
TIBCO iWay® Service Manager

Copyright © 2021. TIBCO Software Inc. All Rights Reserved.

Service Manager and Blockchain Solutions
Development Guide

Version 8.0 and Higher
March 2021
DN3502252.0321

Contents

1. Introducing Blockchain .5

What is a Blockchain? .5

Supported Blockchains. 6

Blockchain Prerequisites .6

How can iWay Service Manager Integrate With My Blockchain Application? .7

Hyperledger Fabric Components . 9

Channel Provider. 9

Transaction Service. 10

Synchronous Posting. 10

Asynchronous Posting. 11

Query Service. 13

Query Block Service. 13

Fabric Listener. 13

2. Hyperledger Fabric Component Reference . 15

Hyperledger Fabric Channel Provider . 15

Hyperledger Fabric Transaction Service . 18

Hyperledger Fabric Query Service . 26

Hyperledger Fabric Query Block Service . 29

Hyperledger Fabric Key History Service . 38

Hyperledger Fabric Listener . 42

3. Using the Fabric Wizard to Create a Fabric Agent Skin . 45

Fabric Wizard Overview . 45

Original Agent Configuration .46

The Template (“Fabric Skinner”) . 48

Accesing the Fabric Wizard .48

Understanding the Basics . 51

Agent Package. 51

Output Directory. 51

Agent Group. .51

Agent Name. .52

Agent Label. 52

Service Manager and Blockchain Solutions Development Guide 3

Agent Comment. 53

Fabric Channel Provider. 53

Operation Name. 54

Number of Parms. 54

Defining Additional Parameters. 55

Parm (Parameter) Name. 56

Label. 56

Description. 56

Group Name. 56

Required. 57

Type. 57

Default Value. 58

4. Blockchain Example . 61

Understanding the Process Flow . 61

Synchronous Posting Example. 63

Asynchronous Posting Example. 63

Sample SWIFT MT101 Documents . 65

Original SWIFT MT101 Message (Request for Transfer). .66

Transformed SWIFT MT101 Message (XML Format). 67

A. Glossary . 69

Legal and Third-Party Notices .73

Contents

4

Chapter1
Introducing Blockchain

This chapter provides an introduction to blockchain and an overview of integrating iWay
Service Manager (iSM) with blockchain applications.

In this chapter:

What is a Blockchain?

Blockchain Prerequisites

How can iWay Service Manager Integrate With My Blockchain Application?

Hyperledger Fabric Components

What is a Blockchain?

A blockchain is a distributed record of transactions validated and stored at multiple peer
locations in a network. The records form a consensus of replicated, shared, and synchronized
information. For example, the debits and credits applied to a bank's accounts might be stored
in the blockchain. The ledger (blockchain) is not the record of the accounts themselves, but
rather the changes in account position.

The records stored in the blockchain are immutable, providing a high level of security and
integrity. Each record is chained to the prior record, hashed, and encrypted. The records form a
chain of transactions from the initial transaction to the most current. The records are
duplicated among the peers in the network, and available to any authorized party for viewing.
The result is a horizontal (peer storage) and vertical (historic chain) mesh that is virtually
tamper proof. This results in a high level of trust, transparency, and reliability.

Once an item is recorded, it is irrefutable proof that this event occurred at a specific time and
date, and (perhaps) between specific counterparties. The use of blockchains solves the
problem of transferring value between parties (or entities) without the need to rely on a third
intermediating party.

In the enterprise business world, a private blockchain provides a basis for non-repudiation and
automates many of the existing labor-intensive processes required to settle transactions.
Blockchains can reduce transaction and back office costs, the complexity of cross-enterprise
business processes, fraud, and inefficiencies in the business to free up capital.

Service Manager and Blockchain Solutions Development Guide 5

Blockchains can also take advantage of smart contracts. Smart contracts are self-executing
contracts or agreements that are represented as software that can automatically trigger
actions under certain conditions, such as when payments are made (or missed).

Smart contracts are implemented in chaincode, which implements the application in the peers.
The peers run this code, and at a future point, validates the transaction to determine, for
example, whether an asset should or should not be transferred.

In iWay Version 8, support for private blockchain maximizes the advantages of this modern
approach to transaction interchange and non-repudiable storage.

Supported Blockchains

iWay Service Manager (iSM) supports Hyperledger Fabric Permissioned or Private Blockchain
(e.g. business applications). This type of blockchain requires users to be authorized to gain
access (be invited) into the blockchain and limits the number of people who are granted
access to maintain privacy of transactions. These are the only blockchain types currently
supported by iSM.

Note: There are also Permissionless or Public Blockchain (e.g. Bitcoin). This type of
blockchain can be accessed by anyone and anyone can read/write to the blockchain. Currently,
iSM does not address permissionless blockchain applications.

Blockchain Prerequisites

Before you continue, ensure that you have the following components installed on the
platform(s) on which you will be integrating iWay Service Manager (iSM) with your blockchain:

iSM Version 8.0 or higher.

Hyperledger Fabric Version 1.0.1 or higher.

You can download Hyperledger Fabric from the following website:

https://github.com/hyperledger/fabric/tree/release

A chaincode that is appropriate to your application.

Blockchain Prerequisites

6

https://github.com/hyperledger/fabric/tree/release

How can iWay Service Manager Integrate With My Blockchain Application?

The blockchain workflow provides participants end-to-end visibility based on their level of
permission. Detailed visibility of the workflow process is enhanced with real time exchange of
events and documents.

1. Introducing Blockchain

Service Manager and Blockchain Solutions Development Guide 7

This level of detail and transparency helps reduce fraud and errors, reduces the time required
to complete the workflow, and improves the management of the workflow.

Note, the read on the specific peer in this diagram is only intended for illustration purposes.
There is no inherent quality of the “local peer”.

Confederation of Applications

How can iWay Service Manager Integrate With My Blockchain Application?

8

The blockchain in an actual usage scenario, provides a desired transaction record consistently
across multiple parties that are interested in that information. Each member can be assured
that all parties view the same information, although they may use this information for their own
requirements. You can imagine this as the above diagram, but with access to the peers falling
into a sector of application interest. The application-level data appropriate to that specific
sector of interest may vary based on the specific purpose of the application, although all
accept their input from the consistent blockchain data. The blockchain itself is the ledger of
activity.

iSM works with and alongside your Hyperledger Fabric-based applications. Incorporating iSM
into the blockchain workflow reduces process development cost and time as well as providing
for faster implementation. iSM graphically builds your process flow and provides full integration
and configuration via adaptors. The in-process flow query offers transaction intelligence and
the ability to print logical reports.

iSM listeners provide input message protocols through dedicated event listeners.

Services help handle payloads and the Fabric facility offers services to support several means
of posting transactions. iWay Service Manager (iSM) utilizes the following types of services to
post to the blockchain:

Transaction Service. Executes a transaction on a blockchain in the Hyperledger Fabric. This
service supports synchronous and asynchronous posting. For more information, see
Transaction Service on page 10.

Query Service. Executes a read-only query in the Hyperledger Fabric. For more information,
see Query Service on page 13.

Query Block Service. Queries the Hyperledger Fabric for a specific block and returns this
block. For more information, see Query Block Service on page 13.

Hyperledger Fabric Components

The Hyperledger Fabric facility in iWay Service Manager (iSM) includes access to the Fabric
system, posting services, and query services. For more detailed information on these
components, see Hyperledger Fabric Component Reference on page 15.

