptions. You can communicate with CICS through either TCP/IP or CRM gateway.

The iWay Transaction Adapter for CICS also supports more complex transactional scenarios
involving multiple service calls, commits, and rollbacks, when connecting to IMS via a CRM
gateway.

1. Introducing the iWay Transaction Adapter for CICS

iWay Transaction Adapter for CICS User's Guide 15

CICS Programs

The two main types of CICS programs are:

COMMAREA programs that are designed to be called by other CICS programs.

3270 programs that read and write terminal screen maps using Basic Mapping Support
(BMS).

Because the adapter can execute only COMMAREA programs, this distinction is important.

To execute 3270 programs, you require a screen scraper such as the iWay Terminal Emulation
Adapter for 3270. For many years CICS applications were structured so that the business
processing, as opposed to the screen dialogue, was in COMMAREA programs. Therefore, in
many cases, executing a COMMAREA program is recommended for application integration.

Software Requirements for the Adapter

The following are the software requirements for the adapter:

z/OS Version 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, and 1.9.

TCP/IP communication available to the adapter.

One of the following releases of CICS:

CICS Transaction Server for z/OS, Version 3 Release 1.

CICS Transaction Server for z/OS, Version 2 Release 2.

CICS Transaction Server for z/OS, Version 2 Release 3.

CICS Transaction Server for z/OS, Version 4 Release 1.

CICS Transaction Server for z/OS, Version 5 Release 1.

CICS Transaction Server for OS/390, Version 1 Release 2.

IBM CICS/ESA, Version 4 Release 1.

CICS Transaction Server for VSE/ESA, Version 1.1.0.

CICS for VSE/ESA, Version 2.3.

CICS for IBM OS/400, Version 4.4.

TXSeries, Version 4.2 (HP-UX); TXSeries, Version 4.3 with PTF 4 (Windows NT, AIX,
SunSM Solaris™ operating environment); or TXSeries, Version 5.0 (AIX and Windows).

The iWay Transaction Adapter for CICS

16 Information Builders

For Adabas/Natural execution, Adabas and Natural must be installed and configured within
the CICS region.

Deployment Information for Your iWay Adapter

Your iWay adapter works in conjunction with one of the following components:

iWay Service Manager

iWay Business Services Provider (iBSP)

When hosted in an iWay environment, the adapter is configured through iWay Service Manager
and iWay Explorer. iWay Explorer is used to configure system connections, create web
services, and configure event capabilities. Service Manager can access this configuration
information through the iWay7 repository to create a robust integration solution.

When the adapter is hosted in a third-party application server environment, you can configure
iWay Explorer to work in a web services environment.

iWay Service Manager

iWay Service Manager is the heart of the Universal Adapter Framework and is an open
transport service bus. Service Manager uses graphical tools to create sophisticated integration
services without writing custom integration code by:

Creating metadata from target applications.

Transforming and mapping interfaces.

Managing stateless processes.

Its capability to manage complex adapter interactions makes it ideally suited to be the
foundation of a service-oriented architecture.

iWay Explorer

iWay Explorer uses a tree metaphor to introspect a system for metadata. The explorer enables
you to create XML schemas and web services for the associated object. In addition, you can
create ports and channels to listen for events in a system. External applications that access a
system through the adapter use either XML schemas or web services to pass data between
the external application and the adapter.

iWay Business Services Provider (iBSP)

The iWay Business Services Provider (iBSP) exposes, as web services, enterprise assets that
are accessible from adapters regardless of the programming language or the particular
operating system.

1. Introducing the iWay Transaction Adapter for CICS

iWay Transaction Adapter for CICS User's Guide 17

iBSP simplifies the creation and execution of web services when running:

Custom and legacy applications.

Database queries and stored procedures.

Packaged applications.

Terminal emulation and screen-based systems.

Transactional systems.

Coupled with a platform and language independent messaging protocol called SOAP (Simple
Object Access Protocol), XML enables application development and integration by assembling
previously built components from multiple web services.

iWay Transaction Adapter for CICS Information Roadmap

The following table lists the location of deployment and user information for components of the
iWay Transaction Adapter for CICS.

Deployment Option Chapter/Manual

iWay Service Manager Appendix A of this guide

iWay Service Manager User's Guide

iWay Explorer Chapters 4 and 5 of this guide

iWay Installation and Configuration manual

iWay Business Services Provider (iBSP) iWay Installation and Configuration manual

iWay Transaction Adapter for CICS Information Roadmap

18 Information Builders

Chapter2 Configuring the
iWay Transaction Adapter for CICS

At design time, you use iWay Explorer (Java Servlet) to create the configuration and
metadata the adapter requires at run time. This section describes how to configure a
connection to CICS.

In this chapter:

Starting iWay Explorer (Java Servlet)

Configuring a Connection to CICS

Managing a Connection to CICS

Starting iWay Explorer (Java Servlet)

iWay Explorer (Java Servlet) is a GUI tool that works in conjunction with adapters to create
schemas and web services for use with iWay components or other XML or web services based
programs. iWay Explorer is a web application accessible through a web browser. It must be
deployed through an application server or servlet container. For more information on
configuring iWay Explorer, see the iWay Installation and Configuration documentation. Before
you can use iWay Explorer, you must start iWay Service Manager.

Procedure: How to Start iWay Explorer (Java Servlet)

To start iWay Explorer (Java Servlet):

1. Ensure the server is started where iWay Explorer is running.

2. Type the following URL in your browser window

http://hostname:port/iwae/index.html

where:

hostname

Is the name of the server where Service Manager is installed.

port

Is the SOAP port number for the server. The default SOAP port is 9000.

iWay Explorer opens.

The Available Hosts drop-down list appears in the upper-right corner. Three tabs appear
near the top of the iWay Explorer window. From left to right they are:

iWay Transaction Adapter for CICS User's Guide 19

iWay Adapters, where you create and manage connections to CICS.

iWay Events, where you configure CICS event listening.

iWay Business Services, where you create and view business services.

The left pane of the window contains an expandable list of adapter nodes (based on the
adapters installed), events, or business services, depending on the tab that is selected.
The right pane provides the details of the selected adapter, event, or service and is the
work area where you define and modify adapter functions and services.

The Available Hosts drop-down list specifies to which Servlet iBSP instance.

You are now ready to define a target to CICS.

Configuring a Connection to CICS

To access CICS, you must configure a connection through the adapter, known as a target. After
the connection is created, it is automatically saved. You must establish a connection to CICS
every time you start iWay Explorer or after disconnecting from a target.

Procedure: How to Configure a Connection to CICS

To configure a connection to CICS:

1. In the left pane of iWay Explorer, expand the iWay Adapters node.

2. Select the CICS node.

3. In the right pane, move your pointer over Operations and select Define a new target.

Configuring a Connection to CICS

20 Information Builders

The Add a new CICS target dialog box opens in the right pane, as shown in the following
image.

a. In the Target Name field, type a name for the new target, for example,
CICS_Connection.

b. In the Description field, type a brief description (optional).

c. From the Target Type drop-down list, select the type of target, for example, TCP/IP
Communication.

4. Click Next.

The Set connection info pane opens for the selected target.

Note: The CICS connection parameters are consistent with those found in your CICS
system. For more information on parameter values that are specific to your CICS
configuration, consult your CICS system administrator. This information should be the
same for all transactions and messages in a single CICS system.

a. If you selected TCP/IP as the type of target, proceed to How to Set Connection
Parameters for TCP/IP on page 22.

b. If you selected CRM Gateway as the type of target, proceed to How to Set Connection
Parameters for CRM Gateway on page 24.

2. Configuring the iWay Transaction Adapter for CICS

iWay Transaction Adapter for CICS User's Guide 21

Procedure: How to Set Connection Parameters for TCP/IP

If you selected CICS via TCP/IP, the Set connection info pane opens, with the Connection tab
active, as shown in the following image. The Connection tab contains five fields for entry and
three active buttons (Back, Finish, and Cancel).

Note: TCP/IP access was introduced with CICS Transaction Server Version 2 Release 2. For
more information, see Running the Adapter Using TCP/IP Communication on page 91.

1. Type values for the connection parameters.

The following table lists and describes the TCP/IP parameters.

Parameter Description

Host Host name, or IP address, for the computer where CICS is running.

Port TCP port that CICS is listening on for ECI or DPL connections.

Configuring a Connection to CICS

22 Information Builders

Parameter Description

User ID Valid user ID for CICS.

The user ID and password fields correspond to the values provided on
the CICS TCP/IP service resource definition, using the ECI option, as one
of the following:

If you specify the user ID and the password, then the CICS TCP/IP
service resource definition must be set to ATTACHSEC(VERIFY).

If you specify neither the user ID nor the password, then the CICS
TCP/IP resource service definition must be set to ATTACHSEC(LOCAL).

Password Valid password associated with the CICS user ID. For additional
information, see the User ID parameter.

Codepage Select the codepage from the drop-down menu. Cp500 is the default
value.

2. For advanced parameters, including parameters for executing Adabas/Natural Programs,
see How to Set Advanced Parameters on page 23. Otherwise, click Finish.

The newly created connection, CICS_Connection, appears as a node under the CICS
service adapter. The configuration information is stored in the repository for the
configuration you defined during installation.

Procedure: How to Set Advanced Parameters

1. Click the Advanced tab.

2. Enter values for the Advanced parameters.

The following table lists and defines the Advanced parameters.

Parameter Description

Connection
Time Limit
(ms)

Amount of time in milliseconds that the adapter waits for a completed
response from CICS. 10,000 milliseconds is the default value.

Natural
Nucleus

Name of the Natural subsystem on which the Natural program you wish
to invoke resides. For example, for Natural Version 3.14, the nucleus is
N314re.

2. Configuring the iWay Transaction Adapter for CICS

iWay Transaction Adapter for CICS User's Guide 23

Parameter Description

Proxy
Program

CICS program that calls the Natural CICS Interface. The name of the
proxy provided by iWay Software is AASNATC.

Natural
Logon
Parameters

String that represents the default logon parameters. It can be modified
depending on installation requirements.

The CICS/Natural Bridge enables Natural programs to be invoked by the
adapter through CICS using the Software AG Natural CICS Interface.

Note: The Software AG Natural CICS Interface requires a programmatic
"logon" to the Natural System.

CICS Mirror An alternative transaction ID to the CPMI (ECI) mirror Transaction ID.
This ID must be defined to CICS and point to the CICS mirror program
DFHMIRS.

For additional information on executing Adabas/Natural programs, see Using Adabas/
Natural Programs on page 93

3. Click Finish.

The newly created connection, CICS_Connection, appears as a node under the CICS
service adapter. The configuration information is stored in the repository for the
configuration you defined during installation.

Procedure: How to Set Connection Parameters for CRM Gateway

To configure a CRM gateway connection to CICS:

1. In the left pane of iWay Explorer, expand the iWay Adapters node.

2. Select the CICS node.

3. In the right pane, move your pointer over Operations and select Define a new target.

Configuring a Connection to CICS

24 Information Builders

The Add a new CICS target dialog box opens in the right pane, as shown in the following
image, where you assign a name and description to the new target.

4. In the Target Name field, type a name for the connection (for example, CRM1).

5. In the Description field, type an optional description for the target name you just created
(for example, CRM on IBIMVS).

6. From the Target Type drop-down list, select CRM Gateway.

7. Click Next.

2. Configuring the iWay Transaction Adapter for CICS

iWay Transaction Adapter for CICS User's Guide 25

The Set connection info dialog box opens, as shown in the following image.

8. Enter the CRM gateway parameters to configure a new connection to CICS.

The following table lists and describes the CRM gateway parameters:

Parameter Description

CRM Host Host name, or IP address, for the computer where the CRM
gateway is running.

CRM Port Port number on which the CRM gateway is listening.

Log Mode Defines the characteristics of the APPC sessions that the CRM
gateway establishes across a CRM Link.

The characteristics of different logon modes are tailored to support
different types of applications. For example long-running batch
applications might use different logon modes than short-lived
online applications. Logon modes can define different logical unit
protocols, classes of service, packet sizes, and pacing algorithms.

Use the same logon mode for the CRM gateway logical unit and
the back-end application logical unit.

Configuring a Connection to CICS

26 Information Builders

Parameter Description

Remote LU LU of CICS.

Max Sync Level Enter 1 to obtain non-transactional connections. Enter 2 for
transactional connections.

Maximum
Sessions

The number of maximum sessions that are allowed in the allocated
pool. This value determines the number of concurrent requests
that can be active at any given time. The CRM and the back end
system must configure their maximum sessions to the same value.

Min Wins The CRM gateway and the back-end system are pre-allocated with
a number of sessions for their use. This value is referred to as
minimum winner sessions. The owner of these pre-allocated
sessions has priority for its winner sessions; however, they may be
reassigned depending on system load.

The total of the minimum winner sessions for both sides must be
less than or equal to the maximum session value. If the total is
higher than the maximum session value, you will be unable to
activate the link.

For best results in determining minimum sessions, evaluate the
number of sessions that are required for the CRM and for the back-
end system to support concurrent requests.

Note: The following restrictions apply when using CRM gateway connections with the iWay
Transaction Adapter for CICS:

The referenced CRM gateway must be configured to identify itself as CRM1. This is
specified in the JCL that launches the CRM gateway.

Each adapter CRM gateway connection Host and Port must be unique. As a result, it is
not possible to have two adapter connections to the same CRM gateway instance.

9. Click Finish.

The newly created connection, CRM1, appears as a node under the CICS service adapter.
The configuration information is stored in the repository for the configuration you defined
during installation.

2. Configuring the iWay Transaction Adapter for CICS

iWay Transaction Adapter for CICS User's Guide 27

Procedure: How to Connect to a Defined CICS Target

To connect to a defined CICS target:

1. In the left pane, expand the iWay Adapters node.

2. Expand the CICS node.

3. Click the target name under the CICS node, for example, CICS_Connection.

4. Move your pointer over Operations and select Connect.

The Connect to CICS_Connection pane opens, populated with values you entered for the
connection parameters.

5. Verify your connection parameters. If required, provide the password.

6. Click OK.

The x icon disappears, indicating that the node is connected, as shown in the following
image.

Managing a Connection to CICS

To manage CICS connections, you can:

Disconnect from a connection that is not currently in use.

Although you can maintain multiple open connections to different transaction processing
systems, it is recommended to disconnect from connections not in use.

Edit a connection to change its properties.

Delete a connection that is no longer required.

Procedure: How to Disconnect From a Connection to CICS

To disconnect from a connection to CICS:

1. In the left pane, expand the iWay Adapters node.

2. Expand the CICS node.

3. Click the connection, for example, CICS_Connection, move your pointer over Operations,
and select Disconnect.

Disconnecting from CICS drops the connection with CICS, but the node remains.

Managing a Connection to CICS

28 Information Builders

The x icon appears, indicating that the node is disconnected, as shown in the following
image.

Procedure: How to Edit a Connection to CICS

To edit a connection to CICS:

1. In the left pane of iWay Explorer, expand the iWay Adapters node.

2. Expand the CICS node and select the defined target you want to edit, for example,
CICS_Connection.

3. In the right pane, move the pointer over Operations and select Edit.

The following image shows the Edit pane that opens on the right containing three fields
(Target Name, Description, and Target Type) and two active buttons (Next and Cancel).

4. Modify the target information as required and then click Next.

The Set connection info pane opens in the right pane containing the Connection, Region,
and Advanced tabs.

5. Modify the information as required and then, click Finish.

2. Configuring the iWay Transaction Adapter for CICS

iWay Transaction Adapter for CICS User's Guide 29

Procedure: How to Delete a Connection to CICS

To delete a connection to CICS:

1. In the left pane, expand the iWay Adapters node.

2. Expand the CICS node.

3. Click the connection, for example, CICS_Connection, move your pointer over Operations,
and select Delete.

A message appears, prompting you to confirm the deletion of the node.

4. Click OK.

The node disappears from the list of available connections.

Managing a Connection to CICS

30 Information Builders

Chapter3 Creating XML Schemas
and iWay Business Services

The following topics describe how to use iWay Explorer (Java Servlet) to create CICS
transactions and generate request and response XML schemas for new or existing
transactions. These schemas are used to represent a transaction for integration with
external systems.

In addition, this section explains how to use the generated schemas to create iWay
Business Services, which expose functionality as web services.

In this chapter:

Creating an Adapter Transaction

Creating Schemas for an Adapter Transaction

Understanding iWay Business Services

Creating an Adapter Transaction

After you create a connection to CICS, you can add adapter transactions using iWay Explorer
(Java Servlet). A single CICS connection may be associated with multiple transactions. Each
transaction represents one service offered by CICS and consists of a program and its
metadata.

A generic transaction is automatically added and represents CICS services whose data will not
be mapped to XML. You can use a generic transaction for programs that accept no input and
for programs that return no output or when it is acceptable to return a non-formatted answer
set.

For example, the supplied program IWAYIVP connects to CICS and returns "Congratulations" on
successful adapter installation and configuration. Because IWAYIVP requires no input or
output, you do not require COBOL descriptions for the input or output. One request and
response schema is applicable for this program. The request schema for the generic
transaction is in Sample Requests, Schemas, and COBOL File Descriptions on page 111.

Using the generic transaction, the XML request document that is received must include the
name of the program to be called in the <Transaction> element. The payload to be sent as the
COMMAREA must be in the <CommArea> tag, which can be a maximum of 32,500 bytes.

iWay Transaction Adapter for CICS User's Guide 31

The generic response schema is constructed from the data received from CICS. If the
<CommArea> element has more than 80 bytes, the received COMMAREA is split into 80-byte
messages. Illegal XML characters ('<', '/', and '&') are converted to XML entities.

For programs that require input and output and a formatted response, which is usually the
case, (IWAYIVP is an exception), you must add your own adapter transactions, as described in
How to Create an Adapter Transaction on page 33. XML request messages must specify the
transaction to use in the location attribute of the <Transaction> tag. For example, if you create
a CICS transaction called IWAYSRV0, the location is "CICS/Transactions/IWAYSRV0".

To view a sample generic request or response schema or for information about specifying a
transaction to use in the location attribute of the <Transaction> tag, see Sample Requests,
Schemas, and COBOL File Descriptions on page 111.

Sample Program IWAYSRV0

iWay Software supplies the IWAYSRV0 and IWAYIVP programs with the adapter. This document
uses the IWAYSRV0 program for illustration purposes and as a reference for the adapter.
IWAYSRV0 is an example of a program that returns one of two possible record layouts
depending on what is passed in the request.

If the value for the field COMMAND is 'SHORT', the program returns 40 bytes of data.