Channel Provider

Connection to the Hyperledger Fabric system is handled through a Channel provider. This
provider is responsible for securing the connection and connection recovery. Separate Channel
providers, each with a unique name or properties, can be defined as required. The posting and
query services must be configured to refer to an available Channel provider.

1. Introducing Blockchain

Service Manager and Blockchain Solutions Development Guide 9

For more information and an example, see Hyperledger Fabric Channel Provider on page 15.

Transaction Service

The Transaction service invokes chaincode (embedded logic that encodes rules for specific
types of network transactions) to execute a transaction on a blockchain in the Hyperledger
Fabric. It starts by sending a transaction proposal request to all the configured peers. If
enough proposal responses are successful (and not too many have failed), then the
transaction is sent to the configured Orderers. The Transaction service can be configured in
two modes:

Synchronous Posting

Asynchronous Posting

For more information and several examples, see Hyperledger Fabric Transaction Service on
page 18.

Synchronous Posting

Synchronous posting sends the transaction proposal to the peers, evaluates the response,
and then sends the proposal responses to the Orderer. Synchronous posting requires a
response from the Orderer in order for the process flow to proceed. The subsequent portion of
the flow will be aware of the resultant success or rejection of the posted transaction.

The following is an outline of the synchronous posting process:

Runs in the process flow (pflow) as part of its logic.

iSM standard pflow services and transformers form the payload (transaction).

The posting service (under the covers) handles the two-way communication within the
network peers.

Posts the transaction to multiple peers.

Peer chaincode validates the transaction against the smart contract.

Chaincode sends results back to the posting service.

iSM internal logic can perform first level validation of results (allows performance
improvements).

Upon validation by iSM, the peer results are sent to the Orderer.

Hyperledger Fabric Components

10

Fabric's Orderer

Ensures the network is consistent and has ultimate control of the network.

Posting Service (the last step)

Makes results available to the flow and lets the flow continue.

Asynchronous Posting

Asynchronous posting to the blockchain enables the posting flow to proceed without waiting for
the response from the Orderer, which provides an advantage. This enables the application to
proceed and handle results of the post at a later time.

The asynchronous post service, like the synchronous post service, uses the Fabric provider to
reach the Hyperledger system.

The Orderer sends the new block to the peer, the peer writes the new block, and then sends
an event to all the parties that have registered with its event hub. Standard iSM Internal Queue
operation presents these response messages to a process flow configured on the queue; that
process flow handles both success and failure responses from the Orderer. If, however, you
elect to shortcut error handling by configuring the posting service to perform basic validation of
peer responses, these early rejections will not be sent to the internal queue as they have not
yet reached the Orderer.

The following is an outline of the asynchronous posting process:

Runs in the process flow (pflow) as part of its logic.

iSM standard pflow services and transformers form the payload (transaction).

The posting service (under the covers) handles the two-way communication within the
network peers.

Posts the transaction to multiple peers.

Peer chaincode validates the transaction against the smart contract.

Chaincode sends results back to the posting service.

iSM internal logic can perform first level validation of results (allows performance
improvements).

Upon validation by iSM, the peer results are sent to the Orderer.

1. Introducing Blockchain

Service Manager and Blockchain Solutions Development Guide 11

Later in time...

Fabric's Orderer

Ensures the transaction across the networked peers is consistent.

Has ultimate control of the network.

Emits an event to be trapped by iSM.

iSM Fabric Asynchronous Response Handler

The Hyperledger Fabric listener receives the event from the event hub, formats it in XML
or JSON, and sends it to an iSM Internal Queue for handling.

The following diagram illustrates how iSM posts a unique iSM TID (Transaction ID) along with
application data for that transaction within a block.

The result of the selected query is returned to iSM from the blockchain for transaction
analysis.

Understanding the Internal Queue

Standard configuration of the Internal Queue is described in the iWay Cross-Channel Services
Guide. The only caveat is that you must not enable inhibit mode for the Internal Queue.
Instead, iWay recommends configuring the Internal Queue to send a passivation throttle
message to the posting channel should a high water mark be reached.

See the iWay Cross-Channel Services Guide for more information on configuring an Internal
Queue, including the use of persistence to prevent loss of messages in the event that the
server is shut down before all response messages have been handled.

The service offers specific asynchronous component configuration, including the name of the
Internal Queue to receive the response. The Internal Queue listener can use configured routing
services to select the proper flow for the specific message, or can use a single flow that
differentiates the messages within the flow.

Hyperledger Fabric Components

12

The message that reaches the Internal Queue for processing includes the time of posting, the
parameters of the posting service, the name of the posting service, and so on. The response
flow runs under the same iSM Transaction ID (TID) as that of the posting flow.

Query Service

This service invokes chaincode to make a read-only query in the Hyperledger Fabric. The
service sends a query proposal request to all the configured peers, then it extracts the
response payload from the first successful proposal response. The payload is a single
ByteString value, but it can also be parsed by the service in XML or JSON, assuming the
chaincode produced the result in this format.

For more information and an example, see Hyperledger Fabric Query Service on page 26.

Query Block Service

This service queries the Hyperledger Fabric for a specific block and returns it. The search
criteria can be a block number, a block hash or a Transaction ID. The result is a BlockInfo
response encoded in an XML or JSON parsed tree.

For more information and an example, see Hyperledger Fabric Query Block Service on page
29.

Fabric Listener

The Hyperledger Fabric listener connects to the event hubs and listens for block events. The
listener returns the BlockEvent encoded in an XML or JSON parsed tree. In the Hyperledger
Fabric, a BlockEvent is an abbreviated view of a BlockInfo with the TxReadWriteSetInfo missing
but the event hub origin added. If necessary, the complete BlockInfo can be retrieved by
BlockNumber later in a process flow with the help of the Hyperledger Fabric Query Block
Service.

This listener does not interact with the asynchronous post requests, which are fielded by the
provider and handed off to the configured Internal Queue.

For more information and an example, see Hyperledger Fabric Listener on page 42.

1. Introducing Blockchain

Service Manager and Blockchain Solutions Development Guide 13

Hyperledger Fabric Components

14

Chapter2
Hyperledger Fabric Component
Reference

This chapter provides a reference for predefined Hyperledger Fabric components that are
available in iWay Service Manager (iSM).

In this chapter:

Hyperledger Fabric Channel Provider

Hyperledger Fabric Transaction Service

Hyperledger Fabric Query Service

Hyperledger Fabric Query Block Service

Hyperledger Fabric Key History Service

Hyperledger Fabric Listener

Hyperledger Fabric Channel Provider

Description:

The Hyperledger Fabric Channel provider holds the configuration to reconstruct a Hyperledger
Fabric Channel on the client side. Other components can refer to the provider by name to gain
access to the Channel. For example, Hyperledger Fabric Services use the Channel to execute
transactions or make queries, and the Hyperledger Fabric listener uses the Channel to listen
for events coming from the event hubs. Multiple components can share the same provider
safely.

This provider can be created within the server tab of the console by clicking on the Fabric
Channel Provider link in the left menu.

Parameters:

The following tables list and describe the parameters for the Hyperledger Fabric Channel
provider.

Service Manager and Blockchain Solutions Development Guide 15

User

Parameter Description

User Name The user must have been previously registered and enrolled in fabric-
ca (or an equivalent member service).

MSPID Membership service provider identifier.

Enrollment
Certificate

Path to the enrollment certificate for that user, see:

$FABRIC_CA_CLIENT_HOME/msp/signcerts/cert.pem

Enrollment Private
Key

Path to the enrollment private key in PEM format for that user, see:

$FABRIC_CA_CLIENT_HOME/msp/keystore/key.pem

The User group of parameters define the user credentials. The MSPID is chosen when the user
is registered with Fabric CA (Certificate Authority), or an equivalent member service. The MSPID
is usually an organization name, such that all users of a single organization share the same
MSPID. The certificate and private key are generated when the user is enrolled. The provider
requires the certificate and private key to be stored in PEM files. This is the same format
produced by the command line utility fabric-ca-client when enrolling a user.

Fabric

Parameter Description

Channel Name The name of the channel.

Peer Endpoints Comma separated list of peer definitions in the form peerName@url.
For example:

peer0@grpc://host:7051

Orderer Endpoints Comma separated list of orderer definitions in the form
ordererName@url. For example:

orderer0@grpc://localhost:7050

Hyperledger Fabric Channel Provider

16

Fabric

Parameter Description

Event Hub
Endpoints

Comma separated list of event hub definitions in the form
eventHubName@url. For example:

peer0@grpc://localhost:7053

Transaction Wait
Time

Transaction wait time, which uses the format of [xxh][xxm]xx[s].
For example, 1m30s is 90 seconds.

The Fabric group of parameters define the channel. If a list of endpoints becomes large, it
might be more convenient to store it in a file and load it with the _FILE(filepath) function. In this
case, each endpoint can appear on a separate line. Inside the file, a line starting with the #
character is a comment and is ignored to the end of line.

Example:

The following example shows the parameter values that are used to reconstruct the channel in
the End2endIT sample of the Hyperledger Fabric Java SDK. Replace host.com with the actual
host name.

Parameter Value

User Name user1

MSPID Org1MSP

Enrollment Certificate user1/cert.pem

Enrollment Private Key user1/key.pem

Channel Name foo

Peer Endpoints peer0@grpc://host.com:7051

Orderer Endpoints orderer0@grpc://host.com:7050

Event Hub Endpoints peer0@grpc://host.com:7053

2. Hyperledger Fabric Component Reference

Service Manager and Blockchain Solutions Development Guide 17

Parameter Value

Transaction Wait Time 20

In the example above, the file path user1/cert.pem must point to a file that contains the
enrollment certificate for user1 as generated by the Membership Services Provider (i.e. fabric-
ca). This is a sample enrollment certificate file:

-----BEGIN CERTIFICATE-----
MIIB8TCCAZegAwIBAgIUYe9xCEzh9YwhriG1YZnj4V9rYYMwCgYIKoZIzj0EAwIw
czELMAkGA1UEBhMCVVMxEzARBgNVBAgTCkNhbGlmb3JuaWExFjAUBgNVBAcTDVNh
biBGcmFuY2lzY28xGTAXBgNVBAoTEG9yZzEuZXhhbXBsZS5jb20xHDAaBgNVBAMT
E2NhLm9yZzEuZXhhbXBsZS5jb20wHhcNMTcwNzI0MTYwNjAwWhcNMTgwNzI0MTYw
NjAwWjAQMQ4wDAYDVQQDEwV1c2VyMTBZMBMGByqGSM49AgEGCCqGSM49AwEHA0IA
BFq/22WC5z/yNt3GMyUVFLeQr4YsSMe4gnSbpUItTVjHLnz77kOmbdmgMQSoIZNm
jKL/gb3+j5fBfSe3A2TEwP+jbDBqMA4GA1UdDwEB/wQEAwIHgDAMBgNVHRMBAf8E
AjAAMB0GA1UdDgQWBBQMTqi2/YZgcz40dDqj74aBGTsNODArBgNVHSMEJDAigCD8
93awKgVgBAjQvp2XUq/Fn2SVC3IcrLNjtblaD+piFjAKBggqhkjOPQQDAgNIADBF
AiEArZi+gu56MY/VoKhXUOAhQ3qI8EO7KjduZEKi+C3LA+8CIDLcPlnFzuZ2jNnF
+GiSAA2BE6qc8kd0YHWNSnf8GrEd
-----END CERTIFICATE-----

In the example above, the file path user1/key.pem must point to a file that contains the private
key for user1 as generated by the Membership Services Provider (for example, fabric-ca). The
following is a sample private key file:

-----BEGIN EC PRIVATE KEY-----
MHcCAQEEIHMjJth72UerCb2S6UH2IyDcF7T4ZszKeA9+uGXGAEXxoAoGCCqGSM49
AwEHoUQDQgAEWr/bZYLnP/I23cYzJRUUt5CvhixIx7iCdJulQi1NWMcufPvuQ6Zt
2aAxBKghk2aMov+Bvf6Pl8F9J7cDZMTA/w==
-----END EC PRIVATE KEY-----

Hyperledger Fabric Transaction Service

Syntax:

com.ibi.agents.XDFabricAgent

Description:

This service invokes chaincode to execute a transaction on a blockchain in the Hyperledger
Fabric. It starts by sending a transaction proposal request to all the configured peers. If
enough proposal responses are successful (and not too many have failed), then the
transaction is sent to the configured Orderers.

Hyperledger Fabric Transaction Service

18

In synchronous mode, the service waits for the transaction event from the configured event
hubs to make sure the transaction was committed to the blockchain. In asynchronous mode,
the service returns immediately because a message is sent to an internal queue when the
event finally arrives. An internal queue listener must be configured to read that internal queue
to continue processing after the confirmation event.

The TransactionID is stored in the Special Register (SREG) named fabric.TransactionID. Upon
error, the output is an error document. When successful in synchronous mode, the output
document can be the input document, the chaincode return value, or the TransactionEvent.
When successful in asynchronous mode, the output document is the input document.

Parameters:

The following tables list and describe the parameters for the Hyperledger Fabric Transaction
service.

Main

Fabric Channel Provider The name of the configured Hyperledger Fabric Channel
provider.

Chaincode Name The name of the chaincode to call.

Chaincode Path The path of the chaincode to call.

Chaincode Version The version of the chaincode to call.

Minimum Successful
Proposals

Minimum number of successful proposals required to send
the transaction to the Orderers.

Maximum Failed Proposals Maximum number of failed proposals tolerated. The
transaction will not be sent to the Orderers if there are more
failed proposals.

Return Determines the contents of the output document. Ignored if
asynchronous mode is selected.

In the Main group of parameters, the service refers to the Fabric Channel Provider by name to
gain access to the reconstructed Channel. The chaincode name, path and version are
determined when the chaincode is installed. The path is similar to a namespace and is not
related to a path in the file system. The chaincode must already be installed before calling the
Hyperledger Fabric Transaction service.

2. Hyperledger Fabric Component Reference

Service Manager and Blockchain Solutions Development Guide 19

The Hyperledger Fabric Transaction service has a simple acceptance criterion to decide if the
transaction is sent to the Orderers to be committed to the blockchain. There must be a
minimum number of successful proposals and the number of failed proposals cannot exceed a
maximum. This simple criterion is used by the service as an optimization. It does not have to
be perfect. The real endorsement policy is evaluated by the Orderers when creating the block.