If the value for the field COMMAND is 'LONG', the program returns 60 bytes of data.

Sample request documents are in Sample Requests, Schemas, and COBOL File Descriptions on
page 111, with a sample response schema for the IWAYSRV0 program. You specify the output
as explained in Creating an Adapter Transaction on page 31. You must know the field in the
COBOL description that can be used as a record type and the value of that field. You specify
the value of the field to create the appropriate response schema. This is also true for events
to determine what layout is returned from CICS when you configure a CICS event. For more
information, see Event Processing With the CICS Adapter on page 51.

Creating an Adapter Transaction

32 Information Builders

Procedure: How to Create an Adapter Transaction

Perform the following steps to create an adapter transaction.

1. Expand the CICS adapter node and connect to an available CICS target (for example,
CICSTarget).

The Transaction node appears under the connected target, as shown in the following
image.

3. Creating XML Schemas and iWay Business Services

iWay Transaction Adapter for CICS User's Guide 33

2. Right-click the Transactions node and select Add Service from the context menu.

Creating an Adapter Transaction

34 Information Builders

The Add Service dialog box opens and displays two tabs (General and Output COBOL Data
Description). The following image shows the parameters in the General tab that will enable
you to map the COBOL descriptions for the CICS transaction.

3. To map the COBOL descriptions for the CICS transaction, type values for the parameters,
type values for the parameters in the General tab, as defined in the following table.

Field Description

Node Name Name of the adapter transaction you are creating, for example,
IWAYSRV0. Use this name in the <Transaction location="...">
attribute.

Program Name Name of the program to be called in CICS, for example,
IWAYSRV0. The IWAYSRV0 program appears in Sample CICS
Programs on page 119.

3. Creating XML Schemas and iWay Business Services

iWay Transaction Adapter for CICS User's Guide 35

Field Description

Input COBOL Data
Description

Location of the COBOL description that describes the
COMMAREA of the CICS program to execute.

It is converted by the adapter to an XML schema that the
adapter uses to map from XML to the format required by CICS at
run time.

Size of COMMAREA Size of the COMMAREA (in bytes) for programs that expect a
specific size. By default, the adapter passes 32,500 to the
program. For best performance, specify a number that can
accommodate the larger of the input COMMAREA or output
COMMAREA. For example, to run IWAYSRV0, specify 60.

Natural Library Run-time location of the Natural program to execute.

Specify a value for this field only if the adapter is expected to
execute Adabas/Natural programs.

Use data structure
information from
COBOL

When this parameter is selected, the adapter creates request
and response schemas that reflect COBOL group levels (for
example, 05, 10, 20, and so on). The COBOL grouping is
reflected in the XML request and response schemas.

You must select this parameter when COBOL input or output
descriptions contain the COBOL OCCURS or REDEFINES
statement.

Note: When this parameter is selected and there is an OCCURS
COBOL statement, you cannot test run an adapter transaction.
iWay Explorer returns an "OCCURS in COBOL Data Description"
error message.

Accept multiple
records in
COMMAREA

When this parameter is selected, multiple COMMAREA records
are read by the PreParser. Otherwise, any data in excess of the
COBOL definition is truncated.

Important: When connecting to a remote server, the location path of the COBOL
description must match the operating system path of the machine on which the CICS
adapter has been installed. For example, d:\iWay7\Cobol\ is a Windows path, whereas /
iWay7/Cobol/ is a UNIX path.

Creating an Adapter Transaction

36 Information Builders

4. Click the Output COBOL Data Description tab, as shown in the following image.

The Output COBOL Data Description tab allows you to specify the path that corresponds to
the message you want returned from the CICS program. This tab contains the following
columns:

COBOL Data Description

DD Field

Value

Side File

For more information on side files, see Side File Support on page 38.

If the program can return multiple types of messages, for each output COBOL description,
enter the COBOL description field and value to determine the schema to use for a
particular message.

3. Creating XML Schemas and iWay Business Services

iWay Transaction Adapter for CICS User's Guide 37

iWay Explorer creates the schema to use for a particular message based on the contents
of a field that is returned. For example, a program called IWAYSRV0_IN.CBL populates the
COMMAREA field called COMMAND. Depending on program logic, iWay Explorer creates
the correct response schema.

Inbound COBOL - IWAYSRV0_IN.CBL

Outbound COBOL (1) - IWAYSRV0_OUT_L.CBL

Field: RECORDTYPE

Value: L

Outbound COBOL (2) - IWAYSRV0_OUT_S.CBL

Field: RECORDTYPE

Value: S

The IWAYSRV0_OUT_L and IWAYSRV0_OUT_S COBOL descriptions appear in Sample
Requests, Schemas, and COBOL File Descriptions on page 111.

5. Click Update when you have finished configuring all the parameters.

The new CICS transaction, for example, IWAYSRV0, is added under the Transactions node
for the current target.

Side File Support

A side file is an XML file that contains data handling options for COBOL copybook fields. The
format of the side file is described in the iWay Service Manager Component Reference Guide.
Refer to the Legacy Record to XML Converter Service
(com.ibi.agents.XDLegacyRecordToXMLAgent) section in that guide.

Creating an Adapter Transaction

38 Information Builders

The following image shows the Output COBOL Data Description tab in the Add Service dialog
for the iWay Transaction Adapter for CICS. A side file is specified in the Side File column.

You can specify a side file by:

Explicit specification. One side file may be specified for each output COBOL copybook. If
specified, the contents of the side file are persisted along with the rest of the transaction
information.

Implicit specification. If the directory containing the COBOL copybook also contains a file
with the same name as the copybook, and _option is appended, then that file is used as
the side file and persisted. For example, if the COBOL copybook is x.cob, and the directory
also contains a file x.cob_option, then x.cob_option is assumed to be the side file for the
x.cob copybook, and will be persisted.

No specification. If a side file is not specified either explicitly or implicitly, then no side file
is used.

3. Creating XML Schemas and iWay Business Services

iWay Transaction Adapter for CICS User's Guide 39

COBOL Descriptions for Input and Output Communications

The following are consideration iBSPs for COBOL descriptions for input and output
communications. You must use the following syntax for binary, packed, and float fields for the
COBOL descriptions for the adapter transaction input and output formats.

For a binary field:

05 BINARY-FIELD PIC S9(n) COMP.

For a packed-decimal field:

05 PACKED-FIELD PIC S9(n) COMP-3.

Note: Underscores are not supported in COBOL descriptions.

Modifying COBOL DD Field Definitions

Using iWay Explorer, you can indicate that alpha type fields derived from COBOL DD input will
be represented in XML by hex character strings. Specifically, this feature allows you to change
the mapping for PIC X fields from XML type “string” to type “hexBinary”. As a result, arbitrary
binary data can be transmitted in an XML supported format to CICS applications. This feature
is useful when sending flag bits.

The following is an input example:

FLAG1 PIC X

<FLAG>02</FLAG> to transmit byte X’02’

The following is an output example:

CHARS PIC X 4

AAAA is returned as <CHARS>C1C1C1C1</CHARS>

Procedure: How to Modify COBOL DD Field Definitions

To modify COBOL DD field definitions:

1. Open iWay Explorer and connect to your CICS target.

Creating an Adapter Transaction

40 Information Builders

2. Expand the Transactions node and select a defined transaction.

3. Right-click the transaction and select Modify DD from the menu.

A sequence of Modify DD dialog boxes open representing the input and output record
layouts for the transaction. Each layout includes the Use as Binary column, which allows
you to modify an Alpha field.

4. Select the Alpha field in the table that you want to use as Binary.

5. Click the Use as Binary column and select yes or no from the drop-down list.

6. Click Next to browse through the remaining input and output record layouts for the
transaction.

7. Click Done when you are finished to save the Alpha field modifications you made.

3. Creating XML Schemas and iWay Business Services

iWay Transaction Adapter for CICS User's Guide 41

HexBinary support is available for input and output transaction records. In particular, input
RecType fields can also be defined with binary ‘Value’ arguments. In this case, the 'Value'
data must be specified as the hexadecimal representation of the expected field.

8. Right-click the transaction in the left pane and select Edit from the menu.

The Edit dialog box opens.

Note: Hexadecimal values must be specified before any modifications to Alpha fields are
performed. This is required because the Edit dialog box only saves dialog input when you
click Update. As a result, the internal COBOL DD representation to be recreated and any
prior Alpha field modifications would be lost.

Creating an Adapter Transaction

42 Information Builders

Creating Schemas for an Adapter Transaction

iWay Explorer stores the schemas it creates in subdirectories under the iWay home directory of
the machine where it is installed. The exact location of the schemas differs depending on
whether you deploy iWay Explorer with an iBSP.

When the adapter is used with an iBSP configuration, iWay Explorer stores the schemas under
a \schemas subdirectory of the iWay home directory, for example,

C:\Program Files\iway7\config\base\wsdl\schemas\service\CICS
\CICS_Connection

where:

CICS_Connection

Is the name of the connection to the CICS system as defined in iWay Explorer. Under this
directory, iWay Explorer creates subdirectories containing schemas.

Procedure: How to Create Schemas for an Adapter Transaction

To create schemas for an adapter transaction:

1. In the left pane, select the transaction for which you want to generate schemas.

2. In the right pane, move the pointer over Operations and select Generate Schema.

The adapter generates the schemas for the selected COBOL descriptions and associates
them with the transaction. The schemas generated for the sample COBOL descriptions
appear in Sample Requests, Schemas, and COBOL File Descriptions on page 111.

3. Creating XML Schemas and iWay Business Services

iWay Transaction Adapter for CICS User's Guide 43

The Schemas table appears in the right pane. The following image shows the Schemas
pane, which consists of four rows (Request, Response, Event, EventReply) and three
columns (Part, Root Tag and Schema). Only the Request and Response rows are
applicable.

a. To view the request schema, click the ellipsis symbol that is located in the Schema
column of the Request row.

b. To view the response schema, click the ellipsis symbol that is located in the Schema
column of the Response row.

3. To exit the Schemas pane, click OK.

Understanding iWay Business Services

iWay Explorer provides developers with a simple, consistent mechanism for extending the
capabilities of the adapter. The iWay Business Services Provider (iBSP) exposes functionality
as web services. It serves as a gateway to heterogeneous back-end applications and
databases.

A web service is a self-contained, modularized function that can be published and accessed
across a network using open standards. It is the implementation of an interface by a
component and is an executable entity. For the caller or sender, a web service can be
considered as a "black box" that may require input and delivers a result. A web service
integrates within an enterprise as well as across enterprises on any communication technology
stack, whether asynchronous or synchronous, in any format.

Understanding iWay Business Services

44 Information Builders

Creating a Web Service

After you connect to your application system and create an XML schema for a transaction, you
can create a web service. The following procedure describes how to create a web service using
iWay Explorer.

Procedure: How to Create a Web Service

To create a web service:

1. Click the Iway Adapters tab.

The iWay Adapters window opens.

a. In the left pane, expand the CICS node.

b. Connect to a CICS target, for example, CICS_Connection.

c. Expand the node to which you connected.

The Transaction node appears under the connected node.

2. Click Transactions and then select the transaction for which you want to create a web
service.

3. In the right pane, move your cursor over Operations and select Create iWay Business
Services.

3. Creating XML Schemas and iWay Business Services

iWay Transaction Adapter for CICS User's Guide 45

The Create Web Service pane opens on the right, where you enter information that is
specific to the web service you are defining, as shown in the following image.

a. In the Service Name field, type a descriptive name for the web service.

b. In the Description field, type a brief description for the web service (optional).

c. In the License field, select one or more license codes to assign to the web service. To
select more than one, hold down the Ctrl key and click the licenses.

4. Click Next.

Understanding iWay Business Services

46 Information Builders

Another pane with the Method Name and Description fields opens, where you enter
information that is specific to the method you are defining, as shown in the following
image.

a. In the Method Name field, type a descriptive name for the method.

b. In the Description field, type a brief description for the method.

5. Click Finish.

The iWay Business Services Provider tab opens. The web service is created and published to
the iWay Business Services Provider. iWay Explorer displays the newly created web service
under the iWay Business Services folder.

Testing the Web Service

After you create a business service, you can test it to ensure that it functions properly. iWay
provides a test tool for testing the business service.

Procedure: How to Test the Web Service

To test the web service:

1. If you are not on the iWay Business Services tab of iWay Explorer, click the tab to access
business services.

a. If it is not expanded, expand the list of business services under iWay Business
Services.

b. Expand the Services node.

3. Creating XML Schemas and iWay Business Services

iWay Transaction Adapter for CICS User's Guide 47

2. Select the name of the business service you want to test.

The business service name appears as a link in the right pane.

3. In the right pane, click the named business services link.

The test option appears in the right pane.

4. In the input xml field, either type a sample XML document that queries the service, or
browse to the location of an XML instance and click Upload.

The following is an example of an XML document that queries the service.

<?xml version="1.0" encoding="UTF-8" ?>
<CICS>
 <Transaction location="/CICS/Transaction/IWAYSAMP">
 <CommArea>
 <COMMAND>SHORT</COMMAND>
 </CommArea>
 </Transaction>
</CICS>

<?xml version="1.0" encoding="UTF-8" ?>
<CICS>
 <Transaction location="/CICS/Transaction/IWAYSAMP">
 <CommArea>
 <COMMAND>LONG</COMMAND>
 </CommArea>
 </Transaction>
</CICS>

5. Click Invoke.

The result appears in the right pane.

Generating WSDL From a Web Service

The Web Service Description Language (WSDL) file is an XML file that describes the web
service documents and provides access to the service, such as iWay run-time environment.

Procedure: How to Generate WSDL From a Web Service

To generate WSDL from a web service:

1. If you are not already on the iWay Business Services tab, click the tab to access business
services.

2. In the left pane, expand the list of services to display the iWay Business Services for
which you want to generate WSDL.

3. Select the business service.

Understanding iWay Business Services

48 Information Builders

The link for the service appears in the right pane.

a. Right-click the Service Description link and choose Save Target As.

b. Choose a location for the file and specify .wsdl for the extension.

Note: The file extension must be .wsdl.

4. Click Save.

Example: Viewing WSDL Generated from a Web Service

After generating a WSDL file from the IWAYSRV0.ibs serialized object, the IWAYSRV0. wsdl file
looks similar to the following image.

3. Creating XML Schemas and iWay Business Services

iWay Transaction Adapter for CICS User's Guide 49

Identity Propagation

If you test or execute a web service using a third party XML editor, for example XMLSPY, the
Username and Password values that you specify in the SOAP header must be valid and are
used to connect to CICS. The user name and password values that you provided for CICS
during target creation using iWay Explorer are overwritten for this web service request. The
following is a sample SOAP header that is included in the WSDL file for a web service:

<SOAP-ENV:Header>
 <m:ibsinfo xmlns:m="urn:schemas-iwaysoftware-com:iwse">
 <m:service>String</m:service>
 <m:method>String</m:method>
 <m:license>String</m:license>
 <m:disposition>String</m:disposition>
 <m:Username>String</m:Username>
 <m:Password>String</m:Password>
 <m:language>String</m:language>
 </m:ibsinfo>
</SOAP-ENV:Header>

Note: You can remove the following tags from the SOAP header, as they are not required.

<m:disposition>String</m:disposition>
<m:language>String</m:language>

Understanding iWay Business Services

50 Information Builders

Chapter4
Event Processing
With the CICS Adapter

The following section describes how the iWay Transaction Adapter for CICS can be used
to configure and use Events.

In this chapter:

Understanding CICS Events

Configuring CICS Events

Creating and Modifying an Event Port

Creating and Modifying a Channel

Testing CICS Events

Running CICS Events

Understanding CICS Events

A CICS Event is the processing defined on a particular message received from CICS. A CICS
program sends a message to communicate that a specific event occurs, for example, when an
inventory level crosses a threshold. In the most common use case, an EBCDIC COBOL
Copybook formatted record is received, converted to an XML document, and delivered to a
queue or program.

All processing details for a message are configured under a channel, which include:

Communications parameters with CICS, for example, TCP port

Message layouts defined in COBOL Copybooks

Assigned ports to which the message is routed as an XML document

A CICS Event can be configured as REQUEST only, in which the Event consumes a message, or
REQUEST/RESPONSE, in which the Event consumes a message and returns a reply message.

The following diagrams and sequences illustrate REQUEST and REQUEST/RESPONSE
scenarios:

iWay Transaction Adapter for CICS User's Guide 51

REQUEST

The following sequence outlines how request messages are processed.

1. A message is created by a CICS user program.

2. The message is sent via TCP to a channel (TCP port).

3. The channel receives the message.

4. If the channel is configured to work with Copybook formatted messages, it converts the
message to XML.

5. The channel routes the message to one or more destination ports for further processing,
for example, to a JMS queue.

REQUEST/RESPONSE

The following sequence outlines how request/response messages are processed.

1. A message is created by a CICS user program.

2. The message is sent via TCP to a channel (TCP port).

3. The channel receives the message.

4. If the channel is configured to work with Copybook formatted messages, it converts the
message to XML.

5. The channel routes a message to a destination port for further processing, for example, an
HTTP request.

Understanding CICS Events

52 Information Builders

6. The port takes an XML document as input and returns an XML document as output to the
channel. For channels configured with COBOL Copybook formatted messages, these
documents conform to the XML schemas generated from these Copybooks using iWay
Explorer.

7. If the channel is configured to work with Copybook formatted messages, it converts the
XML into Copybook format.

8. The channel returns the reply message to the CICS program.

Message Format

A message can be a Copybook formatted record or an XML document.

Copybook formatted messages have the following properties:

The request message must be prefixed by a 4-byte message length.

The Reply messages (if returned) will be prefixed by 4-byte message length.

Messages correspond to Copybooks configured as a PreParser and PreEmitter on the
channel.

XML formatted messages have the following properties:

Request and Reply messages (when returned) are XML documents, conforming to the input
and output document types of the backend process.

The following sample event programs are included with the product:

iwayevt0 - COBOL, copybook described data, request only

iwayevt1 - C, XML, request/response

iwayevt2 - COBOL, copybook described data, request/response

For more information, see Sample CICS Programs on page 119.

Supported Environments

CICS Event handling is supported under Servlet iBSP.

iWay Service Manager (iSM) does not support CICS Events. However, similar event handling
capabilities can be achieved by configuring a CICS PreParser and PreEmitter. For more
information, see the iWay Service Manager User’s Guide.

Configuring CICS Events

CICS Events are configured using a design time tool such as iWay Explorer. This section will
use the iwayevt0 sample program with a File port as an example.