The Return parameter determines the contents of the output document in synchronous mode.
The output document can be the input document, the chaincode return value, or the
TransactionEvent, The chaincode return value is a ByteString, which can be parsed in different
ways. The chaincode return value can be:

Interpreted as a UTF8 string.

Encoded as a hexadecimal string with two consecutive hexadecimal characters per byte.

Encoded as a string in Base64.

Parsed as XML or JSON, and returned as a parsed tree.

The TransactionEvent is an object that can be serialized in XML or JSON, and returned as a
parsed tree. In asynchronous mode, the Return parameter is ignored because the transaction
is not yet complete. In this mode, the output document is always the input document unless
there is an error.

Call

Argument Type The data type of all the chaincode arguments, either a
regular String, or a byte array encoded as a Hex String with
two consecutive hexadecimal characters per byte.

Argument 0 The value of the first argument.

Argument 1 The value of the second argument.

Argument 2 The value of the third argument.

Argument 3 The value of the fourth argument.

Argument 4 The value of the fifth argument.

Hyperledger Fabric Transaction Service

20

In the Call group of parameters, the Argument N properties are the arguments to the chaincode
invocation. By convention, Argument 0 is often an operation name understood by the
chaincode. There can be an unlimited number of arguments. This is done by defining user
properties with names of the form argN. For example, the next argument after Argument 4 is
arg5. The list of arguments stops at the first empty argument.

The type of the arguments can be string or byte array. All arguments must be the same type. A
byte array is encoded as an hexadecimal string with two consecutive hexadecimal characters
per byte. For example, 616263 is abc in a UTF8 byte array.

Asynchronous

Is Asynchronous When selected, the input document is returned immediately
after the proposal request. The TransactionEvent response
is sent to an internal queue when it arrives.

Queue Name Name of the internal queue where the asynchronous
TransactionEvent will be sent.

Event Format Format of the document sent to the internal queue, XML or
JSON.

Want User Registers User registers are processing variables and their values. If
you want these registers to be emitted with the message set
this to true. In resubmit operations, usually this is set to
false.

Priority The priority is an integer between 0 and 9 inclusive. The
lowest priority is 0. The highest most expedited priority is 9.

Put Timeout Time, in milliseconds, to wait for queue to become available
when attempting to put a message on the queue. You can
enter 0 for an unlimited wait, but this is not recommended. If
no value is supplied, timeout will be set to 3000
milliseconds.

2. Hyperledger Fabric Component Reference

Service Manager and Blockchain Solutions Development Guide 21

Asynchronous

Request Context
Namespace

For synchronous or asynchronous processing, namespace or
list of namespaces containing registers that will be made
available to the internal listener. Select Default for all
registers in default (no prefix) namespace or None to send
no registers at all. Enter an asterisk character (*) for
registers from all namespaces.

Asynchronous mode is enabled by selecting the Is Asynchronous parameter. The Queue Name
parameter tells the service where the message will be sent when the TransactionEvent arrives.
The Event Format chooses the format of the document, either XML or JSON. Want User
Registers determines if the User registers are preserved with the message. The priority of the
message affects in which order the messages are processed by the internal queue listener.
The Put Timeout determines how long the callback will wait for the queue to become available
when sending the message. After this timeout, the message is dropped.

The Request Context Namespace selects which registers will be preserved with the message.
For example, if the value is ns, then all registers with names beginning with ns. (such as
ns.reg1) are preserved. Select Default to preserve registers with no prefix. Select None to
ignore all registers. Enter an asterisk character (*) to select all registers.

Edges:

The following table lists and describes the edges that are returned by the Hyperledger Fabric
Transaction service.

Edge Description

success The operation was successful.

fail_parse An iFL expression could not be evaluated.

fail_operation The operation could not be completed successfully.

Example 1:

Hyperledger Fabric Transaction Service

22

Example 1 shows the parameter values for an invocation of the chaincode in the End2endIT
sample of the Hyperledger Fabric Java SDK. It assumes that the fabric1 provider has the same
values as the example shown in Hyperledger Fabric Channel Provider on page 15.

Parameter Value

Fabric Channel Provider fabric1

Chaincode Name example_cc_go

Chaincode Path github.com/example_cc

Chaincode Version 1

Argument Type String

Argument 0 move

Argument 1 a

Argument 2 b

Argument 3 20

Minimum Successful
Proposals

1

Maximum Failed Proposals 0

Example 2:

Example 2 shows that the same invocation can be achieved with the chaincode arguments
encoded as byte arrays. The iFL function _hex(value,charset) might be useful.

Parameter Value

Fabric Channel Provider fabric1

Chaincode Name example_cc_go

2. Hyperledger Fabric Component Reference

Service Manager and Blockchain Solutions Development Guide 23

Parameter Value

Chaincode Path github.com/example_cc

Chaincode Version 1

Argument Type Hex String

Argument 0 _hex('move', 'UTF8')

Argument 1 61

Argument 2 62

Argument 3 3230

Minimum Successful
Proposals

1

Maximum Failed Proposals 0

Example 3:

Example 3 shows the extra properties that can be added to example 1 or 2 to enable
asynchronous mode. In this mode, the service will return immediately after sending the
transaction to the Orderers. A message will be sent to the internal queue q1 when the
transaction event arrives, confirming the transaction is part of the blockchain.

Parameter Value

Is Asynchronous true

Queue Name q1

Event Format XML

Want User Registers true

Priority 4

Hyperledger Fabric Transaction Service

24

Parameter Value

Put Timeout 3000

Request Context Namespace *

The following is a sample output document when the Return parameter is TransactionEvent as
XML in synchronous mode. A message similar to this is sent to the Internal queue in
asynchronous mode when the Event Format is XML. This document has been indented for
display purposes only.

<TransactionEvent>
 <EventHub>
 <Name>peer0</Name>
 <Url>grpc://thor.ibi.com:7053</Url>
 </EventHub>
 <TransactionID>90fdd06ad2752deaed7c9beab00c46bd770667e...</TransactionID>
 <ChannelID>foo</ChannelID>
 <Epoch>0</Epoch>
 <Timestamp>2017-09-26T12:51:32.138-04:00</Timestamp>
 <IsValid>true</IsValid>
 <ValidationCode>0</ValidationCode>
 <TransactionActionInfos>
 <TransactionActionInfo>
 <ResponseStatus>200</ResponseStatus>
 <ResponseMessageBytes/>
 <EndorserInfos>
 <EndorserInfo>
 <Signature>30440220720e51c11b98c17b72ab9a50fbb6...</Signature>
 <Endorser>0a074f7267314d53501280062d2d2d2d2d424...</Endorser>
 </EndorserInfo>
 </EndorserInfos>
 <ChaincodeInputArgs>
 <Arg>696e766f6b65</Arg>
 <Arg>6d6f7665</Arg>
 <Arg>61</Arg>
 <Arg>62</Arg>
 <Arg>3230</Arg>
 </ChaincodeInputArgs>
 <ProposalResponseStatus>200</ProposalResponseStatus>
 <ProposalResponsePayload/>
 </TransactionActionInfo>
 </TransactionActionInfos>
</TransactionEvent>

The following is a sample output document when the Return parameter is TransactionEvent as
JSON in synchronous mode. A message similar to this is sent to the Internal queue in
asynchronous mode when the Event Format is JSON. The document has been indented for
display purposes only.