4. Event Processing With the CICS Adapter

iWay Transaction Adapter for CICS User's Guide 53

To configure a CICS Event, you must:

1. Create metadata in the form of an XML schema if you are using COBOL Copybooks.

2. Create one or more ports for use as message endpoints.

3. Create a channel to receive messages and associate it with ports and COBOL Copybooks.

Procedure: How to Create XML Schemas from COBOL Copybook Metadata

This section describes how to create XML schemas for Copybook formatted messages.

Note: You can skip this section If your message is in XML format.

1. Connect to your iBSP.

2. Create and connect to a CICS target.

For more information on creating and connecting to targets, see Configuring the iWay
Transaction Adapter for CICS on page 19.

Note: The connectivity being used here is outbound connectivity (CICS adapter), and not
strictly necessary for Events.

3. Right-click the Transactions node, and select Add Event.

Configuring CICS Events

54 Information Builders

The Add Event dialog box opens.

4. Provide the appropriate configuration information as described in the following table and
click Update.

Field Description

Node Name An arbitrary descriptive name for the CICS Event.

Input COBOL Data Description The location of the COBOL Copybook that describes
the input event record.

Use data structure
information from COBOL

Select this option if you want to include group names
in the schema.

Codepage The code page used by the input data.

4. Event Processing With the CICS Adapter

iWay Transaction Adapter for CICS User's Guide 55

A new Event node is added in the left pane.

5. Right-click the Event node, for example, CICSEvent, and select Export Schema(s).

Configuring CICS Events

56 Information Builders

The Select Export Directory dialog box opens.

6. Provide a file name for the schema and select a destination for future use.

To view a sample XML schema document that is provided for your reference, see XML
Schema Document on page 78.

7. Click OK.

8. Repeat steps 2 through 7 for the outbound message if the request returns a reply.

Creating and Modifying an Event Port

After you have created the schema(s) for any COBOL Copybook metadata, you must create a
port. The port represents the processing disposition of the message from CICS. A CICS Event
must have at least one port. The types of port formats that are available depends on the
configuration you are connected to in iWay Explorer.

For documents derived from Copybooks, ports should accept as input (and deliver as output)
documents with the appropriate schemas.

The following dispositions are available when using iWay Explorer in conjunction with an iBSP
deployment.

File

4. Event Processing With the CICS Adapter

iWay Transaction Adapter for CICS User's Guide 57

iBSP

MSMQ

JMSQ

SOAP

HTTP

MQ Series

Procedure: How to Create an Event Port for File

To create an Event port for File:

1. In the left pane of iWay Explorer, select the iWay Events tab.

2. Expand the CICS node.

3. Select the ports node.

The following image shows the ports node highlighted in the left pane and the Operations
menu options (Add a new port and Refresh) in the right pane.

4. Move the pointer over Operations and select Add a new port.

Creating and Modifying an Event Port

58 Information Builders

The Create New Port pane opens on the right, as shown in the following image.

a. In the Port Name field, type a name for the Event port.

b. In the Description field, type a brief description for the port (optional).

c. From the Disposition Protocol drop-down list, select FILE.

d. In the Disposition field, specify a destination file to which the Event data is written.

When pointing iWay Explorer to an iBSP deployment, specify the destination file using
the following format:

ifile://[location];errorTo=[pre-defined port name or another
disposition url]

The following table lists and describes the parameters for the File disposition:

Parameter Description

Location Destination and file name of the document where Event data is
written, for example, D:\in\x.txt

ErrorTo Location to which error logs are sent. Optional.

Predefined port name or another disposition URL. The URL must be
complete, including the protocol.

5. Click OK.

4. Event Processing With the CICS Adapter

iWay Transaction Adapter for CICS User's Guide 59

The port appears under the ports node in the left pane. In the right pane, a table appears
that summarizes the information associated with the Event port you created.

Procedure: How to Create an Event Port for iBSP

To create an Event port for iBSP:

1. In the left pane of iWay Explorer, select the iWay Events tab.

2. Expand the CICS node.

3. Select the ports node.

4. Move the pointer over Operations and select Add a new port.

The Create New Port pane opens on the right, as shown in the following image.

a. In the Port Name field, type a name for the Event port.

b. In the Description field, type a brief description for the port (optional).

c. From the Disposition Protocol drop-down list, select iBSE.

d. In the Disposition field, enter an iBSP destination in the following format:

ibse:[svcName].[mthName];responseTo=[pre-defined port name or
another disposition url];errorTo=[pre-defined port name or another
disposition url]

Creating and Modifying an Event Port

60 Information Builders

The following table lists and describes the parameters for the iBSP disposition:

Parameter Description

svcName Name of the service created with iBSP.

mthName Name of the method created for the web service.

responseT
o

Location to which responses are posted. Optional.

Predefined port name or another disposition URL. The URL must be
complete, including the protocol.

errorTo Location to which error logs are sent. Optional.

Predefined port name or another disposition URL. The URL must be
complete, including the protocol.

5. Click OK.

The port appears under the ports node in the left pane. In the right pane, a table appears
that summarizes the information associated with the Event port you created.

Procedure: How to Create an Event Port for MSMQ

To create an Event port for MSMQ:

1. In the left pane of iWay Explorer, select the iWay Events tab.

2. Expand the CICS node.

3. Select the ports node.

4. Move the pointer over Operations and select Add a new port.

4. Event Processing With the CICS Adapter

iWay Transaction Adapter for CICS User's Guide 61

The Create New Port pane opens on the right, as shown in the following image.

a. In the Port Name field, type a name for the Event port.

b. In the Description field, type a brief description for the port (optional).

c. From the Disposition Protocol drop-down list, select MSMQ.

d. In the Disposition field, enter an MSMQ destination in the following format:

msmq:/[machineName]/private$/qName;errorTo=[pre-defined port name
or another disposition url]

Note: This syntax is for a private queue. Private queues are queues that are not
published in Active Directory. They appear only on the local computer that contains
them. Private queues are accessible only by Message Queuing applications that
recognize the full path name or format name of the queue.

The following table lists and describes the parameters for the MSMQ disposition.

Parameter Description

machineName Machine name where the Microsoft Queuing system is running.

qName Name of the private queue where messages are placed.

Creating and Modifying an Event Port

62 Information Builders

Parameter Description

errorTo Location to which error logs are sent. Optional.

Predefined port name or another disposition URL. The URL must
be complete, including the protocol.

5. Click OK.

The port appears under the ports node in the left pane. In the right pane, a table appears
that summarizes the information associated with the Event port you created.

You are now ready to associate the Event port with a channel. For more information, see How
to Create a Channel on page 71.

Procedure: How to Create an Event Port for JMSQ

To create an Event port for JMSQ:

1. In the left pane of iWay Explorer, select the iWay Events tab.

2. Expand the CICS node.

3. Select the ports node.

4. Move the pointer over Operations and select Add a new port.

The Create New Port pane opens on the right, as shown in the following image.

a. In the Port Name field, type a name for the Event port.

4. Event Processing With the CICS Adapter

iWay Transaction Adapter for CICS User's Guide 63

b. In the Description field, type a brief description for the port (optional).

c. From the Disposition Protocol drop-down list, select JMSQ.

d. In the Disposition field, enter a JMS destination.

When pointing iWay Explorer to an iBSP deployment, use the following format.

jmsq:[myQueueName]@[myQueueFac];jndiurl=[myurl];
jndifactory=[myfactory];user=[user];password=[xxx];
errorTo=[pre-defined port name or another disposition url]

The following table lists and describes the parameters for the JMSQ disposition.

Parameter Description

myQueueName

or

jmsqueue

JNDI name of a queue to which Events are emitted.

myQueueFac

or

jmsfactory

Resource that contains information about the JMS Server.

jndiurl URL to use to contact the JNDI provider. The syntax of this URL
depends on the JNDI provider being used. This value
corresponds to the standard JNDI property,

java.naming.provider.url

jndifactory Is JNDI context.INITIAL_CONTEXT_FACTORY and is provided by
the JNDI service provider.

user Valid user name required to access a JMS server.

password Valid password required to access a JMS server.

errorTo Location to which error logs are sent. Optional.

Predefined port name or another disposition URL. The URL
must be complete, including the protocol.

5. Click OK.

The port appears under the ports node in the left pane. In the right pane, a table appears
that summarizes the information associated with the Event port you created.

Creating and Modifying an Event Port

64 Information Builders

You are now ready to associate the Event port with a channel. For more information, see How
to Create a Channel on page 71.

Procedure: How to Create a Port for SOAP

To create an Event port for SOAP:

1. In the left pane of iWay Explorer, select the iWay Events tab.

2. Expand the CICS node.

3. Select the ports node.

4. Move the pointer over Operations and select Add a new port.

The Create New Port pane opens on the right, as shown in the following image.

a. In the Port Name field, type a name for the Event port.

b. In the Description field, type a brief description for the port (optional).

c. From the Disposition Protocol drop-down list, select SOAP.

d. In the Disposition field, enter a SOAP destination in the following format.

soap:[wsdl-url];soapaction=[myaction];
method=[web service method];namespace=[namespace];
responseTo=[pre-defined port name or another disposition URL];
errorTo=[pre-defined port name or another disposition url]

4. Event Processing With the CICS Adapter

iWay Transaction Adapter for CICS User's Guide 65

The following table lists and describes the parameters for the SOAP disposition.

Para
meter

Description

wsdl-
url

URL to the WSDL file that is required to create the SOAP message, for
example:

http://localhost:7001/ibse/IBSEServlet/test/
webservice.ibs?wsdl

where:

webservice

Is the name of the web service you created using iWay Explorer.

This value can be found by navigating to the iWay Business Services tab
and opening the Service Description link in a new window. The WSDL URL
appears in the Address field.

You can also open the WSDL file in a third party XML editor (for example,
XMLSPY) and view the SOAP request settings to find this value.

soap
actio
n

Method that is called by the SOAP disposition. For example:

webservice.method@test@@

where:

webservice

Is the name of the web service you created using iWay Explorer.

method

Is the method being used.

test

Is the license that is being used by the web service.

This value can be found by navigating to the iWay Business Services tab,
opening the Service Description link in a new window, and performing a
search for soapAction.

You can also open the WSDL file in a third party XML editor (for example,
XMLSPY) and view the SOAP request settings to find this value.

Creating and Modifying an Event Port

66 Information Builders

Para
meter

Description

meth
od

Web service method you are using. This value can be found in the WSDL
file.

name
spac
e

XML namespace you are using. This value can be found in the WSDL file.

respo
nseT
o

Location to which responses are posted. Optional.

Predefined port name or another disposition URL. The URL must be
complete, including the protocol.

errorT
o

Location to which error logs are sent. Optional.

Predefined port name or another disposition URL. The URL must be
complete, including the protocol.

5. Click OK.

The port appears under the ports node in the left pane. In the right pane, a table appears
that summarizes the information associated with the port you created.

You are now ready to associate the Event port with a channel. For more information, see How
to Create a Channel on page 71.

Procedure: How to Create an Event Port for HTTP

To create an Event port for HTTP:

1. In the left pane of iWay Explorer, select the iWay Events tab.

2. Expand the CICS node.

3. Select the ports node.

4. Move the pointer over Operations and select Add a new port.

4. Event Processing With the CICS Adapter

iWay Transaction Adapter for CICS User's Guide 67

The Create New Port pane opens on the right, as shown in the following image.

a. In the Port Name field, type a name for the Event port.

b. In the Description field, type a brief description for the port (optional).

c. From the Disposition Protocol drop-down list, select HTTP.

d. In the Disposition field, enter an HTTP destination.

When pointing iWay Explorer to an iBSP deployment, use the following format.

http://[myurl];responseTo=[pre-defined port name or another
disposition url];

The following table lists and describes the parameters for the HTTP disposition when
using an iBSP deployment.

Parameter Description

myurl URL target for the post operation, for example,

http://myhost:1234/docroot

responseTo Location to which responses are posted. Optional.

Predefined port name or another disposition URL. The URL must
be complete, including the protocol.

Creating and Modifying an Event Port

68 Information Builders

5. Click OK.

The port appears under the ports node in the left pane. In the right pane, a table appears
that summarizes the information associated with the Event port you created.

You are now ready to associate the Event port with a channel. For more information, see How
to Create a Channel on page 71.

Procedure: How to Create an Event Port for MQSeries

To create an Event port for MQSeries:

1. In the left pane of iWay Explorer, select the iWay Events tab.

2. Expand the CICS node.

3. Select the ports node.

4. Move the pointer over Operations and select Add a new port.

The Create New Port pane opens on the right, as shown in the following image.

a. In the Port Name field, type a name for the Event port.

b. In the Description field, type a brief description for the port (optional).

c. From the Disposition Protocol drop-down list, select MQ Series.

d. In the Disposition field, enter an MQSeries destination using the following format.

mqseries:/[qManager]/[qName];host=[hostname];port=[port];
channel=[channnelname];errorTo=[pre-defined port name or another
disposition url]

4. Event Processing With the CICS Adapter

iWay Transaction Adapter for CICS User's Guide 69

The following table lists and describes the parameters for the MQ Series disposition.

Parameter Description

qManager Name of the queue manager to which the server must connect.

qName

or

respqueue

Name of the queue where messages are placed.

host Host on which the MQ server is located (MQ Client only).

port Number to connect to an MQ server queue manager (MQ client only).

channel Case-sensitive name of the channel that connects with the remote
MQ server queue manager (MQ client only). SYSTEM.DEF.SVRCONN
is the default channel name for MQSeries.

errorTo Location to which error logs are sent. Optional.

Predefined port name or another disposition URL. The URL must be
complete, including the protocol.

5. Click OK.

The port appears under the ports node in the left pane. In the right pane, a table appears
that summarizes the information associated with the Event port you created.

Procedure: How to Edit an Event Port

To edit an Event port:

1. In the left pane of iWay Explorer, select the iWay Events tab.

2. Expand the CICS node.

3. Select the ports node.

4. Select the Event port you want to edit.

5. In the right pane, move the pointer over Operations and select Edit.

The Edit Port dialog box opens.

6. Make the required changes and click OK.

Creating and Modifying an Event Port

70 Information Builders

Procedure: How to Delete an Event Port

To delete an Event port:

1. In the left pane of iWay Explorer, select the iWay Events tab.

2. Expand the CICS node.

3. Select the ports node.

4. Select the Event port you want to delete.

5. In the right pane, move the pointer over Operations and select Delete.

A confirmation dialog box opens.

6. To delete the Event port you selected, click OK.

The Event port disappears from the list in the left pane.

Creating and Modifying a Channel

A channel is created to listen for the CICS Event and process the event document. A channel
that is configured using the REQUEST or REQUEST_ACK (Acknowledgment) synchronization
type does not return data to the CICS application, and may be associated with one or more
ports. Specifying multiple ports means that the document will be written to each port. A
channel that uses the REQUEST_RESPONSE synchronization type may only be associated with
a single port. If the channel converts Copybook formatted request messages to XML, a
PreParser must be configured. If the channel converts XML to Copybook formatted response
messages, then a PreEmitter must be configured.

When using a REQUEST/RESPONSE configuration, input and output data must be either both
Copybook or XML formatted.

Procedure: How to Create a Channel

To create a channel:

1. In the left pane of iWay Explorer, expand the iWay Events node.

2. Expand the CICS node.

3. Select the Channels node.

4. Event Processing With the CICS Adapter

iWay Transaction Adapter for CICS User's Guide 71

The following image shows the Channels node highlighted in the left pane.

4. Right-click the Channels node and select Add Channel.

The Add Channel dialog box opens.

a. In the Name field, type a descriptive name for the channel, for example, CICSChannel.

b. In the Description field (optional), type a brief description for the channel, for example,
CICS Event Channel.

Creating and Modifying a Channel

72 Information Builders

c. From the Protocol drop-down list, select a channel type. TCP Listener is the only type
supported by the CICS adapter.

d. Select from the available ports the ones you want to associate with the channel.

5. Click Next.

The TCP Listener dialog box opens where you provide parameters to specify values for the
protocol you will use with the channel, as shown in the following image.

6. Specify the values for the protocol you are using with the channel.

The following table lists and describes the properties in the Basic tab.

Property Description

Basic Tab

Port Number Port number where your CICS connection node listens for Events
generated by CICS.

Host/IP Binding Name or IP address of the host computer where the CICS
application region is running.

4. Event Processing With the CICS Adapter

iWay Transaction Adapter for CICS User's Guide 73

Property Description

Synchronization
Type

Choose one of the following:

If the Event application expects a reply sent back to it, select
REQUEST_RESPONSE. Specify a PreEmitter.

If the Event application expects a TCP/IP Acknowledgment
(ACK), select REQUEST_ACK.

If the Event application does not expect a reply, select
REQUEST.

Is Length Prefix If the message is prefixed by a 4 byte binary length. Required for
COBOL Copybook formatted messages. Optional for XML
messages.

Is XML For CICS Events that send back data in XML format. Do not specify
a PreParser or PreEmitter.

Is Keep Alive Maintains continuous communication between the Event
transaction and the channel.

The following table lists and describes the properties in the PreParser tab.

Creating and Modifying a Channel

74 Information Builders

Property Description

Location of COBOL
Data Description

Path to the COBOL description of the layout sent by CICS.

For more information, see Sample Requests, Schemas, and
COBOL File Descriptions on page 111.

Remote Codepage Select the code page from the drop-down menu. Cp500 is the
default value.

Use data structure
information from
COBOL

When this parameter is selected, the Event creates request
and response documents including COBOL group levels (for
example, 05, 10, 20, and so on).

You must select this parameter when COBOL input or output
descriptions contain the COBOL OCCURS or REDEFINES
statement.

Accept multiple
records in
COMMAREA

When this parameter is selected, multiple COMMAREA records
are read by the PreParser. Otherwise, any data in excess of the
COBOL definition is truncated.

The following table lists and describes the properties in the PreEmitter tab.

Note: Specify a PreEmitter only when using the REQUEST_RESPONSE synchronization type.

4. Event Processing With the CICS Adapter

iWay Transaction Adapter for CICS User's Guide 75

Property Description

Location of COBOL
Data Description

Path to the COBOL description of the layout returned to CICS.

For more information, see Sample Requests, Schemas, and
COBOL File Descriptions on page 111.

Remote Codepage Select the code page from the drop-down menu. Cp500 is the
default value.

Use data structure
information from
COBOL

When this parameter is selected, the Event creates request
and response documents including COBOL group levels (for
example, 05, 10, 20, and so on).

You must select this parameter when COBOL input or output
descriptions contain the COBOL OCCURS or REDEFINES
statement.

7. Click OK.

The following image shows the newly created CICSChannel under the Channels node in the
left pane.