2. Hyperledger Fabric Component Reference

Service Manager and Blockchain Solutions Development Guide 25

{
 "EventHub":{"Name":"peer0",
 "Url":"grpc://thor.ibi.com:7053"},
 "TransactionID":"49fa1193bc30c17cc011a6b5850f8e57c92...",
 "ChannelID":"foo",
 "Epoch":0,
 "Timestamp":"2017-09-26T12:54:56.689-04:00",
 "IsValid":true,
 "ValidationCode": 0,
 "TransactionActionInfos": [
 {
 "ResponseStatus": 200,
 "ResponseMessageBytes": "",
 "EndorserInfos": [
 {
 "Signature": "3045022100e5181d03460959d751...",
 "Endorser": "0a074f7267314d53501280062d2d2..."
 }
],
 "ChaincodeInputArgs": [
 "696e766f6b65",
 "6d6f7665",
 "61",
 "62",
 "3230"
],
 "ProposalResponseStatus": 200,
 "ProposalResponsePayload": ""
 }
]
}

Hyperledger Fabric Query Service

Syntax:

com.ibi.agents.XDFabricQueryAgent

Description:

This service invokes chaincode to make a read-only query in the Hyperledger Fabric. It sends a
query proposal request to all the configured peers, then it extracts the response payload from
the first successful proposal response. The payload is a single ByteString value, but it can also
be parsed by the service in XML or JSON, assuming the chaincode produced the result in this
format.

Parameters:

Hyperledger Fabric Query Service

26

The following tables list and describe the parameters for the Hyperledger Fabric Query service.

Main

Fabric Channel Provider The name of the configured Hyperledger Fabric Channel
provider.

Chaincode Name The name of the chaincode to call.

Chaincode Path The path of the chaincode to call.

Chaincode Version The version of the chaincode to call.

Return Value Format Determines how the ByteString response should be
interpreted.

The service refers to the Fabric Channel Provider by name to gain access to the reconstructed
Channel. The chaincode name, path and version are determined when the chaincode is
installed. The path is similar to a namespace and is not related to a path in the file system.
The chaincode must already be installed before calling the Hyperledger Fabric Query service.

The response is a ByteString value that can be parsed in different ways depending on the
Return Value Format parameter. It can be:

Interpreted as a UTF8 string.

Encoded as a Hexadecimal string with two consecutive hexadecimal characters per byte.

Encoded as a string in Base64.

Parsed as XML or JSON and returned as a parsed tree.

Call

Argument Type The data type of all the chaincode arguments, either a
regular String, or a byte array encoded as a Hex String with
two consecutive hexadecimal characters per byte.

Argument 0 The value of the first argument.

Argument 1 The value of the second argument.

Argument 2 The value of the third argument.

2. Hyperledger Fabric Component Reference

Service Manager and Blockchain Solutions Development Guide 27

Call

Argument 3 The value of the fourth argument.

Argument 4 The value of the fifth argument.

In the Call group of parameters, the Argument N properties are the arguments to the chaincode
invocation. By convention, Argument 0 is often an operation name understood by the
chaincode. There can be an unlimited number of arguments. This is done by defining user
properties with names of the form argN. For example, the next argument after Argument 4 is
arg5. The list of arguments stops at the first empty argument.

The type of the arguments can be string or byte array. All arguments must be the same type. A
byte array is encoded as an hexadecimal string with two consecutive hexadecimal characters
per byte. For example, 616263 is abc in a UTF8 byte array.

Edges:

The following table lists and describes the edges that are returned by the Hyperledger Fabric
Query service.

Edge Description

success The operation was successful.

fail_parse An iFL expression could not be evaluated.

fail_operation The operation could not be completed successfully.

Example:

The following example shows the parameter values for an invocation of the chaincode to query
the value of b in the End2endIT sample of the Hyperledger Fabric Java SDK. It assumes that
the fabric1 provider has the same values as the example shown in Hyperledger Fabric Channel
Provider on page 15.

Parameter Value

Fabric Channel Provider fabric1

Chaincode Name example_cc_go

Hyperledger Fabric Query Service

28

Parameter Value

Chaincode Path github.com/example_cc

Chaincode Version 1

Return Value Format UTF8 String

Argument Type String

Argument 0 query

Argument 1 b

The same invocation can be achieved with the chaincode arguments encoded as byte arrays.
The iFL function _hex(value,charset) might be useful.

Parameter Value

Argument Type Hex String

Argument 0 _hex('query', 'UTF8')

Argument 1 62

Hyperledger Fabric Query Block Service

Syntax:

com.ibi.agents.XDFabricQueryBlockAgent

Description:

This service queries Hyperledger Fabric for a specific block and returns it. The query will be
sent to one of the peers chosen randomly. The search criteria can be a block number, a block
hash, or a Transaction ID. The result is a BlockInfo encoded in an XML or JSON parsed tree.

In batch mode, the blocks previous to the queried block can also be returned. The number of
blocks can be limited by the Batch Size or a date limit.

Parameters:

2. Hyperledger Fabric Component Reference

Service Manager and Blockchain Solutions Development Guide 29

The following table lists and describes the parameters for the Hyperledger Fabric Query Block
service.

Main

Fabric Channel Provider The name of the configured Hyperledger Fabric Channel
provider.

Query Type Determines the search criteria for the block query.

Query Argument Querying by block number:

Supply a non-negative integer block number, or a negative
integer block number relative to the current block height (-1
is the latest block).

Querying by block hash:

This is a hex encoded string with two hex characters per
byte. When querying by transaction ID, this is the transaction
ID.

Output Format Format of the result.

The service refers to the Fabric Channel Provider by name to gain access to the reconstructed
Channel.

The Query Type determines what kind of search criteria is provided in the Query Argument:

It can be the exact non-negative block number.

It can also be a negative integer relative to the block height. Here the value -1 refers to the
latest block, -2 refers to the block before the last, and so on. Notice the blockchain can
continue to grow after the relative block number is computed before the query is executed.

The third Query Type is a block hash. This is a byte array encoded as a hexadecimal string
with two hexadecimal characters per byte. This value can be obtained from the
PreviousHash of the next block for example. Be aware the DataHash is not the same as a
block hash. The block hash is computed from the block number, the data hash and the
previous hash and does not appear in the BlockInfo.

Finally, the Query Type can a Transaction ID. This is a regular String. The Hyperledger Fabric
Transaction Service stores the Transaction ID in the fabric.TransactionID special register
when successful. The value of that register can be used to query the corresponding block.

Hyperledger Fabric Query Block Service

30

The Output Format can be XML or JSON. The output document stores the returned BlockInfo or
the batch of blocks encoded in an XML or JSON parsed tree.

Batch Mode

Early Limit Format is yyyy-MM-dd'T'HH:mm:ss.SSSXXX, where XXX is
an ISO 8601 time zone. Specifying an Early Limit turns on
batch mode, which will always return the queried block and
also includes the previous blocks up to, but not including,
the first encountered block with all transactions
timestamped earlier than the early limit. Timestamps are
created by clients without a central clock. It is therefore
recommended to specify a date earlier than necessary by
some margin. The batch is also limited by the Batch Size
when defined.

Batch Size Specifying a batch size turns on batch mode, which will
return up to that many blocks, starting from the queried
block and its previous blocks, within the limits of the Early
Limit if defined, or the origin of the chain.

Batch mode is enabled by specifying any of the Batch Mode properties. In batch mode, the
queried block is always returned plus zero or more previous blocks. The Batch Size parameter
is the maximum number of blocks that can be returned. The Early Limit parameter selects the
previous blocks that have at least one transaction timestamped on or after the specified date.
If both parameters are specified, then the batch stops with the first constraint satisfied.

Edges:

The following table lists and describes the edges that are returned by the Hyperledger Fabric
Block service.

Edge Description

success The operation was successful.

fail_parse An iFL expression could not be evaluated.

fail_operation The operation could not be completed successfully.

Examples:

2. Hyperledger Fabric Component Reference

Service Manager and Blockchain Solutions Development Guide 31

The following example shows the parameter values to query the latest block in the End2endIT
sample of the Hyperledger Fabric Java SDK. It assumes that the fabric1 provider has the same
values as the example shown in Hyperledger Fabric Channel Provider on page 15.

Parameter Value

Fabric Channel Provider fabric1

Query Type Query by Block Number

Query Argument -1

Query Format XML

The following example shows how to query the previous block assuming the input document is
the XML output of a previous call to the Hyperledger Fabric Query Block service.

Parameter Value

Fabric Channel Provider fabric1

Query Type Query by Block Hash

Query Argument _xpath(/BlockInfo/PreviousHash)

Query Format XML

The following example shows how to query the block corresponding to the transaction
committed by the latest invocation of the Hyperledger Fabric Transaction Service

Parameter Value

Fabric Channel Provider fabric1

Query Type Query by Transaction ID

Query Argument _sreg('fabric.TransactionID')

Hyperledger Fabric Query Block Service

32

Parameter Value

Query Format XML

The following is a sample output in XML format, which has been indented for display purposes
only.

<BlockInfo>
 <BlockNumber>46</BlockNumber>
<DataHash>26a1b666a83679a3b8fbaf16149c1b0b01e424956fd1ba6d3...</DataHash>
<PreviousHash>ce738d39292304e98289e43515c4ae91cd649421f...</PreviousHash>
 <EnvelopeInfos>
 <EnvelopeInfo>
<TransactionID>4f8d8728ffbf27adf21b32f7125de6e5929323d...</TransactionID>
 <ChannelID>foo</ChannelID>
 <Epoch>0</Epoch>
 <Timestamp>2017-07-28T17:15:52-04:00</Timestamp>
 <IsValid>true</IsValid>
 <ValidationCode>0</ValidationCode>
 <TransactionActionInfos>
 <TransactionActionInfo>
 <ResponseStatus>200</ResponseStatus>
 <ResponseMessageBytes/>
 <EndorserInfos>
 <EndorserInfo>
<Signature>3044022022dcc5424b0d0b50f3ad3cdec8ad7cbda7524fg...</Signature>
<Endorser>0a074f7267314d53501280062d2d2d2d2d42494e202d2d2d...</Endorser>
 </EndorserInfo>

2. Hyperledger Fabric Component Reference

Service Manager and Blockchain Solutions Development Guide 33

 </EndorserInfos>
 <ChaincodeInputArgs>
 <Arg>696e766f6b65</Arg>
 <Arg>6d6f7665</Arg>
 <Arg>61</Arg>
 <Arg>62</Arg>
 <Arg>31</Arg>
 </ChaincodeInputArgs>
 <ProposalResponseStatus>200</ProposalResponseStatus>
 <ProposalResponsePayload/>
 <TxReadWriteSetInfo>
 <NsRwsetInfos>
 <NsRwsetInfo>
 <Namespace>example_cc_go</Namespace>
 <KVReads>
 <KVRead><Key>a</Key>
 <Version>
 <BlockNum>45</BlockNum>
 <TxNum>0</TxNum>
 </Version>
 </KVRead>
 <KVRead>
 <Key>b</Key>
 <Version>
 <BlockNum>45</BlockNum>
 <TxNum>0</TxNum>
 </Version>
 </KVRead>
 </KVReads>
 <KVWrites>
 <KVWrite>
 <Key>a</Key>
 <Value>313931</Value>
 </KVWrite>
 <KVWrite>
 <Key>b</Key>
 <Value>353039</Value>
 </KVWrite>
 </KVWrites>
 </NsRwsetInfo>
 <NsRwsetInfo>
 <Namespace>lscc</Namespace>
 <KVReads>
 <KVRead>
 <Key>example_cc_go</Key>
 <Version>
 <BlockNum>1</BlockNum>

Hyperledger Fabric Query Block Service

34

 <TxNum>0</TxNum>
 </Version>
 </KVRead>
 </KVReads>
 </NsRwsetInfo>
 </NsRwsetInfos>
 </TxReadWriteSetInfo>
 </TransactionActionInfo>
 </TransactionActionInfos>
 </EnvelopeInfo>
 </EnvelopeInfos>
</BlockInfo>

The following is a sample output in JSON format, which has been indented for display
purposes only. Notice that arrays are more natural in JSON.

{
 "BlockNumber": 46,
 "DataHash": "26a1b666a83679a3b8fbaf16149c1b0b01e424956fd1ba6d3ec5sf...",
 "PreviousHash": "ce738d39292304e98289e43515c4ae91cd649421f96813e8af...",
 "EnvelopeInfos": [
 {
 "TransactionID": "4f8d8728ffbf27adf21b32f7125de6e5929323d3a6a37c...",
 "ChannelID": "foo",
 "Epoch": 0,
 "Timestamp": "2017-07-28T17:15:52-04:00",
 "IsValid": true,
 "ValidationCode": 0,
 "TransactionActionInfos": [
 {
 "ResponseStatus": 200,
 "ResponseMessageBytes": "",
 "EndorserInfos": [
 {
 "Signature":
"3044022022dcc5424b0d0b50f3ad3cdec8ad7cbda7gs...",
 "Endorser":
"0a074f7267314d53501280062d2d2d2d2d40128006505d..."

2. Hyperledger Fabric Component Reference

Service Manager and Blockchain Solutions Development Guide 35

 }
],
 "ChaincodeInputArgs": [
 "696e766f6b65",
 "6d6f7665",
 "61",
 "62",
 "31"
],
 "ProposalResponseStatus": 200,
 "ProposalResponsePayload": "",
 "TxReadWriteSetInfo": {
 "NsRwsetInfos": [
 {
 "Namespace": "example_cc_go",
 "KVReads": [
 {
 "Key": "a",
 "Version": {
 "BlockNum": 45,
 "TxNum": 0
 }
 },
 {
 "Key": "b",
 "Version": {
 "BlockNum": 45,
 "TxNum": 0
 }
 }
],
 "KVWrites": [
 {
 "Key": "a",
 "Value": "313931"
 },
 {
 "Key": "b",
 "Value": "353039"
 }
]
 },

Hyperledger Fabric Query Block Service

36

 {
 "Namespace": "lscc",
 "KVReads": [
 {
 "Key": "example_cc_go",
 "Version": {
 "BlockNum": 1,
 "TxNum": 0
 }
 }
]
 }
]
 }
 }
]
 }
]
}

The following is an abbreviated sample output for batch mode containing two blocks in XML
format. The document has been indented for display purposes only. See the sample above for
the contents of a single BlockInfo element.