An X over the icon indicates that the channel is currently disconnected. You must start the
channel to activate your Event configuration.

Procedure: How to Edit a Channel

To edit a channel:

1. In the left pane of iWay Explorer, select the iWay Events tab.

2. Expand the CICS node.

3. Select the Channels node.

4. Select the channel you want to edit.

5. Right-click the channel and select Edit.

The Edit Channel dialog box opens.

6. Make any required changes to the channel configuration.

Creating and Modifying a Channel

76 Information Builders

Procedure: How to Delete a Channel

To delete a channel:

1. In the left pane of iWay Explorer, select the iWay Events tab.

2. Expand the CICS node.

3. Select the Channels node.

4. Select the channel you want to delete.

5. Right-click the channel and select Delete.

The channel disappears from the list in the left pane.

Testing CICS Events

After you have created a channel, you may test it by starting and stopping the channel.

Procedure: How to Start a Channel

To start a channel:

1. In the left pane of iWay Explorer, select the iWay Events tab.

2. Expand the CICS node.

3. Select the Channels node.

4. Select the channel you want to start.

5. Right-click the channel and select Start.

The channel becomes active and the X over the icon disappears.

Procedure: How to Test a Channel

To test a channel:

1. Send your test data, for example, by running the IWAYEVT0 COBOL sample.

2. Look for the results in the destination specified by the File port.

Procedure: How to Stop a Channel

To stop a channel:

1. In the left pane of iWay Explorer, select the iWay Events tab.

2. Expand the CICS node.

3. Select the Channels node.

4. Event Processing With the CICS Adapter

iWay Transaction Adapter for CICS User's Guide 77

4. Select the channel you want to stop.

5. Right-click the channel and select Stop.

The channel becomes inactive and the X appears over the icon.

Running CICS Events

After a channel is configured and tested, it may be started in a runtime server.

The channel can continue to be stopped and restarted from these tools. When a server is
restarted, the channel will remain in the state it was last left in.

Reference: XML Schema Document

This section provides the sample XML schema document that is generated for the iwayevt0
sample program using iWay Explorer.

<?xml version="1.0" encoding="UTF-8"?>
<!-- Generated by the iBSE 2007-04-05T20:48:06Z -->
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:ns1="urn:iwaysoftware:CICS/C:/iWay7/etc/samples/cics/iwayevt0/cobolfd/
iwayevt0_in.cbl_Event"

Running CICS Events

78 Information Builders

targetNamespace="urn:iwaysoftware:CICS/C:/iWay7/etc/samples/cics/iwayevt0/cobolfd/
iwayevt0_in.cbl_Event"
 elementFormDefault="qualified" attributeFormDefault="unqualified" xml:lang="en">
 <xsd:element name="CICSEvent">
 <xsd:complexType>
 <xsd:all>
 <xsd:element name="EventData">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="CommArea" maxOccurs="unbounded">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="ALPHA01" minOccurs="0">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:maxLength value="8"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>
 <xsd:element name="INT01" minOccurs="0">
 <xsd:simpleType>
 <xsd:restriction base="xsd:integer"/>
 </xsd:simpleType>
 </xsd:element>
 <xsd:element name="PACK01" minOccurs="0">
 <xsd:simpleType>
 <xsd:restriction base="xsd:integer"/>
 </xsd:simpleType>
 </xsd:element>
 <xsd:element name="ZONE01" minOccurs="0">
 <xsd:simpleType>
 <xsd:restriction base="xsd:integer"/>
 </xsd:simpleType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:all>
 </xsd:complexType>
 </xsd:element>
</xsd:schema>

Reference: XML Output Document

This section provides the sample XML output document.

4. Event Processing With the CICS Adapter

iWay Transaction Adapter for CICS User's Guide 79

<CICSEvent xmlns="urn:iwaysoftware:CICS/c:/iway7/etc/samples/cics/iwayevt0/
cobolfd/iwayevt0_in.cbl_Event">
<EventData>
 <CommArea>
 <ALPHA01>ABCDEFGH</ALPHA01>
 <INT01>25</INT01>
 <PACK01>50</PACK01>
 <ZONE01>75</ZONE01>
 </CommArea>
</EventData>
</CICSEvent>

Running CICS Events

80 Information Builders

AppendixA Configuring the
Transaction Adapter for CICS in an
iWay Environment

After you successfully configure the adapter to represent a particular adapter target, the
adapter can be assigned to an iWay Service Manager channel.

In this appendix:

Configuring the Transaction Adapter for CICS in Service Manager

Configuring the Transaction Adapter for CICS in Service Manager

Before configuring the adapter in iWay Service Manager, you must first create a target, which
represents a connection to a backend system, using iWay Explorer. For more information on
configuring targets and connections using iWay Explorer, see Creating XML Schemas and iWay
Business Services on page 31.

You configure the adapter in the iWay Service Manager console. The configuration process
creates run-time connection and persistent data files within Service Manager. The
configuration process interrogates the Service Manager repository entries that were built when
the target and connection were created using iWay Explorer. The define adapter process
creates the run-time repository based on the design-time repository.

Procedure: How to Define the Adapter

To define the adapter:

1. In the Service Manager console, select Registry, then Adapters.

2. Click Add.

The iBSP URL pane opens, as shown in the following image.

3. Enter your iBSP URL, which is the location of the Service Manager repository, for example,
http://localhost:9000. This field is required.

4. Click Next.

iWay Transaction Adapter for CICS User's Guide 81

An adapter selection pane opens, as shown in the following image.

5. From the Adapter drop-down list, select the Adapter, then click Next.

6. From the Target drop-down list, select a target you configured for the adapter in iWay
Explorer, then click Next.

The connection information associated with the target selected is displayed.

a. Select whether to return an error document when an error occurs.

b. Select whether an adapter connection will be reused between executes.

c. Review the connection information you specified in iWay Explorer. You can change or
update any information.

7. Click Next.

8. Provide a name and, optionally, a description, for the adapter, and click Finish.

The adapter appears in the adapters list, as shown in the following image.

Configuring the Transaction Adapter for CICS in Service Manager

82 Information Builders

Procedure: How to Modify or Update an Adapter Connection

The following image shows the Adapter Defines pane which displays the name of the adapter
and the description (optional).

To modify or update an adapter connection:

1. From the Adapters list, click the adapter reference you defined, in this example, CICS_iSM.
The pane that displays the target connection information opens. You cannot change the
name of the adapter or the target, but you can edit the connection information.

2. After you modify the connection information, click Update Connection Properties.

3. After you make changes or additions to the adapter target in iWay Explorer, click Update
Adapter Data.

4. Click Finish.

A. Configuring the Transaction Adapter for CICS in an iWay Environment

iWay Transaction Adapter for CICS User's Guide 83

Configuring the Transaction Adapter for CICS in Service Manager

84 Information Builders

AppendixB Running the Adapter
Using LU6.2 Communication

This section contains information that you can use as a guide to ensure LU6.2
communication to the CICS region.

In this appendix:

MVS OS/390 APPC Communication

Microsoft SNA Server Communication

Application Run-Time Requirements

MVS OS/390 APPC Communication

The following topics describe the set up for LU6.2 definitions for communication to the CICS
region. You can use the following information when consulting with VTAM and CICS
administrators.

LU6.2 Set up on MVS

To correctly set the APPC/MVS LU definition, use the following VTAM APPC settings as a guide.

VTAM LU Definitions

T39HPAPU PU PUTYPE=2, +
 ADDR=01, +
 DISCNT=NO, +
 IDBLK=05D, +
 IDNUM=54435, +
 MAXPATH=2, +
 MAXOUT=7, +
 MODETAB=IBILM, +
 DLOGMOD=SNA3270, +
 USSTAB=USSIBSNA, +
 ISTATUS=ACTIVE

T39HPAI0 LU LOCADDR=0,MODETAB=MTOS2EE,DLOGMOD=PARALLEL
T39HPAI1 LU LOCADDR=0,MODETAB=MTOS2EE,DLOGMOD=PARALLEL
T39HPAI2 LU LOCADDR=0,MODETAB=MTOS2EE,DLOGMOD=PARALLEL
T39HPAI3 LU LOCADDR=0,MODETAB=MTOS2EE,DLOGMOD=PARALLEL
T39HPAT1 LU LOCADDR=2
T39HPAT2 LU LOCADDR=3
T39HPAT3 LU LOCADDR=4,DLOGMOD=LU62
T39HPAT4 LU LOCADDR=5,DLOGMOD=LU62

Sample LogMode Definition

iWay Transaction Adapter for CICS User's Guide 85

PARALLEL MODEENT LOGMODE=PARALLEL,FMPROF=X'13',TSPROF=X'07',
PRIPROT=X'B0',SECPROT=X'B0',COMPROT=X'50B1',TYPE=X'00',
RUSIZES=X'8787',PSERVIC=X'060200000000000000002F00'

In iWay Explorer, based on the previous definitions, the LogMode entered is Parallel and the
Local LU entered is T39HPAI1.

Note: An SNA Stack must be configured with Local LU T39HPAI1on the adapter platform.

LU6.2 Set up on CICS

The following image shows a sample Object Characteristics screen for a CICS connection.

MVS OS/390 APPC Communication

86 Information Builders

The following image shows a sample Object Characteristics screen for a CICS session.

Microsoft SNA Server Communication

The following topics describe the set up for Microsoft SNA Server communication to the CICS
region.

LU6.2 Setup on a Windows SNA Server

You must verify that the SNA Service is active. You must create one or more remote LUs on
the SNA Server with equivalent names for the remote LUs for the CICS region(s).

B. Running the Adapter Using LU6.2 Communication

iWay Transaction Adapter for CICS User's Guide 87

The following image displays the CICS LU, CICSAPPC, and the SNA Manager properties for the
Remote LU on the General tab.

Microsoft SNA Server Communication

88 Information Builders

The following image shows SNA Manager on a Windows NT platform with remote LUs and an
active SNA Service. A remote LU for the CICS region was created (CICSAPPC). The SNA Server
Local LU is T26ZCAI1.

Application Run-Time Requirements

The following are run-time requirements for applications that invoke the iWay Transaction
Adapter for CICS using SNA Services. The adapter engine, iBSP, or any application server must
include the required SNA DLLs.

B. Running the Adapter Using LU6.2 Communication

iWay Transaction Adapter for CICS User's Guide 89

The following image shows the Set connection info pane in iWay Explorer.

The remote LU is the CICS LU (IWAYDEMO) that matches the Remote LU on the SNA server.

The Local LU (T26ZCAI1) matches the SNA server local LU.

PARALLEL log mode is used for the connection. You must specify a valid log mode for the CICS
region (VTAM mode table entry for APPC sessions).

Application Run-Time Requirements

90 Information Builders

AppendixC Running the Adapter
Using TCP/IP Communication

This section contains information that you can use as a guide to ensure TCP/IP
communication to the CICS region.

In this appendix:

MVS OS/390 TCP/IP Communication

MVS OS/390 TCP/IP Communication

The following topic describes the requirements to ensure TCP/IP communication to the CICS
region. You can use the following information when consulting with VTAM and CICS
administrators.

TCP/IP Requirements

The requirements for TCP/IP communication to the CICS region are:

TCP must be installed on z/OS.

The CICS system initialization must specify TCPIP=YES.

The default is NO.

You must define a TCPIPSERVICE resource definition for the CICS region.

You must specify PROTOCOL(ECI) and the ATTACHSEC(<value>). The ATTACHSEC(<value>)
should match what you configure for the adapter connection parameters.

Note: The default transaction is CIEP. This can be changed. You may want to set
STATUS(OPEN) so that the transaction is started when installed. The default port is 1435. You
can change this using the PORT parameter.

For the transaction to run, the TCPIPSERVICE must be installed and started. This can be
accomplished automatically (by ensuring that the TCPIPSERVICE is defined in a group that is in
a CICS start up list) or manually from CEDA.

iWay Transaction Adapter for CICS User's Guide 91

MVS OS/390 TCP/IP Communication

92 Information Builders

AppendixD
Using Adabas/Natural
Programs

This section describes how to use Adabas/Natural programs with the iWay Transaction
Adapter for CICS.

In this appendix:

Adabas/Natural Programs Overview

Installing the Adabas/Natural Interface

Writing and Configuring a Natural Program

Adabas/Natural Programs Overview

Adabas/Natural programs can be executed using the iWay Transaction Adapter for CICS. Two
programs, AASNATC and AASSUBC, which comprise the Adabas/Natural interface, are
packaged with the iWay Service Manager (SM) installation and must be installed in the CICS
region. These programs function as an interface between the Natural environment and the
CICS/DPL environment, and have the following roles:

AASNATC - This proxy program is invoked by the adapter and starts the Natural Nucleus to
run your program.

AASSUBC - The Natural program uses AASSUBC to read and write the COMMAREA on a
field-by-field basis.

iWay Transaction Adapter for CICS User's Guide 93

The following diagram illustrates the end-to-end data flow for a service request to a Natural
program.

The following steps outline the call flow:

1. The iWay Transaction Adapter for CICS receives an input XML document.

2. The adapter wraps the user COMMAREA with Natural Control information, and sends it to
AASNATC.

3. The AASNATC program invokes the Natural environment with the Natural program name and
logon parameters.

4. The Natural program receives control and reads the input COMMAREA using AASSUBC.
After processing the data, it uses AASSUBC again to write the output COMMAREA and
returns control to AASNATC.

5. AASNATC constructs the return COMMAREA and returns it to the adapter (via the mirror).

6. The adapter returns the output XML document to the caller.

Installing the Adabas/Natural Interface

The mainframe programs necessary to create Adabas/Natural programs are packaged as an
archive with the iWay Service Manager (SM) installation.

By default, on Windows, the archive location is:

C:/Program Files/iWay7/etc/setup/natural.zip

Installing the Adabas/Natural Interface

94 Information Builders

This archive provides the iway.natural.bin binary file, which contains the following programs:

AASNATC

AASSUBC

AASNATD

AASNATC and AASSUBC are components of the Adabas/Natural interface used by the iWay
Transaction Adapter for CICS. AASNATD is a diagnostic program to be used under the guidance
of Customer Support Services.

Procedure: How to Upload the Adabas/Natural Interface Programs

To upload the Adabas/Natural programs:

1. Unzip the natural.zip file and extract the iway.natural.bin binary file.

2. Allocate a dataset on MVS to which the binary file will be uploaded.

Use lrecl 80, recfm fb, blksize 3120, organization PS. Five TRKs are adequate.

3. FTP the binary file to the MVS dataset allocated in step 2.

If you are running the FTP on MVS, use the following FTP subcommands:

binary

LOCSITE LRECL=80 BLKSIZE=3120 RECFM=FB

get iway.natural.bin mvs.allocated.bin (replace

If you are running the FTP command on another host, use:

binary

quote site LRECL=80 BLKSIZE=3120 RECFM=FB

put iway.natural.bin mvs.allocated.bin (replace

4. Unpack the uploaded file into a preexisting MVS PDS load library (not PDSE).

a. Enter the following command from the TSO READY prompt:

RECEIVE indataset(mvs.allocated.bin)

b. When prompted for an input, respond with:

DATASET(mvs.loadlib)

5. Confirm that the expected members have been added to the target load library.

D. Using Adabas/Natural Programs

iWay Transaction Adapter for CICS User's Guide 95

6. Add the target load library (PDS) to DFHRPL or copy the programs to an existing DFHRPL
library so the programs are made available to the CICS region.

Procedure: How to Add the CICS Definitions

To add the CICS definitions:

1. Define the programs AASNATC and AASSUBC to CICS.

2. Define an alternate mirror transaction with program DFHMIRS and TWA 128.

A mirror transaction with TWA of 128 is required for the AASNATC program to invoke the
Natural Nucleus. You may copy the other parameters from system transaction CPMI.

A transaction name of IWAY is suggested.

Writing and Configuring a Natural Program

To write and configure a Natural Program for use with the iWay Transaction Adapter for CICS:

1. Write a Natural program to use the AASSUBC calls to send and receive data.

For more information, see Using the AASSUBC Calling API on page 99 and Natural
Program on page 132.

2. Using iWay Explorer, define a new CICS target with any supported communications type, for
example, AnyNet, SNA, or TCP/IP.

3. Click the Advanced tab after you have entered your connection parameters.

The Advanced tab opens.

Perform the following steps:

a. Specify the name of the Natural Nucleus installed on the CICS region.

Writing and Configuring a Natural Program

96 Information Builders

b. Specify the Natural proxy program AASNATC.

c. Specify the alternate mirror transaction in the CICS Mirror field.

d. Adjust the default Natural Logon Parameters, as needed. The CICS adapter will
automatically append a suitable STACK parameter to the end of Logon Parameters when
each request is run, using the Natural library and the Program Name defined in the
Service Node. A user may also include his own STACK= on the Logon Parameters and
reference the Natural library and service program name via the strings #NATLIB and
#NATPROG. For example:
AUTO=OFF,TTYPE=ASYN,DBCLOSE=ON,ETID=OFF,IMSG=OFF,MENU=OFF,SENDER
DUMMY,OUTDEST=DUMMY,ID=/,STACK=(LOGON #NATLIB;#NATPROG;FIN). In this
case, the automatic STACK parameter is not appended.

For more information on Natural Logon Parameters themselves, see the Natural
documentation.

Note: Since this target invokes the Natural proxy program, it is not suitable for use with
non-Natural, ECI CICS programs.

4. Connect to your CICS target, right-click the Transactions node, and select Add Service to
create a service node that represents the Natural program.

D. Using Adabas/Natural Programs

iWay Transaction Adapter for CICS User's Guide 97

The Add Service window opens.

Perform the following steps:

a. Specify a name for the service node in the Node Name field.

b. Specify the name of the Natural program to run in the Program Name field.

c. Specify the library within the Natural subsystem where the program is stored in the
Natural Library field.

Note: This value is usually SYSTEM by default.

d. Specify a COMMAREA size for the service to be a maximum of:

The size of data sent to the Natural program + 300 and the maximum number of bytes
to be received from the Natural program.

The iWay Transaction Adapter for CICS requires this extra space on output to send the
data required by the proxy program to invoke the Natural Nucleus.

Note: This value is usually SYSTEM by default.

The size of data sent to the Natural program + 300 and the maximum number of bytes to
be received from the Natural program.

The iWay Transaction Adapter for CICS requires this extra space on output to send the data
required by the proxy program to invoke the Natural Nucleus.

For more information on Natural logon parameters, see the Natural documentation.

Note: This value is usually SYSTEM by default.

Writing and Configuring a Natural Program

98 Information Builders

The size of data sent to the Natural program + 300 and the maximum number of bytes to be
received from the Natural program.