<BlockInfos>
 <BlockInfo>
 <BlockNumber>46</BlockNumber>
 ...
 </BlockInfo>
 <BlockInfo>
 <BlockNumber>45</BlockNumber>
 ...
 </BlockInfo>
</BlockInfos>

The following is an abbreviated sample output for batch mode containing two blocks in JSON
format. The document has been indented for display purposes only. In JSON, the batch of
blocks is an array of BlockInfo objects. See the sample above for the contents of a single
BlockInfo object.

[
 {
 "BlockNumber": 46,
 ...
 },
 {
 "BlockNumber": 45,
 ...
 }
]

2. Hyperledger Fabric Component Reference

Service Manager and Blockchain Solutions Development Guide 37

Hyperledger Fabric Key History Service

Syntax:

com.ibi.agents.XDFabricKeyHistoryAgent

Description:

This service queries the Hyperledger Fabric for the history of a single key showing the
assignments going back in time. The report starts from a given key version and continues with
previous versions, provided the transaction that wrote the key also read the previous value.
Technically, this means the key must also appear in the KVReads when it appears in the
KVWrites of the transaction.

Parameters:

The following table describes the parameters of the Hyperledger Fabric Key History service.

Main

Fabric Channel Provider The name of the configured Hyperledger Fabric Channel
provider.

Namespace Namespace of the key, this is usually the chaincode name.

Key Name of the key.

Block Number The number of a block containing a transaction with a write
of the key. This is a non negative integer block number, or a
negative integer block number relative to the current block
height (-1 is the latest block).

Transaction Number The index of the transaction within the selected block.

Encoding Determines how the value will be converted to string.
Choose UTF-8 or type a Charset name to convert the bytes to
string, or choose Hex to convert the ByteString to a hex
encoded string with two hex characters per byte.

Hyperledger Fabric Key History Service

38

Main

Early Limit Format is yyyy-MM-dd'T'HH:mm:ss.SSSXXX where XXX is
an ISO 8601 time zone. Limit the key history depth to key
writes timestamped earlier than the early limit. Timestamps
are created by clients without a central clock. It is therefore
recommended to specify a date earlier than necessary by
some margin.

Maximum Depth The maximum number of versions of the key to report.

History Format Format of the history in the output document.

The service refers to the Fabric Channel Provider by name to gain access to the reconstructed
Channel.

A key is private to a chaincode instance. The Namespace specifies which chaincode owns the
key. The key version to start the trace is given by the Block Number and the Transaction
Number within that block. The Block Number can be a non-negative integer as usual, or or a
negative integer block number relative to the current block height (-1 is the latest block).

The value of a key is a ByteString. The Encoding parameter specifies how it will be converted to
a string in the history. For example, the bytes can be converted to string according to the rules
of a specified Charset, like the suggested UTF-8 or any other Charset name typed in the field.
The other option is to convert to a Hex String with two hex characters per byte. This is the
default.

The Maximum Depth limits the size of the history if the origin block is not reached first. The
Early Limit also limits the size of the history to the transactions that are timestamped on or
after the specified date.

The History Format can be XML or JSON. The output document stores the key history encoded
in an XML or JSON parsed tree.

Edges:

The following table lists and describes the edges that are returned by the Hyperledger Fabric
Key History service.

Edge Description

success The operation was successful.

2. Hyperledger Fabric Component Reference

Service Manager and Blockchain Solutions Development Guide 39

Edge Description

fail_parse An iFL expression could not be evaluated.

fail_operation The operation could not be completed successfully.

Example:

This example shows how to query the history of the a key maintained by the chaincode
example_cc_go.

Parameter Value

Fabric Channel Provider fabric1

Namespace example_cc_go

Key a

Block Number -1

Transaction Number 0

Encoding UTF-8

Maximum Depth 5

History Format XML

The following is a sample output in XML format, which has been indented for display purposes
only.

Hyperledger Fabric Key History Service

40

<KVHistory>
 <Namespace>example_cc_go</Namespace>
 <Key>a</Key>
 <KVPuts>
 <KVPut>
 <Value>300</Value>
 <BlockNum>116</BlockNum>
 <TxNum>0</TxNum>
 </KVPut>
 <KVPut>
 <Value>325</Value>
 <BlockNum>115</BlockNum>
 <TxNum>0</TxNum>
 </KVPut>
 <KVPut>
 <Value>350</Value>
 <BlockNum>114</BlockNum>
 <TxNum>0</TxNum>
 </KVPut>
 <KVPut>
 <Value>375</Value>
 <BlockNum>113</BlockNum>
 <TxNum>0</TxNum>
 </KVPut>
 <KVPut>
 <Value>400</Value>
 <BlockNum>112</BlockNum>
 <TxNum>0</TxNum>
 </KVPut>
 </KVPuts>
</KVHistory>

The following is a sample of the same history in JSON format, which has been indented for
display purposes only.

2. Hyperledger Fabric Component Reference

Service Manager and Blockchain Solutions Development Guide 41

{
"Namespace":"example_cc_go",
"Key":"a",
"KVPuts":
 [
 {
 "Value":"300",
 "BlockNum":116,
 "TxNum":0},
 {
 "Value":"325",
 "BlockNum":115,
 "TxNum":0},
 {
 "Value":"350",
 "BlockNum":114,
 "TxNum":0},
 {
 "Value":"375",
 "BlockNum":113,
 "TxNum":0},
 {
 "Value":"400",
 "BlockNum":112,
 "TxNum":0}
]
}

Hyperledger Fabric Listener

Syntax:

com.ibi.edaqm.XDFabricMaster

Description:

The Hyperledger Fabric listener connects to the event hubs and listens for block events. The
listener returns the BlockEvent encoded in an XML or JSON parsed tree. In Hyperledger Fabric,
a BlockEvent is an abbreviated view of a BlockInfo with the TxReadWriteSetInfo missing but the
event hub origin added. If necessary, the complete BlockInfo can be retrieved by BlockNumber
later with the help of the Hyperledger Fabric Query Block Service.

Parameters:

Hyperledger Fabric Listener

42

The following table lists and describe the parameter for the Hyperledger Fabric listener.

Parameter Description

Fabric Channel Provider The name of the configured Hyperledger Fabric Channel
provider.

The listener refers to the Fabric Channel Provider by name to gain access to the reconstructed
channel.

Examples:

The following is a sample Bloc kEvent in XML format, which has been indented for display
purposes only:

<BlockEvent>
 <EventHub>
 <Name>peer0</Name>
 <Url>grpc://thor.ibi.com:7053</Url>
 </EventHub>
 <BlockNumber>105</BlockNumber>
<DataHash>bfd22913e1d50e98ada53a9b8ee28936a661bc5bdc25bb23a...</DataHash>
<PreviousHash>b12c299d2bc1ac7866c6f17d90c8b6ec6fd47c415...</PreviousHash>
 <EnvelopeInfos>
 <EnvelopeInfo>
<TransactionID>866054c0ef3cafafd22d4f3acf9bb3dc1054c32...</TransactionID>
 <ChannelID>foo</ChannelID>
 <Epoch>0</Epoch>
 <Timestamp>2017-08-02T16:52:15-04:00</Timestamp>
 <IsValid>true</IsValid>
 <ValidationCode>0</ValidationCode>
 <TransactionActionInfos>
 <TransactionActionInfo>
 <ResponseStatus>200</ResponseStatus>
 <ResponseMessageBytes/>
 <EndorserInfos>
 <EndorserInfo>
<Signature>304502210097bc7cae110c25ed7743e99043970271aa59e...</Signature>

<Endorser>6428741983472475683176417364571253165234172653834...</Endorser>
 </EndorserInfo>
 </EndorserInfos>
 <ChaincodeInputArgs>
 <Arg>696e766f6b65</Arg>
 <Arg>6d6f7665</Arg>
 <Arg>61</Arg>
 <Arg>62</Arg>
 <Arg>31</Arg>
 </ChaincodeInputArgs>
 <ProposalResponseStatus>200</ProposalResponseStatus>
 <ProposalResponsePayload/>
 </TransactionActionInfo>

2. Hyperledger Fabric Component Reference

Service Manager and Blockchain Solutions Development Guide 43

 </TransactionActionInfos>
 </EnvelopeInfo>
 </EnvelopeInfos>
</BlockEvent>

The following is the same BlockEvent in JSON format, which has been indented for display
purposes only. Notice that arrays are more natural in JSON.