The iWay Transaction Adapter for CICS requires this extra space on output to send the data
required by the proxy program to invoke the Natural Nucleus.

Reference: Using the AASSUBC Calling API

A Natural program must use program AASSUBC for all access to input and output buffers.

Calls to AASSUBC all use the following control block as their first parameter:

1 #REQUEST-PARMS
2 #FUNCTION (A2) GT,PT,LC,LI
2 #OFFSET (I2) DATA OFFSET OF INPUT/OUTPUT
2 #LENGTH (I2) LENGTH OF DATA TO GET OR PUT
2 #RESPONSE-CODE (I4)
2 #ERR-MESSAGE (A72)

The following table lists and describes the implemented functions:

Function Description

GT Get input by offset.

The offset must be set to 0 for the first call only. It is incremented
following each call by the number of bytes read.

The length of the requested data must be provided for each call
and must match the length of the area provided to receive the
input data. For example:

MOVE #FUNC-GT TO #FUNCTION
MOVE 8 TO #LENGTH
MOVE 0 TO OFFSET - FIRST CALL ONLY
CALL 'AASSUBC' #FUNCTION #EMP-NUM1

WHERE #EMP-NUM1 IS AN EIGHT BYTE FIELD

D. Using Adabas/Natural Programs

iWay Transaction Adapter for CICS User's Guide 99

Function Description

PT Put output by offset.

The offset must be set to 0 for the first call only. It is incremented
following each call by the number of bytes written.

The length of the requested data must be provided for each call
and must match the length of the area provided containing the
output data. For example:

MOVE #FUNC-PT TO #FUNCTION
MOVE 8 TO #LENGTH
MOVE 0 TO OFFSET - FIRST CALL ONLY
CALL 'AASSUBC' #FUNCTION #EMP-NUM1

WHERE #EMP-NUM1 IS AN EIGHT BYTE FIELD

LI Get length of input data.

This function updates the #LENGTH field with the total length of all
input parameters. No additional parameters are required. For
example:

MOVE #FUNC-LI TO #FUNCTION
CALL 'AASSUBC' #FUNCTION

LC Get length of COMMAREA used to send data.

This function updates the #LENGTH field with the COMMAREA
length. No additional parameters are required. For example:

MOVE #FUNC-LC TO #FUNCTION
CALL 'AASSUBC' #FUNCTION

The following table lists and describes the implemented response codes:

Response Code Description

0 Operation completed successfully.

4 ENDDATA - OFFSET exceeds end of input data and indicates that no
further input is available.

8 OFFSET + LENGTH is greater than COMMAREA.

Writing and Configuring a Natural Program

100 Information Builders

Note: Always use the first field of a group when calling AASSUBC. Notice all calls are made
with #FUNCTION and not #REQUEST-PARMS.

All input fields must be read before output fields are written. The sample program
aasnatn.natural shows how AASSUBC is used. On Windows, the Natural sample program is
located in:

C:\Program Files\iWay7\etc\samples\cics\natural

For more information on using this program, see Natural Program on page 132.

D. Using Adabas/Natural Programs

iWay Transaction Adapter for CICS User's Guide 101

Writing and Configuring a Natural Program

102 Information Builders

AppendixE Installing the
Sample IWAYIVP and IWAYSRV0
Programs in CICS

This section describes how to verify that you have correctly installed the iWay Transaction
Adapter for CICS.

In this appendix:

Installing and Configuring IWAYIVP

Installing and Configuring IWAYSRV0

Installing and Configuring IWAYIVP

The following procedure demonstrates how to install and configure the sample CICS program,
IWAYIVP. Sample source code for the COBOL program, IWAYIVP, is provided in Sample CICS
Programs on page 119. For specific information for your site, see your CICS Systems
Administrator.

Procedure: How to Install and Configure IWAYIVP

To install and configure the sample CICS program, IWAYIVP:

1. Use the source code provided in Sample CICS Programs on page 119, compile the
program, and make it available to CICS.

2. Define the COBOL program to the CICS region, as follows:

a. Log onto the CICS region.

b. Issue the following command:

CEDA DEF PROG(IWAYIVP) GROUP(IWAY)

iWay Transaction Adapter for CICS User's Guide 103

The Define Program (IWAYIVP) mainframe screen appears, as shown in the following
image.

3. Install the program in the CICS region, as follows:

a. Issue the following command:

CEDA INST PROG(IWAYIVP) GROUP(IWAY)

Installing and Configuring IWAYIVP

104 Information Builders

The following image shows a sample installation mainframe screen.

b. Display the program by typing the following command:

CEMT I PROG(IWAYIVP)

E. Installing the Sample IWAYIVP and IWAYSRV0 Programs in CICS

iWay Transaction Adapter for CICS User's Guide 105

The following image shows a sample results mainframe screen.

Installing and Configuring IWAYSRV0

The following procedure demonstrates how to install and configure the sample CICS program,
IWAYSRV0. Sample source code for the COBOL program IWAYSRV0 is provided in Sample CICS
Programs on page 119. For specific information for your site, see your CICS Systems
Administrator.

Procedure: How to Install and Configure IWAYSRV0

To install and configure the sample CICS program, IWAYSRV0:

1. Use the source code provided in Sample CICS Programs on page 119, compile the
program, and make it available to CICS.

2. Define the COBOL program to the CICS region, as follows:

a. Log onto the CICS region.

b. Issue the following command:

CEDA DEF PROG(IWAYSRV0) GROUP(IWAY)

Installing and Configuring IWAYSRV0

106 Information Builders

The Define Program (IWAYSRV0) screen appears as shown in the following image.

3. Install the program in the CICS region, as follows:

a. Issue the following command:

CEDA INST PROG(IWAYSRV0) GROUP(IWAY)

E. Installing the Sample IWAYIVP and IWAYSRV0 Programs in CICS

iWay Transaction Adapter for CICS User's Guide 107

The following image shows a sample installation screen for IWAYSRV0.

b. Display the program by typing the following command:

CEMT I PROG(IWAYSRV0)

Installing and Configuring IWAYSRV0

108 Information Builders

The following image shows a sample of the IWAYSRV0 results screen.

E. Installing the Sample IWAYIVP and IWAYSRV0 Programs in CICS

iWay Transaction Adapter for CICS User's Guide 109

Installing and Configuring IWAYSRV0

110 Information Builders

AppendixF Sample Requests,
Schemas, and COBOL File Descriptions

After you create a connection to CICS, you can add CICS transactions using iWay
Explorer. The generic transaction is always added automatically and represents CICS
services whose data will not be mapped to XML.

The documents and schemas for the sample programs are shown in the following topics.
In addition, the COBOL descriptions that were used as input for the sample CICS
transactions are shown.

In this appendix:

Request Document for the Generic Transaction, IWAYIVP

Request Schema for IWAYIVP

Response Schema for IWAYIVP

Request Documents for IWAYSRV0

Request Schema for IWAYSRV0

Response Schema for IWAYSRV0

Request Document for AASNATN

Request Schema for AASNATN

Response Schema for the Program AASNATN

Sample COBOL File Descriptions

Request Document for the Generic Transaction, IWAYIVP

The following is a sample XML request document to run the generic transaction, IWAYIVP.

<?xml version="1.0" encoding="UTF-8" ?>
<CICS>
 <Transaction location="CICS/Transactions/IWAYIVP">
 <CommArea>
 <INPUT>anything you want</INPUT>
 </CommArea>
 </Transaction>
</CICS>

iWay Transaction Adapter for CICS User's Guide 111

Request Schema for IWAYIVP

The following is a sample XML request schema for the generic transaction, IWAYIVP.

<?xml version="1.0" encoding="UTF-8" ?>
<!-- Generated by the iBSE 2004-11-04T16:19:05Z -->
<xsd:schema xml:lang="en" xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 targetNamespace="urn:iwaysoftware:CICS/Transactions/IWAYIVP_Request"
 attributeFormDefault="unqualified" elementFormDefault="qualified">
 <xsd:element name="CICS">
 <xsd:complexType>
 <xsd:all>
 <xsd:element name="Transaction">
 <xsd:complexType>
 <xsd:all>
 <xsd:element name="CommArea">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element minOccurs="1"
 name="DFHCOMMAREA" maxOccurs="1">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:length value="1"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:all>
 <xsd:attribute type="xsd:string" use="required"
 fixed="CICS/Transactions/IWAYIVP" name="location"/>
 </xsd:complexType>
 </xsd:element>
 </xsd:all>
 </xsd:complexType>
 </xsd:element>
</xsd:schema>

Although the message element is restricted to 80 bytes in the schema, this is not enforced at
run time. The message can be up to 32,500 bytes long and is sent as the COMMAREA.

Response Schema for IWAYIVP

The following is a sample XML response schema for the generic transaction, IWAYIVP.

Request Schema for IWAYIVP

112 Information Builders

<?xml version="1.0" encoding="UTF-8" ?>
<!-- Generated by the iBSE 2004-11-04T16:19:05Z -->
<xsd:schema xml:lang="en" xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 targetNamespace="urn:iwaysoftware:CICS/Transactions/IWAYIVP_Response"
 attributeFormDefault="unqualified" elementFormDefault="qualified">
 <xsd:element name="CICS">
 <xsd:complexType>
 <xsd:all>
 <xsd:element name="Transaction">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="CommArea" maxOccurs="unbounded">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element minOccurs="1"
 name="DFHCOMMAREA" maxOccurs="1">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:length value="1"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:all>
 </xsd:complexType>
 </xsd:element>
</xsd:schema>

The returned data is split into 80 byte parts, each encoded in <message> tags. Illegal XML
characters in the data that is returned from CICS ('<', '/', or '&') are turned into XML entities
as part of the encoding.

Request Documents for IWAYSRV0

The following are sample XML request documents to run the IWAYSRV0 program.

<?xml version="1.0" encoding="UTF-8" ?>
<CICS>
 <Transaction location="/CICS/Transaction/IWAYSRV0">
 <CommArea>
 <COMMAND>SHORT</COMMAND>
 </CommArea>
 </Transaction>
</CICS>

F. Sample Requests, Schemas, and COBOL File Descriptions

iWay Transaction Adapter for CICS User's Guide 113

<?xml version="1.0" encoding="UTF-8" ?>
<CICS>
 <Transaction location="/CICS/Transaction/IWAYSRV0">
 <CommArea>
 <COMMAND>LONG</COMMAND>
 </CommArea>
 </Transaction>
</CICS>

Request Schema for IWAYSRV0

The following is a sample XML request schema for the program, IWAYSRV0.

<?xml version="1.0" encoding="UTF-8" ?>
<!-- Generated by the iBSE 2004-11-04T16:20:49Z -->
<xsd:schema xml:lang="en" xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 targetNamespace="urn:iwaysoftware:CICS/Transactions/IWAYSRV0_Request"
 attributeFormDefault="unqualified" elementFormDefault="qualified">
 <xsd:element name="CICS">
 <xsd:complexType>
 <xsd:all>
 <xsd:element name="Transaction">
 <xsd:complexType>
 <xsd:all>
 <xsd:element name="CommArea">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element minOccurs="1"
 name="DFHCOMMAREA" maxOccurs="1">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:length value="1"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:all>
 <xsd:attribute type="xsd:string" use="required"
 fixed="CICS/Transactions/IWAYSRV0" name="location"/>
 </xsd:complexType>
 </xsd:element>
 </xsd:all>
 </xsd:complexType>
 </xsd:element>
</xsd:schema>

Response Schema for IWAYSRV0

The following is a sample XML response schema for the program, IWAYSRV0.

Request Schema for IWAYSRV0

114 Information Builders

<?xml version="1.0" encoding="UTF-8" ?>
<!-- Generated by the iBSE 2004-11-04T16:20:49Z -->
<xsd:schema xml:lang="en" xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 targetNamespace="urn:iwaysoftware:CICS/Transactions/IWAYSRV0_Response"
 attributeFormDefault="unqualified" elementFormDefault="qualified">
 <xsd:element name="CICS">
 <xsd:complexType>
 <xsd:all>
 <xsd:element name="Transaction">
 <xsd:complexType>
 <xsd:choice>
 <xsd:element name="message1">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element minOccurs="1" name="COMMAND"
maxOccurs="1">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:length value="1"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="message2">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element minOccurs="1" name="COMMAND"
maxOccurs="1">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:length value="1"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:choice>
 </xsd:complexType>
 </xsd:element>
 </xsd:all>
 </xsd:complexType>
 </xsd:element>
</xsd:schema>

The returned data is split into 80 byte parts, each encoded in <message> tags. Illegal XML
characters in the data that is returned from CICS ('<', '/', or '&') are turned into XML entities
as part of the encoding.

F. Sample Requests, Schemas, and COBOL File Descriptions

iWay Transaction Adapter for CICS User's Guide 115

Request Document for AASNATN

The following is a sample XML request document for the AASNATN program.

<?xml version="1.0" encoding="UTF-8"?>
<CICS>
 <Transaction location="CICS/Transactions/AASNATN">
 <commarea>
 <STARTEMP>11111111</STARTEMP>
 <ENDEMP>55555555</ENDEMP>
 </commarea>
 </Transaction>
</CICS>

Request Schema for AASNATN

The following is a sample XML request schema for the AASNATN program.

<?xml version="1.0" encoding="UTF-8" ?>
<xs:schema xml:lang="en" attributeFormDefault="unqualified"
xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified">
 <xs:element name="CICS">
 <xs:complexType>
 <xs:all>
 <xs:element name="Transaction">
 <xs:complexType>
 <xs:all>
 <xs:element name="message">
 <xs:complexType>
 <xs:sequence>
 <xs:element minOccurs="1" name="STARTEMP" maxOccurs="1"/>
 <xs:element minOccurs="1" name="ENDEMP" maxOccurs="1"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:all>
 <xs:attribute type="xs:string" use="required"
 fixed="CICS/Transactions/AASNATN" name="location"/>
 </xs:complexType>
 </xs:element>
 </xs:all>
 </xs:complexType>
 </xs:element>
</xs:schema>

Response Schema for the Program AASNATN

The following is a sample XML response schema for the AASNATN program.

Request Document for AASNATN

116 Information Builders

<?xml version="1.0" encoding="UTF-8" ?>
<xs:schema xml:lang="en" attributeFormDefault="unqualified"
xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified">
 <xs:element name="CICS">
 <xs:complexType>
 <xs:all>
 <xs:element name="Transaction">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="message" maxOccurs="unbounded">
 <xs:complexType>
 <xs:sequence>
 <xs:element minOccurs="1" name="EMPNUM" maxOccurs="1"/>
 <xs:element minOccurs="1" name="FIRSTNAME" maxOccurs="1"/>
 <xs:element minOccurs="1" name="LASTNAME" maxOccurs="1"/>
 <xs:element minOccurs="1" name="MARITALSTATUS" maxOccurs="1"/>
 <xs:element minOccurs="1" name="SEX" maxOccurs="1"/>
 <xs:element minOccurs="1" name="BIRTH" maxOccurs="1"/>
 <xs:element minOccurs="1" name="DEPARTMENT" maxOccurs="1"/>
 <xs:element minOccurs="1" name="JOBTITLE" maxOccurs="1"/>
 <xs:element minOccurs="1" name="CCODE1" maxOccurs="1"/>
 <xs:element minOccurs="1" name="CCODE2" maxOccurs="1"/>
 <xs:element minOccurs="1" name="CCODE3" maxOccurs="1"/>
 <xs:element minOccurs="1" name="CCODE4" maxOccurs="1"/>
 <xs:element minOccurs="1" name="CCODE5" maxOccurs="1"/>
 <xs:element minOccurs="1" name="SALARY1" maxOccurs="1"/>
 <xs:element minOccurs="1" name="SALARY1" maxOccurs="1"/>
 <xs:element minOccurs="1" name="SALARY1" maxOccurs="1"/>
 <xs:element minOccurs="1" name="SALARY1" maxOccurs="1"/>
 <xs:element minOccurs="1" name="SALARY1" maxOccurs="1"/>
 <xs:element minOccurs="1" name="FILLER" maxOccurs="1"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:all>
 </xs:complexType>
 </xs:element>
</xs:schema>

Sample COBOL File Descriptions

The following sample COBOL File Descriptions are used as input for the CICS transactions in
Creating XML Schemas and iWay Business Services on page 31.

IWAYSRV0_in.cbl

 05 COMMAND PIC X(5).

IWAYSRV0_out_S.cbl

F. Sample Requests, Schemas, and COBOL File Descriptions

iWay Transaction Adapter for CICS User's Guide 117

 05 RECORDTYPE PIC X(1).
 05 DATA40 PIC X(39)

IWAYSRV0_out_L.cbl

 05 RECORDTYPE PIC X(1).
 05 DATA60 PIC X(59).

AASNATN_in.cbl

** 08800000
* INPUT to NATURAL PROGRAM AASNATN
** 23100000
 02 NATREC. 24000000
 03 START-EMP PIC X(8). 32000000
 03 END-EMP PIC X(8). 32000000

AASNATN_out.cbl

*** 08800000
* OUTPUT FROM NATURAL PROGRAM AASNATN
*** 23100000
 02 NATREC. 24000000
 03 EMP-NUM PIC X(8). 32000000
 03 FIRSTNAME PIC X(20). 40000000
 03 LASTNAME PIC X(20). 40000000
 03 MARITAL-STATUS PIC X(1). 40000000
 03 SEX PIC X(1). 40000000
 03 BIRTH PIC X(4). 40000000
 03 DEPARTMENT PIC X(6). 40000000
 03 JOB-TITLE PIC X(25). 40000000
 03 CCODE1 PIC X(3). 40000000
 03 CCODE2 PIC X(3). 40000000
 03 CCODE3 PIC X(3). 40000000
 03 CCODE4 PIC X(3). 40000000
 03 CCODE5 PIC X(3). 40000000
 03 SALARY1 PIC X(9). 40000000
 03 SALARY1 PIC X(9). 40000000
 03 SALARY1 PIC X(9). 40000000
 03 SALARY1 PIC X(9). 40000000
 03 SALARY1 PIC X(9). 40000000
 03 FILLER PIC X(2). 40000000

Sample COBOL File Descriptions

118 Information Builders

AppendixG
Sample
CICS Programs

This section contains the source code and other supporting files for the sample
programs that are provided with the iWay Transaction Adapter for CICS.

By default, on Windows, the sample programs are available in:

C:\Program Files\iWay7\etc\samples\cics

The following subdirectories are available and contain sample programs:

iwayivp - Demonstrates basic request/response.

iwaysrv0 - Demonstrates multiple record types.

iwayevt0 - Demonstrates sending a binary record to the adapter.

iwayevt1 - Demonstrates sending an XML document to the adapter.

natural - Demonstrates using the Natural interface.

In this appendix:

IWAYIVP Program

IWAYSRV0 Program

IWAYEVT0 Program

IWAYEVT1 Program

Natural Program

IWAYIVP Program

The IWAYIVP sample program tests the adapter installation and populates the COMMAREA with
a "CONGRATULATIONS!!!" message. This program takes arbitrary input and returns a fixed
string as output.

On Windows, the IWAYIVP sample program is located in:

iWay Transaction Adapter for CICS User's Guide 119

C:\Program Files\iWay7\etc\samples\cics\iwayivp

The following supporting files are provided:

cobolfd

iwayivp_in.cbl - The input record for the service.

iwayivp_out.cbl - The output record for the service.

document

iwayivp.xml - The input XML document.

src

iwayivp.c- The source code for the sample program written in C.

iwayivp.cobol - The source code for the sample program written in COBOL.

The text versions of these source code files are included below for your review:

iwayivp.c

/*
 * iwayivp - This installation verification program populates
 * the commarea with the 'Congratulations!!!' message.
 *
 * uses: iwayivp_in.cbl (input record)
 * iwayivp_out.cbl (output record)
 * iwayivp.xml (input document)
*/
#include <stdio.h>
int main ()
{
 char *commarea;
 EXEC CICS ADDRESS EIB(dfheiptr);
 EXEC CICS ADDRESS COMMAREA(commarea);
 strcpy(commarea, "Congratulations!!!");
 EXEC CICS RETURN;
}

iwayivp.cobol

IWAYIVP Program

120 Information Builders

 **
 * IWAYIVP - THIS INSTALLATION VERIFICATION PROGRAM POPULATES *
 * THE COMMAREA WITH THE 'CONGRATULATIONS!!!' MESSAGE. *
 * *
 * USES: IWAYIVP_IN.CBL (INPUT RECORD) *
 * IWAYIVP_OUT.CBL (OUTPUT RECORD) *
 * IWAYIVP.XML (INPUT DOCUMENT) *
 * *
 **
 IDENTIFICATION DIVISION.
 PROGRAM-ID. IWAYIVP.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.
 01 WS-AREA PIC X(50) VALUE
 'CONGRATULATIONS!!!'.
 LINKAGE SECTION.
 01 DFHCOMMAREA PIC X(50).
 PROCEDURE DIVISION.
 EXEC CICS HANDLE ABEND
 LABEL (030-ABEND)
 END-EXEC.
 MOVE WS-AREA TO DFHCOMMAREA.
 EXEC CICS RETURN
 END-EXEC.
 GOBACK.
 030-ABEND.
 MOVE 'PROGRAM ERROR HAS OCCURRED!' TO WS-AREA.
 MOVE WS-AREA TO DFHCOMMAREA.
 EXEC CICS RETURN
 END-EXEC.
 GOBACK.

IWAYSRV0 Program

The IWAYSRV0 sample program demonstrates how different output record types can be
distinguished using positional fields. The input COMMAREA indicates whether a 40 byte short
record or 60 byte long record is to be returned using the 'SHORT' or 'LONG' command. The
service is configured to return an output document that is specific to the type.

On Windows, the IWAYSRV0 sample program is located in:

G. Sample CICS Programs

iWay Transaction Adapter for CICS User's Guide 121

C:\Program Files\iWay7\etc\samples\cics\iwaysrv0

The following supporting files are provided:

cobolfd

iwaysrv0_in.cbl - Input record for the service.

iwaysrv0_out_L.cbl - Long output record for the service.

iwaysrv0_out_S.cbl - Short output record for the service.

document

iwaysrv0_L.xml - The long input XML document.

iwaysrv0_S.xml - The short input XML document.

src

iwaysrv0.cobol - The source code for the sample program written in COBOL.

The text version of the source code file is included below for your review:

 **
 * IWAYSRV0 - THIS SAMPLE PROGRAM DEMONSTRATES THAT DIFFERENT *
 * OUTPUT RECORD TYPES MAY BE DISTINGUISHED BY POSITIONAL *
 * FIELDS. THE INPUT COMMAREA INDICATES WHETHER A 40 BYTE S *
 * OR 60 BYTE L RECORD IS TO BE RETURNED BY USING THE COMMAND *
 * 'SHORT' OR 'LONG'. THE CICS ADAPTER SERVICE IS CONFIGURED *
 * TO RETURN AN OUTPUT DOCUMENT SPECIFIC TO THE TYPE. *
 * *
 * USES: IWAYSRV0_IN.CBL (INPUT RECORD) *
 * IWAYSRV0_OUT_S.CBL (SHORT OUTPUT RECORD) *
 * IWAYSRV0_OUT_L.CBL (LONG OUTPUT RECORD) *
 * IWAYSRV0_S.XML (SHORT INPUT DOCUMENT) *
 * IWAYSRV0_L.XML (LONG INPUT DOCUMENT) *
 * *
 **

IWAYSRV0 Program

122 Information Builders

 IDENTIFICATION DIVISION.
 PROGRAM-ID. IWAYSRV0.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.
 01 WS-DATA-OUT.
 05 WS-DATA-OUT-MSG PIC X(30).
 05 WS-DATA-OUT-ARROW PIC X(30).
 LINKAGE SECTION.
 01 DFHCOMMAREA.
 05 CA-DATA.
 10 CA-BYTES PIC X(60).
 05 CA-INPUT REDEFINES CA-DATA.
 10 CA-INPUT-COMMAND PIC X(5).
 10 CA-INPUT-FILLER PIC X(55).
 05 CA-OUTPUT REDEFINES CA-DATA.
 10 CA-OUTPUT-RECORD-TYPE PIC X(1).
 10 CA-OUTPUT-MSG PIC X(59).
 PROCEDURE DIVISION.
 EXEC CICS HANDLE ABEND
 LABEL (030-ABEND)
 END-EXEC
 IF EIBCALEN = 0
 MOVE ' EIBCALEN IS = ZERO ' TO CA-OUTPUT-MSG
 PERFORM 020-RETURN
 END-IF.

G. Sample CICS Programs

iWay Transaction Adapter for CICS User's Guide 123

 * THE CICS SERVICE IS CONFIGURED DIFFERENTIATE TO 'S' AND 'L' *
 * RECORDS. *
 --------------+-----+------+-----------------------------------
 IF CA-INPUT-COMMAND = 'SHORT'
 MOVE 'S' TO CA-OUTPUT-RECORD-TYPE
 MOVE 'RECORD TYPE S RETURNS 40 BYTES'
 TO WS-DATA-OUT-MSG
 MOVE '========>'
 TO WS-DATA-OUT-ARROW
 MOVE WS-DATA-OUT TO CA-OUTPUT-MSG
 GO TO 020-RETURN
 END-IF.
 IF CA-INPUT-COMMAND = 'LONG '
 MOVE 'L' TO CA-OUTPUT-RECORD-TYPE
 MOVE 'RECORD TYPE L RETURNS 60 BYTES'
 TO WS-DATA-OUT-MSG
 MOVE '============================>'
 TO WS-DATA-OUT-ARROW
 MOVE WS-DATA-OUT TO CA-OUTPUT-MSG
 GO TO 020-RETURN
 END-IF.
 MOVE ' SUPPLY L OR S IN FIRST BYTE OF INPUT...PLEASE'
 TO CA-OUTPUT-MSG.
 020-RETURN.
 EXEC CICS RETURN
 END-EXEC.
 GOBACK.
 030-ABEND.
 GO TO 020-RETURN.

IWAYEVT0 Program

The IWAYEVT0 sample program demonstrates event handling by sending a record to the iWay
Transaction Adapter for CICS using CICS sockets. No response is returned and each data
record that is mapped by the COPYBOOKS must be preceded by a 4 byte binary length.

You must configure the adapter with an event to receive this data. Using iWay Explorer, select
the Is Length Prefix checkbox and Request from the Synchronization Type drop-down list.
Specify iWAYEVT0.CBL in the Preparser FD field. The host and port must match the value set
used in the sample program.

The EZASOKET interface is documented in the Z/OS communications server IP sockets guide.

Note: For other platforms, use the socket interface appropriate for that platform.

On Windows, the IWAYEVT0 sample program is located in:

IWAYEVT0 Program

124 Information Builders

C:\Program Files\iWay7\etc\samples\cics\iwayevt0

The following supporting files are provided:

cobolfd

iwayevt0_in.cbl - Input record for the service.

src

iwayevt0.cobol - The source code for the sample program written in COBOL.

The text version of the source code file is included below for your review.

 CBL TRUNC(BIN)
 ID DIVISION.
 PROGRAM-ID. IWAYEVT0.

 * IWAYEVT0 - THIS SAMPLE PROGRAM DEMONSTRATES SENDING A *
 * RECORD TO THE IWAY CICS ADAPTER USING CICS SOCKETS. NO *
 * RESPONSE IS RETURNED. DATA RECORDS MAPPED BY COPYBOOKS *
 * MUST EACH BE PRECEDED BY A 4 BYTE BINARY LENGTH. *
 * *
 * THE CICS ADAPTER MUST BE CONFIGURED WITH AN EVENT TO *
 * RECEIVE THIS DATA. SELECT "IS LENGTH PREFIX", SYNCHRON- *
 * IZATION TYPE "REQUEST", AND USE IWAYEVT0.CBL AS THE *
 * PREPARSER FD. HOST AND PORT MUST MATCH THE VALUES SET *
 * BELOW. *
 * *
 * THE EZASOKET INTERFACE IS DOCUMENTED IN THE Z/OS *
 * COMMUNICATIONS SERVER IP CICS SOCKETS GUIDE. *
 * *
 * USES: IWAYEVT0_IN.CBL (INPUT RECORD) *
 * *

G. Sample CICS Programs

iWay Transaction Adapter for CICS User's Guide 125

 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.
 01 SOCKET-GROUP.
 05 SOC-FUNCTION PIC X(16) VALUE SPACES.
 05 ERRNO PIC 9(8) BINARY VALUE ZEROES.
 05 RETCODE PIC S9(8) BINARY VALUE ZEROES.
 05 AF PIC 9(8) BINARY VALUE 2.
 05 SOCTYPE PIC 9(8) BINARY VALUE 1.
 05 PROTO PIC 9(8) BINARY VALUE 0.
 05 NAMELEN PIC 9(8) BINARY.
 05 HOSTNAME PIC X(255).
 05 HOSTENT POINTER.
 05 NAME.
 10 FAMILY PIC 9(4) BINARY VALUE 2.
 10 PORT PIC 9(4) BINARY.
 10 IP-ADDRESS PIC 9(8) BINARY.
 10 IP-ADDRESS-ALPHA REDEFINES IP-ADDRESS PIC X(4).
 10 RESERVED PIC X(8) VALUE LOW-VALUES.
 05 FLAGS PIC 9(8) BINARY VALUE 0.
 05 SOCKET PIC 9(4) BINARY.
 05 NBYTE PIC 9(8) BINARY.
 05 CMD PIC 9(8) BINARY.
 05 REQARG PIC 9(8) BINARY.
 01 WORKAREA.
 05 LLEN PIC 9(8) BINARY VALUE 4.
 05 ERRMSG PIC X(41)
 VALUE 'ERROR ENCOUNTERED DURING '.
 05 TMSG PIC X(44)
 VALUE 'EVENTCBL: RECORD TRANSMISSION WAS SUCCESSFUL'.

IWAYEVT0 Program

126 Information Builders

 * SAMPLE INBOUND DATA RECORD WITH VARIOUS COBOL TYPES. *

 01 INBOUND-RECORD.
 05 ALPHA01 PIC X(8)
 VALUE 'ABCDEFGH'.
 05 INT01 PIC S9(4) BINARY VALUE 25.
 05 PACK01 PIC S9(15) PACKED-DECIMAL VALUE 50.
 05 ZONE01 PIC 9(4) VALUE 75.
 LINKAGE SECTION.
 01 HOSTENT-STRUCT.
 05 HOSTNAME-PTR POINTER.
 05 HOSTALIASL-PTR POINTER.
 05 HOSTFAMILY PIC S9(8) BINARY.
 05 HOSTADR-LEN PIC S9(8) BINARY.
 05 HOSTADRL-PTR POINTER.
 01 HOST-ENTRY-PTR POINTER.
 01 HOST-ENTRY PIC 9(8) BINARY.
 PROCEDURE DIVISION.
 MAINLINE.

 * CHANGE HOSTNAME AND PORT TO SITE SPECIFIC LOCATION OF THE *
 * CICS ADAPTER. *

 MOVE 'YOUR.DNS.NAME' TO HOSTNAME
 MOVE 4772 TO PORT
 PERFORM GETSOCK
 PERFORM GETHOSTBYNAME
 PERFORM SETBLOCK
 PERFORM CONNECTTOHOST
 PERFORM SENDDATA
 PERFORM CLOSESOCK
 EXEC CICS SEND TEXT FROM(TMSG)
 LENGTH(LENGTH OF TMSG)
 END-EXEC
 EXEC CICS RETURN END-EXEC
 GOBACK.

G. Sample CICS Programs

iWay Transaction Adapter for CICS User's Guide 127

 GETSOCK.
 MOVE 'SOCKET ' TO SOC-FUNCTION
 CALL 'EZASOKET' USING SOC-FUNCTION,
 AF,
 SOCTYPE,
 PROTO,
 ERRNO,
 RETCODE
 MOVE RETCODE TO SOCKET
 IF RETCODE < 0
 PERFORM WRITERR-EXIT
 END-IF.
 GETHOSTBYNAME.
 MOVE 'GETHOSTBYNAME ' TO SOC-FUNCTION
 MOVE LENGTH OF HOSTNAME TO NAMELEN
 CALL 'EZASOKET' USING SOC-FUNCTION NAMELEN HOSTNAME
 HOSTENT RETCODE
 IF RETCODE EQUAL ZERO
 SET ADDRESS OF HOSTENT-STRUCT TO HOSTENT
 SET ADDRESS OF HOST-ENTRY-PTR TO HOSTADRL-PTR
 SET ADDRESS OF HOST-ENTRY TO HOST-ENTRY-PTR
 ELSE
 PERFORM WRITERR-EXIT
 END-IF.
 SETBLOCK.
 MOVE 'FCNTL ' TO SOC-FUNCTION
 MOVE 4 TO CMD
 MOVE 0 TO REQARG
 CALL 'EZASOKET' USING SOC-FUNCTION, SOCKET, CMD, REQARG,
 ERRNO, RETCODE.
 CONNECTTOHOST.
 MOVE HOST-ENTRY TO IP-ADDRESS
 MOVE 'CONNECT ' TO SOC-FUNCTION
 CALL 'EZASOKET' USING SOC-FUNCTION,
 SOCKET,
 NAME,
 ERRNO,
 RETCODE
 IF RETCODE = 0
 CONTINUE
 ELSE
 PERFORM WRITERR-EXIT
 END-IF.
 SENDDATA.

IWAYEVT0 Program

128 Information Builders

 * PRECEDE THE RECORD WITH 4 BYTE BINARY RECORD LENGTH *

 MOVE 'SEND ' TO SOC-FUNCTION
 MOVE LENGTH OF INBOUND-RECORD TO NBYTE
 MOVE 4 TO LLEN
 MOVE 0 TO RETCODE
 CALL 'EZASOKET' USING SOC-FUNCTION,
 SOCKET,
 FLAGS,
 LLEN,
 NBYTE,
 ERRNO,
 RETCODE
 IF RETCODE = -1
 PERFORM WRITERR-EXIT
 END-IF

 * SEND THE ACTUAL RECORD *

 CALL 'EZASOKET' USING SOC-FUNCTION,
 SOCKET,
 FLAGS,
 NBYTE,
 INBOUND-RECORD,
 BY REFERENCE ERRNO,
 RETCODE
 IF RETCODE = -1
 PERFORM WRITERR-EXIT
 END-IF
 .
 CLOSESOCK.
 MOVE ZEROES TO RETCODE ERRNO
 MOVE 'CLOSE ' TO SOC-FUNCTION
 CALL 'EZASOKET' USING SOC-FUNCTION,
 SOCKET,
 ERRNO,
 RETCODE
 IF RETCODE < 0
 PERFORM WRITERR-EXIT
 END-IF.
 WRITERR-EXIT.
 MOVE SOC-FUNCTION TO ERRMSG(26:15)
 EXEC CICS SEND TEXT FROM(ERRMSG)
 LENGTH(LENGTH OF ERRMSG)
 END-EXEC
 EXEC CICS RETURN END-EXEC.

IWAYEVT1 Program

The IWAYEVT1 sample program demonstrates sending an XML document to the iWay
Transaction Adapter for CICS from a CICS/TX sockets interface. The program will echo the
return document to the CICS terminal.

G. Sample CICS Programs

iWay Transaction Adapter for CICS User's Guide 129

On Windows, the IWAYEVT1 sample program is located in:

C:\Program Files\iWay7\etc\samples\cics\iwayevt1

The following supporting file is provided:

src

iwayevt1.css - The source code for the sample program written in C.

The text version of the source code file is included below for your review:

#include <cics_api.h>
#include <cics_eib.h>
/***/
/* IWYEVT1 - This sample program demonstrates sending an xml */
/* document to the iWay CICS adapter from CICS/TX. The program will */
/* echo the return document to the CICS terminal. */
/* */
/* Author John Schlesinger */
/* Version 1.0 */
/***/
/* Updated 22-Feb-2006 - Lori Pieper */
/* Changes include: */
/* */
/* 1) In main, removed the declaration of */
/* int cics_api_temp_var = cics_api_edf_init_c_extended(0, &CicsArgs); */
/* since it seemed to be generated for us which caused a syntax */
/* error when compiling the code. */
/* */

/* 2) Also in main, changed: */
/* // SendData("168.135.63.14", 4773); */
/* to use the proper C language comment syntax as the former was */
/* causing syntax errors. */
/* *//*
3) To the includes section, added */
/* #include<netinet/in.h> */
/* since this is needed in order to define sockaddr_in, which is */
/* being used in the SendData subroutine. */
/* */
/***/
/* #includes */
/**/

IWAYEVT1 Program

130 Information Builders

#include <cicstype.h>
#include <string.h>
#include <stdlib.h>
#include <stdio.h>
#include <ctype.h>
#include <errno.h>
/* Include the right sockets headers */
#ifdef _MSC_VER
#include <winsock2.h>
#else
#include<netinet/in.h>
#include<arpa/inet.h>
#include<sys/socket.h>
#endif
/**/
/* #defines */
/**/
#define InsertCursor '\x13' /* 3270 Insert cursor */
#define ebcdic_ProtectAttribute '\xe4' /* 3270 Protected Attr */
#define ascii_ProtectAttribute '\x55' /* 3270 Protected Attr */
#define MSG_SIZE 32500 /* */
/**/
/* Procedure Declarations */
/**/
void Output_Text (char*);
void Log_Text (char*);
void cics_time (cics_char_t []);
void Process_Startup_Parameters (void);
void return_to_cics (void);
void SendData(char *, short);
int writen(int, const void *, size_t);
int readn(int, void *, size_t);
/**/
/* Structures */
/**/
struct screen_struct
{
 cics_char_t sf;
 cics_char_t attr;
 cics_char_t display [160];
;
struct log_struct
{
 ics_char_t program [8];
 cics_char_t filler0;
 cics_char_t applid [8];
 cics_char_t filler1;
 cics_char_t msg [80];
;
/**/
/* Global Variables */
/**/
cics_char_t Term_Code [2] = "00"; /* Terminal Code */
cics_char_t sba [4]; /* 3270 set buffer address */
cics_char_t ProtectAttribute ; /* 3270 Protect Attribute */
cics_sshort_t scrnwd = 80; /* Width of the screen */
struct screen_struct output_screen = {'\x1d', ' ', ""};
struct log_struct CSMT_log = {"CICSDEXI", ' ', "", ' ', ""};
/**/
/* Procedure : Main */
/* Function : To call all sub-procedures */
/* Input : None */
/* Returns : Nothing */
/**/
void main(void)
{
 Process_Startup_Parameters();
 Output_Text("Starting the test");
 /***/
 /* Add site specific host and port below */
 /***/
 SendData("172.30.244.81", 8182);
 Output_Text("Test completed");
 return_to_cics();
}
/* End of main */
/**/
/* Procedure : Process_Startup_Parameters */
/* Function : To Determine how the transaction was initiated */
/* and process any parameters supplied */
/* Input : None */
/* Returns : Nothing */
/**/
void Process_Startup_Parameters()
{
 cics_sshort_t len_out;
 cics_char_t ascii_sba [4] = {'\x11', '\x20', '\x41', '\x13'};
 cics_char_t ebcdic_sba [4] = {'\x11', '\x40', '\xC1', '\x13'};
 cics_char_t Start_Code [2] = "00"; /* Start Code */
 cics_sshort_t Text_Length = 80;
 cics_char_t Text_Buffer [80];
 cics_ubyte_t This_OPSYS = '\0'; /* local OPSYS */
 cics_char_t This_RELEASE [5] = "" ; /* local cics release */
 char * pch;
 /* initialise storage */
 memset(Text_Buffer, ' ', 79);
 Text_Buffer [79] = '\0';
/* EXEC CICS ADDRESS EIB(dfheiptr); */ \
 { \
 CicsArgs.ArgCode[0] = 77; \
 CicsArgs.ArgData[0].PointerRef = &dfheiptr; \
 CicsArgs.ArgMask = 0x20000000; \
 CicsArgs.ArgCount = 1; \
 CicsArgs.FnCode = 2; \
 CicsArgs.DebugLine = -1; \
 cics_api_exec_c_extended(&CicsArgs); \
 dfheiptr = (dfheiptr); \
 }
/* EXEC CICS INQUIRE SYSTEM
OPSYS(&This_OPSYS)
RELEASE(This_RELEASE); */ \
 { \
 CicsArgs.ArgCode[0] = 325; \
 CicsArgs.ArgData[0].StringArea = This_RELEASE; \
 CicsArgs.ArgCode[1] = 252; \
 CicsArgs.ArgData[1].ByteArea = &This_OPSYS; \
 CicsArgs.ArgMask = 0x20000000; \
 CicsArgs.ArgCount = 2; \
 CicsArgs.FnCode = 42; \
 CicsArgs.DebugLine = -1; \
 cics_api_exec_c_extended(&CicsArgs); \
 }
 /* if ASCII opsys use ASCII 3270 cursor positioning*/
 if ((This_OPSYS == 'P') || (This_OPSYS == 'A') ||
 (This_OPSYS == 'H') || (This_OPSYS == 'O') ||
 (This_OPSYS == 'S') || (This_OPSYS == 'L') ||
 (This_OPSYS == 'N'))
 {
 strncpy(sba, ascii_sba, 4);
 output_screen.attr = '\x48';
 ProtectAttribute = ascii_ProtectAttribute;
 }
 else
 {
 strncpy(sba, ebcdic_sba, 4);
 output_screen.attr = '\xc8';
 ProtectAttribute = ebcdic_ProtectAttribute;
 }
/* EXEC CICS ASSIGN
APPLID(CSMT_log.applid)
SCRNWD(scrnwd)
STARTCODE(Start_Code)
TERMCODE(Term_Code); */ \
 { \
 CicsArgs.ArgCode[0] = 18; \
 CicsArgs.ArgData[0].StringArea = CSMT_log.applid; \
 CicsArgs.ArgCode[1] = 351; \
 CicsArgs.ArgData[1].ShortArea = &scrnwd; \
 CicsArgs.ArgCode[2] = 373; \
 CicsArgs.ArgData[2].StringArea = Start_Code; \
 CicsArgs.ArgCode[3] = 397; \
 CicsArgs.ArgData[3].StringArea = Term_Code; \
 CicsArgs.ArgMask = 0x20000000; \
 CicsArgs.ArgCount = 4; \
 CicsArgs.FnCode = 5; \
 CicsArgs.DebugLine = -1; \
 cics_api_exec_c_extended(&CicsArgs); \
 }
 /* Handle input from terminal or from a START */
 if (Start_Code [0] == 'S')
 {
/* EXEC CICS RETRIEVE INTO(Text_Buffer) LENGTH(Text_Length); */ \
 { \
 CicsArgs.ArgData[8].DataArea = Text_Buffer; \
 CicsArgs.ArgData[2].ShortArea = &Text_Length; \
 CicsArgs.ArgMask = 0x20000104; \
 CicsArgs.FnCode = 71; \
 CicsArgs.DebugLine = -1; \
 cics_api_exec_c_extended(&CicsArgs); \
 }
 }
 else
 {
/* EXEC CICS RECEIVE INTO(Text_Buffer) LENGTH(Text_Length); */ \
 { \
 CicsArgs.ArgData[8].DataArea = Text_Buffer; \
 CicsArgs.ArgData[2].ShortArea = &Text_Length; \
 CicsArgs.ArgMask = 0x20000104; \
 CicsArgs.FnCode = 67; \
 CicsArgs.DebugLine = -1; \
 cics_api_exec_c_extended(&CicsArgs); \
 }
 }
 /* Check if screen input is new or modified */
 /* If modified need to jump 3 bytes to skip sba */
 if (!(memcmp(Text_Buffer, sba, 3)))
 {
 memcpy(Text_Buffer, Text_Buffer+3, (size_t)Text_Length);
 }
 /* if a 3270 terminal resend hostid back to the screen */
 /* and position InsertCursor for new line */
 if ((Term_Code [0] > '\x90') &&
 (Term_Code [0] < '\xa0'))
 {
 strncpy(output_screen.display, Text_Buffer,(size_t)Text_Length);
 len_out = (cics_sshort_t) (scrnwd + 3);
 output_screen.display [scrnwd - 2] = InsertCursor;
/* EXEC CICS SEND FROM(&output_screen) LENGTH(len_out) ERASE; */ \
 { \
 CicsArgs.ArgData[4].DataArea = &output_screen; \
 CicsArgs.ArgData[2].ShortValue = len_out; \
 CicsArgs.ArgMask = 0x20000414; \
 CicsArgs.FnCode = 74; \
 CicsArgs.DebugLine = -1; \
 cics_api_exec_c_extended(&CicsArgs); \
 }
 }
} /* End of Process_Startup_Parameters */
/**/
/* Procedure : Output_Text */
/* Function : To Display text to Terminal (if appropriate) */
/* Input : Text to be displayed */
/* Returns : Nothing */
/**/
void Output_Text(char* Text)
{
 cics_sshort_t len_out;
 char Temp_Text [92]; /* text buffer */
 cics_char_t time_msg [9];
 cics_time(time_msg);
 sprintf (Temp_Text, "%s %s",time_msg,Text);
 len_out = (cics_sshort_t) (scrnwd + 3);
 if ((Term_Code [0] > '\x90') &&
 (Term_Code [0] < '\xa0'))
 {
 strncpy(output_screen.display, Temp_Text, 92);
 memset(output_screen.display+92, ' ',
 sizeof(output_screen.display)-92);
 output_screen.display [scrnwd - 1] = InsertCursor;
 output_screen.attr = ProtectAttribute;
/* EXEC CICS SEND FROM(&output_screen) LENGTH(len_out) WAIT; */ \
 { \
 CicsArgs.ArgData[4].DataArea = &output_screen; \
 CicsArgs.ArgData[2].ShortValue = len_out; \
 CicsArgs.ArgMask = 0x20800014; \
 CicsArgs.FnCode = 74; \
 CicsArgs.DebugLine = -1; \
 cics_api_exec_c_extended(&CicsArgs); \
 }
 }
 /* clear screen structure */
 memset(output_screen.display, ' ', 159);
 output_screen.display [159]='\0';
} /* End of Output_Text */
/**/
/* Procedure : Log_Text */
/* Function : To send text to CICS CSMT log */
/* Input : Text to be displayed */
/* Returns : Nothing */
/**/
void Log_Text(char* Text)
{
 cics_sshort_t Text_Length = 105;
 cics_char_t time_msg [9];
 cics_time(time_msg);
 sprintf (CSMT_log.msg, "%s %s",time_msg,Text);
/* EXEC CICS WRITEQ TD QUEUE("CSMT") FROM(&CSMT_log)
LENGTH(Text_Length); */ \
 { \
 cics_api_strncpy(CicsArgs.ArgData[9].StringValue, "CSMT", (short)4); \
 CicsArgs.ArgData[4].DataArea = &CSMT_log; \
 CicsArgs.ArgData[2].ShortValue = Text_Length; \
 CicsArgs.ArgMask = 0x20000214; \
 CicsArgs.FnCode = 106; \
 CicsArgs.DebugLine = -1; \
 cics_api_exec_c_extended(&CicsArgs); \
 }
 /* clear log structures */
 memset(CSMT_log.msg, ' ', 79);
 CSMT_log.msg [79]='\0';
} /* End of Output_Text */
/**
* Function name: return_to_cics *
* Description: Return to CICS and exit program *
* Parameters: None *
* Returns: None *
**/
void return_to_cics(void)
{
 cics_char_t blank_log [80] = "" ;
 /* write blank line to log */
/* EXEC CICS WRITEQ TD QUEUE("CSMT") FROM(blank_log) LENGTH(80); */ \
 { \
 cics_api_strncpy(CicsArgs.ArgData[9].StringValue, "CSMT", (short)4); \
 CicsArgs.ArgData[4].DataArea = blank_log; \
 CicsArgs.ArgData[2].ShortValue = 80; \
 CicsArgs.ArgMask = 0x20000214; \
 CicsArgs.FnCode = 106; \
 CicsArgs.DebugLine = -1; \
 cics_api_exec_c_extended(&CicsArgs); \
 }

/* EXEC CICS RETURN; */ \
 { \
 CicsArgs.ArgMask = 0x20000000; \
 CicsArgs.FnCode = 72; \
 CicsArgs.DebugLine = -1; \
 cics_api_exec_c_extended(&CicsArgs); \
 }
}
/**
* Function name: SendData *
* Description: Sends the data to the host and port *
* Inputs: Host id and port number *
* Returns: None *
**/
void SendData(char * Host_Id, short Port_Num)
{
 char * pch;
 static char Temp_Text [80]; /* text buffer */
 int connfd, crc, i, BytesRead;
 struct sockaddr_in servaddr;
 char RcvBuf[MSG_SIZE+1];
 char MsgBuf[] = \
 "<?xml version='1.0' encoding='UTF-8'?> \
 <ZPBT_IN> \
 <in> \
 <ORDER_NUM/> \
 <ITEM_NUM>00000</ITEM_NUM> \
 <BANK_CODE/> \
 <BANK_ACCT/> \
 </in> \
 <in> \
 <ORDER_NUM>2015689292</ORDER_NUM> \
 <ITEM_NUM>00001</ITEM_NUM> \
 <BANK_CODE>123456789</BANK_CODE> \
 <BANK_ACCT>9753124680</BANK_ACCT> \
 </in> \
 <in> \
 <ORDER_NUM>2025689393</ORDER_NUM> \
 <ITEM_NUM>00001</ITEM_NUM> \
 <BANK_CODE/> \
 <BANK_ACCT>1345678920</BANK_ACCT> \
 </in> \
 <in> \
 <ORDER_NUM>2025689393</ORDER_NUM> \
 <ITEM_NUM>00006</ITEM_NUM> \
 <BANK_CODE/> \
 <BANK_ACCT/> \
 </in> \
 <in> \
 <ORDER_NUM>2025689393</ORDER_NUM> \
 <ITEM_NUM>00000</ITEM_NUM> \
 <BANK_CODE/> \
 <BANK_ACCT/> \
 </in> \
 </ZPBT_IN>";

 connfd = socket(AF_INET, SOCK_STREAM, 0);
 if (connfd < 0) {
 Output_Text("Error creating socket");
 return_to_cics();
 }
 sprintf (Temp_Text, "Trying to connect to host %s and port %d",
 Host_Id, Port_Num);
 Output_Text(Temp_Text);
 servaddr.sin_family = AF_INET;
 servaddr.sin_port = htons(Port_Num);
 servaddr.sin_addr.s_addr = inet_addr(Host_Id); /*Use quad 4 notation*/
 if ((crc = connect(connfd, (struct sockaddr *) &servaddr,
 sizeof(servaddr))) < 0) {
 Output_Text("Connect Error");
 return_to_cics();
 }
 sprintf (Temp_Text, "Number of bytes to send is %d bytes",
 strlen(MsgBuf));
 Output_Text(Temp_Text);
 writen(connfd, MsgBuf, strlen(MsgBuf));
 BytesRead = readn(connfd, RcvBuf, sizeof(RcvBuf));
 sprintf (Temp_Text, "Number of bytes read is %d bytes", BytesRead);
 Output_Text(Temp_Text);
 Output_Text("First ten lines of payload are:");
 for (i=519;i<1220;i+=70) {
 strncpy(Temp_Text,&RcvBuf[i],70);
 Output_Text(Temp_Text);
 }
 for (i=0;i<BytesRead;i+=78) {
 pch = RcvBuf + i;
 strncpy(Temp_Text, pch, 78);
 Log_Text(Temp_Text);
 }
#ifdef _MSC_VER
 closesocket(connfd);
#else
 close(connfd);
#endif
 return;
} /* End send data */
/**
* Function name: cics_time *
* Description: gets the time *
* Returns: time_msg as 8 cics_char_t string *
**/
void cics_time (cics_char_t time_msg[])
{
 cics_char_t abstime [8];
/* EXEC CICS ASKTIME ABSTIME(abstime); */ \
 { \
 CicsArgs.ArgData[0].DataArea = abstime; \
 CicsArgs.ArgMask = 0x20000001; \
 CicsArgs.FnCode = 4; \
 CicsArgs.DebugLine = -1; \
 cics_api_exec_c_extended(&CicsArgs); \
 }
/* EXEC CICS FORMATTIME ABSTIME(abstime) TIME(time_msg) TIMESEP; */
\
 { \
 CicsArgs.ArgData[0].DataArea = abstime; \
 CicsArgs.ArgData[15].StringArea = time_msg; \
 CicsArgs.ArgMask = 0x20018001; \
 CicsArgs.FnCode = 22; \
 CicsArgs.DebugLine = -1; \
 cics_api_exec_c_extended(&CicsArgs); \
 }
 time_msg [8]='\0';
}
/**
* Function name: readn *
* Description: Utility function to read a socket *
* Inputs: fd - socket number, *
* vptr - buffer to read into *
* n - length of the data read *
* Returns: int number of bytes read *
**/
int readn(int fd, void *vptr, size_t n)
{
 size_t nleft;
 size_t nread;
 char *ptr;
 ptr = vptr;
 nleft = n;
 while (nleft > 0)
 {
 if ((nread = recv(fd, ptr, nleft, 0)) < 0)
 {
 if (errno == EINTR)
 nread = 0;
 else
 return (-1);
 }
 else if (nread == 0)
 break;
 nleft -= nread;
 ptr += nread;
 }
 return (n - nleft);
}
/**
* Function name: writen *
* Description: Utility function to write a socket *
* Inputs: fd - socket number, *
* vptr - buffer to write from *
* n - length of the data to write *
* Returns: int number of bytes not written *
**/
int writen(int fd, const void *vptr, size_t n)
{
 size_t nleft;
 size_t nwritten;
 const char *ptr;
 ptr = vptr;
 nleft = n;
 while (nleft > 0)
 {
 if ((nwritten = send(fd, ptr, nleft, 0)) <= 0)
 {
 if (errno == EINTR)
 nwritten = 0;
 else
 return (-1);
 }
 nleft -= nwritten;
 ptr += nwritten;
 }
 return (nleft);
}

G. Sample CICS Programs

iWay Transaction Adapter for CICS User's Guide 131

Natural Program

The NATURAL sample program returns one or many records within a range from the Employee
file.

For more information on how to use Adabas/Natural programs with the iWay Transaction
Adapter for CICS, see Using Adabas/Natural Programs on page 93.

On Windows, the Natural sample program is located in:

C:\Program Files\iWay7\etc\samples\cics\natural

The following supporting files are provided:

cobolfd

aasnatn_in.cbl - Input record for the service.

aasnatn_out.cbl - Output record for the service.

document

aasnatn.xml - The input XML document.

src

aasnatn.natural - The sample natural program.

The text version of the source code file is included below for your review:

Natural Program

132 Information Builders

/**/
/* AASNATN - SAMPLE NATURAL PROGRAM FOR IWAY CICS ADAPTER. */
/* RETURN ONE OR MANY RECORDS WITHIN A RANGE FROM THE */
/* EMPLOYEE FILE. */
/* */
/* NATURAL PROGRAMS RUNNING WITH THE IWAY CICS ADAPTER ARE */
/* INVOKED INDIRECTLY VIA THE PROXY PROGRAM, AASNATC. */
/* */
/* ALL ACCESS TO INPUT/OUTPUT BUFFERS ARE HANDLED BY CALLS TO */
/* THE DATA MOVER PROGRAM, AASSUBC, DESCRIBED BELOW. */
/* */
/* COMMUNICATION WITH THE DATA MOVER PROGRAMS REQUIRE THE */
/* CONTROL BLOCK: */
/* 1 #REQUEST-PARMS */
/* 2 #FUNCTION (A2) GT,PT,LC,LI */
/* 2 #OFFSET (I2) DATA OFFSET OF INPUT/OUTPUT */
/* 2 #LENGTH (I2) LENGTH OF DATA TO GET OR PUT */
/* 2 #RESPONSE-CODE (I4) */
/* 2 #ERR-MESSAGE (A72) */
/* */
/* THE IMPLEMENTED FUNCTIONS ARE: */
/* GT - GET INPUT BY OFFSET. */
/* THE OFFSET MUST BE SET TO 0 FOR THE FIRST CALL ONLY!! */
/* THE OFFSET IS INCREMENTED FOLLOWING EACH CALL BY THE */
/* DATA MOVER PROGRAM */
/* THE LENGTH OF THE REQUESTED DATA MUST BE PROVIDED FOR */
/* EACH CALL. IT SHOULD MATCH THE LENGTH OF THE AREA */
/* PROVIDED TO RECEIVE THE INPUT DATA */
/* IE: MOVE #FUNC-GT TO #FUNCTION */
/* MOVE 8 TO #LENGTH */
/* MOVE 0 TO OFFSET - FIRST CALL ONLY */
/* CALL 'AASSUBC' #FUNCTION #EMP-NUM1 */
/* */
/* WHERE #EMP-NUM1 IS AN EIGHT BYTE FIELD */
/* */
/* PT - PUT OUTPUT BY OFFSET */
/* THE OFFSET MUST BE SET TO 0 FOR THE FIRST CALL ONLY!! */
/* THE OFFSET IS INCREMENTED FOLLOWING EACH CALL BY THE */
/* DATA MOVER PROGRAM */
/* THE LENGTH OF THE REQUESTED DATA MUST BE PROVIDED FOR */
/* EACH CALL. IT SHOULD MATCH THE LENGTH OF THE AREA */
/* PROVIDED CONTAINING THE OUTPUT DATA */
/* IE: MOVE #FUNC-PT TO #FUNCTION */
/* MOVE 8 TO #LENGTH */
/* MOVE 0 TO OFFSET - FIRST CALL ONLY */
/* CALL 'AASSUBC' #FUNCTION #EMP-NUM1 */
/* */
/* WHERE #EMP-NUM1 IS AN EIGHT BYTE FIELD */
/* */

G. Sample CICS Programs

iWay Transaction Adapter for CICS User's Guide 133

/* LI - GET LENGTH OF INPUT DATA */
/* UPDATES THE #LENGTH FIELD WITH THE TOTAL LENGTH OF */
/* ALL INPUT PARMS. NO OTHER PARMS ARE NEEDED */
/* IE: MOVE #FUNC-LI TO #FUNCTION */
/* CALL 'AASSUBC' #FUNCTION */
/* */
/* */
/* LC - GET LENGTH OF COMMAREA USED TO SEND DATA. */
/* UPDATES THE #LENGTH FIELD WITH THE COMMAREA LENGTH. */
/* NO OTHER PARMS ARE NEEDED */
/* IE: MOVE #FUNC-LC TO #FUNCTION */
/* CALL 'AASSUBC' #FUNCTION */
/* */
/* IMPLEMENTED RESPONSE-CODES: */
/* 0 - OPERATION COMPLETED SUCCESSFULLY */
/* 4 - ENDDATA - OFFSET EXCEEDS END OF INPUT DATA. */
/* INDICATES NO FURTHER INPUT IS AVAILABLE */
/* 8 - ENDBUFF - OFFSET + LENGTH IS GREATER THEN COMMAREA */
/* */
/* NOTE: */
/* ALWAYS USE THE FIRST FIELD OF A GROUP WHEN CALLING */
/* DATA MOVER PROGRAMS. NOTICE ALL CALLS ARE MADE WITH */
/* #FUNCTION NOT #REQUEST-PARMS. */
/* */
/* ALL INPUT PARMS MUST BE PROCESSED BEFORE OUTPUT. */
/*--*/

Natural Program

134 Information Builders

DEFINE DATA LOCAL
1 #FUNC-TYPE
 2 #FUNC-GT (A2) INIT<'GT'>
 2 #FUNC-PT (A2) INIT<'PT'>
 2 #FUNC-LC (A2) INIT<'LC'>
 2 #FUNC-LI (A2) INIT<'LI'>
1 #REQUEST-PARMS
 2 #FUNCTION (A2) /*GT,PT,LC,LI
 2 #OFFSET (I2) /*DATA OFFSET OF INPUT/OUTPUT
 2 #LENGTH (I2) /*LENGTH OF DATA TO GET OR PUT
 2 #RESPONSE-CODE (I4)
 2 #ERR-MESSAGE (A72)
1 #PARMS
 2 #EMP-NUM1 (A8)
 2 #EMP-NUM2 (A8)
1 EMPLOY-VIEW VIEW OF EMPLOYEES1
 2 PERSONNEL-ID
 2 FIRST-NAME
 2 NAME
 2 MAR-STAT
 2 SEX
 2 BIRTH
 2 DEPT
 2 JOB-TITLE
 2 CURR-CODE(1:5)
 2 SALARY(N9/1:5)
1 #ERROR-PARMS
 2 #NATPROG (A8)
 2 #NATMSG (A65)
 2 #NATERR (A7)
END-DEFINE
/* USE LI FUNCTION TO THE GET LENGTH OF INPUT PARAMETERS */
MOVE #FUNC-LI TO #FUNCTION
CALL 'AASSUBC' #REQUEST-PARMS
IF #LENGTH LT 16 /*REQUIRED FOR THIS PROGRAM*/
THEN TERMINATE
END-IF
/* USE GET FUNCTION TO RETRIEVE DATA PARMS */
MOVE 8 TO #LENGTH
MOVE 0 TO #OFFSET
MOVE #FUNC-GT TO #FUNCTION
CALL 'AASSUBC' #FUNCTION #EMP-NUM1
CALL 'AASSUBC' #FUNCTION #EMP-NUM2
MOVE 0 TO #OFFSET
MOVE 147 TO #LENGTH
MOVE #FUNC-PT TO #FUNCTION

G. Sample CICS Programs

iWay Transaction Adapter for CICS User's Guide 135

FIND ALL EMPLOY-VIEW WITH PERSONNEL-ID = #EMP-NUM1 THRU #EMP-NUM2
 IF NO RECORDS FOUND
 MOVE *PROGRAM TO #NATPROG
 MOVE ' REQUESTED EMPLOYEE NUMBERS NOT IN THE DATABASE' TO #NATMSG
 MOVE 80 TO #LENGTH
 MOVE #FUNC-PT TO #FUNCTION
 CALL 'AASSUBC' #FUNCTION #NATPROG
 TERMINATE
 END-NOREC
 CALL 'AASSUBC' #FUNCTION PERSONNEL-ID
END-FIND
ON ERROR
 MOVE *PROGRAM TO #NATPROG
 DECIDE FOR FIRST CONDITION
 WHEN *ERROR-NR = 1106
 MOVE ' EMPLOYEE NUMBER IS TOO LARGE. 8 BYTES IS '
 TO #NATMSG
 MOVE 'THE MAX' TO #NATERR
 WHEN *ERROR-NR = 3061
 MOVE ' INVALID EMPLOYEE NUMBER RANGE SPECIFIED '
 TO #NATMSG
 MOVE ' ' TO #NATERR
 WHEN NONE
 MOVE ' HAS DETECTED THE FOLLOWING ERROR NUMBER: '
 TO #NATMSG
 MOVE *ERROR-NR TO #NATERR
 END-DECIDE
 MOVE 80 TO #LENGTH
 CALL 'AASSUBC' #FUNCTION #NATPROG
 TERMINATE
END-ERROR
END

Natural Program

136 Information Builders

AppendixH Transaction Adapter for CICS
Debugging and
Troubleshooting

This section includes tips and techniques for debugging the adapter.

In this appendix:

Transaction Adapter for CICS Troubleshooting

CICS Data Type Conversions

Transaction Adapter for CICS Troubleshooting

Certain situations may cause the adapter to return error messages. This topic describes error
messages, possible causes, and solutions.

Error message

An Error has occurred running {program name}: CICS has returned no CommArea

Accompanied by:

at com.ibi.tcpappc.DirectTCPConnection.execute(DirectTCPConnection.java:nnn)
at com.ibi.cics.CICSIPServer.execute(CICSIPServer.java:nnm)
at com.ibi.cics.CICSConnection.execute(CICSConnection.java:nnm)
at com.ibi.cics.CICSAdapter.process(CICSAdapter.java:nnn)
at
com.iwaysoftware.ibse.iwse.Adapter2Runner.process(Adapter2Runner.java:nnn)
at com.iwaysoftware.ibse.iwse.Adapter2Runner.<init>(Adapter2Runner.java:nnm)
at
com.iwaysoftware.ibse.iwse.XDSOAPRouter.handleAdapter(XDSOAPRouter.java:nnn)
at com.iwaysoftware.ibse.iwse.XDSOAPRouter.process(XDSOAPRouter.java:nnn)
at com.iwaysoftware.ibse.iwse.IBSEServlet.doPost(IBSEServlet.java:nnn)

where:

nnn

Is the line number in the Java program.

Possible Cause: Occurs when a program abends.

Solution: Verify that the input request document accurately describes the input required for the
program and that the COBOL description matches what the program is using.

Error message

Unable to execute Transaction {program name}

iWay Transaction Adapter for CICS User's Guide 137

Accompanied by:

{applid of region} While performing an attach for node {nodename} a
security violation was detected.

Possible Cause: Occurs when the password sent to CICS is lowercase.

Solution: Change the password from lowercase to uppercase.

Error message

Unable to execute Transaction {program name}

Accompanied by:

VTAM and CICS error message:

VTAM RETURN CODE 1001 SENSE CODE 8004 0000

Possible Cause: Network DNS problem: old connection lingering in DNS.

Solution: Flush DNS.

Procedure: How to Flush DNS

To flush DNS:

1. At the command prompt, ping the host address for the machine where the adapter is
running (for example, PMSNJC) to obtain the IP address that you require for the following
step.

2. Use the IP address (for example, 172.30.166.90) and type the following command:

nbtstat -A 172.30.166.90

Transaction Adapter for CICS Troubleshooting

138 Information Builders

The following image shows the DOS screen that lists the host addresses when the nbtstat
command is executed.

3. If the host address (PGMMGY) as shown in the previous screen is not the same as in the
previous command (PMSNJC), issue the command:

ipconfig /flushdns

Note: If the problem is still not resolved, contact your Network Administrator.

CICS Data Type Conversions

When the adapter parses the COBOL structure, it creates the following field values in the byte
array it either creates or receives. The values are visible in the log, for example, the CANTV log.

H. Transaction Adapter for CICS Debugging and Troubleshooting

iWay Transaction Adapter for CICS User's Guide 139

<outputFields>
 <fldData>
 <recfd="C:\Operaciones_ADMSAP\IWAY_ADAPTERS_FILES\OLRCOMU_OUT.FD">
 <field fdtype="6" type="string" length="3" name="CODIGOTRANSACCION"/>
 <field fdtype="6" type="string" length="8" name="LUGARTRANSACCION"/>
 <field fdtype="6" type="string" length="4" name="CODIGOAREA"/>
 <field fdtype="6" type="string" length="7" name="TELEFONO"/>
 <field fdtype="6" type="string" length="6" name="FECHAULTIMAFACTURACION"/>
 <field fdtype="5" type="string" length="13" name="DEUDAMES"/>
 <field fdtype="6" type="string" length="6" name="FECHAINDETERMINADA"/>
 <field fdtype="5" type="string" length="13" name="SALDOVENCIDO"/>
 <field fdtype="6" type="string" length="76" name="FILLER1"/>
 <field fdtype="5" type="string" length="13" name="DEUDATOTAL"/>
 <field fdtype="6" type="string" length="30" name="NOMBRECLIENTE"/>
 <field fdtype="6" type="string" length="1" name="TIPOCLIENTE"/>
 <field fdtype="6" type="string" length="2" name="CODIGORETORNO"/>
 <field fdtype="6" type="string" length="1" name="TIPOSERVICIO"/>
 <field fdtype="6" type="string" length="8" name="FECHAVENCIMIENTOFACTURA"/>
 <field fdtype="6" type="string" length="4" name="FILLER2"/>
 <field fdtype="6" type="string" length="1" name="TIPOTELEFONO"/>
 <field fdtype="6" type="string" length="44" name="FILLER3"/>
 </rec>
 </fldData>
</outputFields>

CICS Data Type Conversions

140 Information Builders

Feedback
Customer success is our top priority. Connect with us today!

Information Builders Technical Content Management team is comprised of many talented
individuals who work together to design and deliver quality technical documentation products.
Your feedback supports our ongoing efforts!

You can also preview new innovations to get an early look at new content products and
services. Your participation helps us create great experiences for every customer.

To send us feedback or make a connection, contact Sarah Buccellato, Technical Editor,
Technical Content Management at Sarah_Buccellato@ibi.com.

To request permission to repurpose copyrighted material, please contact Frances Gambino,
Vice President, Technical Content Management at Frances_Gambino@ibi.com.

Information Builders, Inc.
Two Penn Plaza
New York, NY 10121-2898

iWay Transaction Adapter for CICS User's Guide
 Version 7.0.x and Higher

DN3502277.0418

	Contents
	Preface
	Documentation Conventions
	Related Publications
	Customer Support
	Help Us to Serve You Better
	User Feedback
	Information Builders Consulting and Training

	1. Introducing the iWay 	 Transaction Adapter for CICS
	iWay Transaction Adapter for CICS Overview
	The iWay Transaction Adapter for CICS
	CICS Programs
	Software Requirements for the Adapter

	Deployment Information for Your iWay Adapter
	iWay Service Manager
	iWay Explorer
	iWay Business Services Provider (iBSP)

	iWay Transaction Adapter for CICS Information Roadmap

	2. Configuring the 	 iWay Transaction Adapter for CICS
	Starting iWay Explorer (Java Servlet)
	Procedure: How to Start iWay Explorer (Java Servlet)

	Configuring a Connection to CICS
	Procedure: How to Configure a Connection to CICS
	Procedure: How to Set Connection Parameters for TCP/IP
	Procedure: How to Set Advanced Parameters
	Procedure: How to Set Connection Parameters for CRM Gateway
	Procedure: How to Connect to a Defined CICS Target

	Managing a Connection to CICS
	Procedure: How to Disconnect From a Connection to CICS
	Procedure: How to Edit a Connection to CICS
	Procedure: How to Delete a Connection to CICS

	3. Creating XML Schemas 	 and iWay Business Services
	Creating an Adapter Transaction
	Sample Program IWAYSRV0
	Procedure: How to Create an Adapter Transaction
	Side File Support
	COBOL Descriptions for Input and Output Communications
	Modifying COBOL DD Field Definitions
	Procedure: How to Modify COBOL DD Field Definitions

	Creating Schemas for an Adapter Transaction
	Procedure: How to Create Schemas for an Adapter Transaction

	Understanding iWay Business Services
	Creating a Web Service
	Procedure: How to Create a Web Service
	Testing the Web Service
	Procedure: How to Test the Web Service
	Generating WSDL From a Web Service
	Procedure: How to Generate WSDL From a Web Service
	Example: Viewing WSDL Generated from a Web Service

	Identity Propagation

	4. Event Processing 	 With the CICS Adapter
	Understanding CICS Events
	Message Format
	Supported Environments

	Configuring CICS Events
	Procedure: How to Create XML Schemas from COBOL Copybook Metadata

	Creating and Modifying an Event Port
	Procedure: How to Create an Event Port for File
	Procedure: How to Create an Event Port for iBSP
	Procedure: How to Create an Event Port for MSMQ
	Procedure: How to Create an Event Port for JMSQ
	Procedure: How to Create a Port for SOAP
	Procedure: How to Create an Event Port for HTTP
	Procedure: How to Create an Event Port for MQSeries
	Procedure: How to Edit an Event Port
	Procedure: How to Delete an Event Port

	Creating and Modifying a Channel
	Procedure: How to Create a Channel
	Procedure: How to Edit a Channel
	Procedure: How to Delete a Channel

	Testing CICS Events
	Procedure: How to Start a Channel
	Procedure: How to Test a Channel
	Procedure: How to Stop a Channel

	Running CICS Events
	Reference: XML Schema Document
	Reference: XML Output Document

	A. Configuring the 	 Transaction Adapter for CICS in an iWay Environment
	Configuring the Transaction Adapter for CICS in Service Manager
	Procedure: How to Define the Adapter
	Procedure: How to Modify or Update an Adapter Connection

	B. Running the Adapter 	 Using LU6.2 Communication
	MVS OS/390 APPC Communication
	LU6.2 Set up on MVS
	LU6.2 Set up on CICS

	Microsoft SNA Server Communication
	LU6.2 Setup on a Windows SNA Server

	Application Run-Time Requirements

	C. Running the Adapter 	 Using TCP/IP Communication
	MVS OS/390 TCP/IP Communication
	TCP/IP Requirements

	D. Using Adabas/Natural 	 Programs
	Adabas/Natural Programs Overview
	Installing the Adabas/Natural Interface
	Procedure: How to Upload the Adabas/Natural Interface Programs
	Procedure: How to Add the CICS Definitions

	Writing and Configuring a Natural Program
	Reference: Using the AASSUBC Calling API

	E. Installing the 	 Sample IWAYIVP and IWAYSRV0 Programs in CICS
	Installing and Configuring IWAYIVP
	Procedure: How to Install and Configure IWAYIVP

	Installing and Configuring IWAYSRV0
	Procedure: How to Install and Configure IWAYSRV0

	F. Sample Requests, 	 Schemas, and COBOL File Descriptions
	Request Document for the Generic Transaction, IWAYIVP
	Request Schema for IWAYIVP
	Response Schema for IWAYIVP
	Request Documents for IWAYSRV0
	Request Schema for IWAYSRV0
	Response Schema for IWAYSRV0
	Request Document for AASNATN
	Request Schema for AASNATN
	Response Schema for the Program AASNATN
	Sample COBOL File Descriptions

	G. Sample 	 CICS Programs
	IWAYIVP Program
	IWAYSRV0 Program
	IWAYEVT0 Program
	IWAYEVT1 Program
	Natural Program

	H. Transaction Adapter for CICS Debugging and 	 Troubleshooting
	Transaction Adapter for CICS Troubleshooting
	Procedure: How to Flush DNS

	CICS Data Type Conversions

	Feedback