{
 "EventHub": {
 "Name": "peer0",
 "Url": "grpc:\/\/thor.ibi.com:7053"
 },
 "BlockNumber": 105,
 "DataHash": "bfd22913e1d50e98ada53a9b8ee28936a661bc5bdc25bb23a5a76...",
 "PreviousHash": "b12c299d2bc1ac7866c6f17d90c8b6ec6fd47c415b7161e8f...",
 "EnvelopeInfos": [
 {
 "TransactionID": "866054c0ef3cafafd22d4f3acf9bb3dc1054c32874892a...",
 "ChannelID": "foo",
 "Epoch": 0,
 "Timestamp": "2017-08-02T16:52:15-04:00",
 "IsValid": true,
 "ValidationCode": 0,
 "TransactionActionInfos": [
 {
 "ResponseStatus": 200,
 "ResponseMessageBytes": "",
 "EndorserInfos": [
 {
 "Signature":
"304502210097bc7cae110c25ed7743e99043970271aa59e7b94c83d7bef56532abd...",
 "Endorser":
"0a074f7267314d53501280062d2d2d2d2d424547494e202d2d2d2d2d0a4d4949434d..."
 }
],

"ChaincodeInputArgs": [
 "696e766f6b65",
 "6d6f7665",
 "61",
 "62",
 "31"
],"ProposalResponseStatus": 200,
 "ProposalResponsePayload": ""
 }
]
 }
]
}

Hyperledger Fabric Listener

44

Chapter3 Using the Fabric Wizard to Create a
Fabric Agent Skin

This chapter describes how to use the Fabric Wizard to create a Fabric agent skin.

In this chapter:

Fabric Wizard Overview

Original Agent Configuration

The Template (“Fabric Skinner”)

Accesing the Fabric Wizard

Understanding the Basics

Fabric Wizard Overview

The agents (services) that interact with the chaincode are general purpose, as seen by the
user of the arg0 type parameters.

The Fabric Wizard (also referred to as the Fabric Agent Generator or Fabric Skinner) in iWay
Service Manager (iSM) enables a chaincode designer to skin the agent with more meaningful
chaincode-specific prompts and metadata. This simplifies their use and reduces casual errors
that can enter a process flow (pflow) due to an incorrect configuration.

This chapter demonstrates how to apply an application skin to the Fabric posting agent
appropriate to a funds transfer transaction. The chaincode will be assumed to execute the
chaincode transaction Post, with the following parameters:

Actual Agent Parameter Meaningful Name Purpose

arg1 To Account Account number to be credited

arg2 From Account Source of the funds

arg3 Amount Value

arg4 Correlation Application identifier for this
transaction. Default will be the iSM
Transaction ID (TID).

Service Manager and Blockchain Solutions Development Guide 45

Actual Agent Parameter Meaningful Name Purpose

arg5 Unique ID Key to an ancillary table holding
additional information.

Additional parameters would be required for a true transfer. However for demonstration
purposes, only five parameters are being configured.

The agent generator enables the application designer to assign a meaningful label and
description to the agent, along with defaults for each configuration parameter. The arg
parameters, limited to five in the basic agent as delivered, can be extended to the needed
number for the application and each assigned an application-meaningful name.

Original Agent Configuration

A process flow could use the Fabric Agent to invoke chaincode to execute a transaction on a
blockchain. For example, setting Argument 0 to Post, Argument 1 to the target account number
(possibly obtained by an _xpath() or _jsonpath() iFL function) and so forth. Argument 5, the iSM
TID, would be set to _sreg(tid).

Original Agent Configuration

46

As presented to the pflow builder, the form has no values, as shown in the following image.

3. Using the Fabric Wizard to Create a Fabric Agent Skin

Service Manager and Blockchain Solutions Development Guide 47

The Template (“Fabric Skinner”)

The template exists in the blue version of the iWay Service Manager (iSM) Administration
Console, reached as a development tool. The template produces Java code that subclasses
the base agents in the iwxfabric extension. For more information on compiling and packaging
the code to execute in iSM, see the iSM Programmer's Guide. Essentially you will create your
own extension that has a dependency on the iwxfabric extension.

Accesing the Fabric Wizard

To access the Fabric Wizard:

1. Logon to the iSM Administration Console and click the build version number in the upper-
right corner, as shown in the following image.

The blue version of the iSM Administration Console opens, as shown in the following
image.

The Template (“Fabric Skinner”)

48

2. On the left pane, click Development and then Fabric Wizard from the context menu, as
shown in the following image.

3. Using the Fabric Wizard to Create a Fabric Agent Skin

Service Manager and Blockchain Solutions Development Guide 49

The Hyperledger Fabric Agent Skeleton Generation pane opens, as shown in the following
image.

Accesing the Fabric Wizard

50

This Fabric Skinner form allows you to create an iSM agent that can be used in a process
flow. The values for these parameters can be changed during design time. iFL functions can
also be used to provide specific values for these parameters during run time.

Understanding the Basics

When you begin to skin a Fabric agent, you need to make a few decisions regarding the agent
package, output directory, agent group, agent name, label, and comments. You must use the
available parameters on the Fabric Skinner form to set these values, which are described in
this section.

Agent Package

The Agent Package parameter tells the Java compiler where the agent resides.

Similar Java classes are usually placed within the same package. The package com.ibi.agents
is reserved for iWay Software agents and should not be used. One suggestion would be to use
an abbreviation for your company name. For example, if your company name is My Company,
then the package name could be com.mycompany.agents. Note that Java guidelines discourage
the use of capital letters in package names.

Output Directory

The Output Directory parameter tells the Skinner where on your system the generated agent
and the accompanying translation files will be stored.

You must enter a full directory path that is accessible to this Service Manager instance. Pick a
directory outside of the Service Manager's directory structure. Using a directory within the
Service Manager's area may cause operational problems or prevent updates from occurring.

Agent Group

The Agent Group parameter allows you to logically group this agent with similar agents. This
will help you find your new agent when you create a process flow using iWay Integration Tools
(iIT).

3. Using the Fabric Wizard to Create a Fabric Agent Skin

Service Manager and Blockchain Solutions Development Guide 51

By default, the Hyperledger Fabric group is already selected for you, as shown in the following
image.

Browse through the available groups by using the scroll bar and select the corresponding group
that is most appropriate for your agent. If none of the listed groups are appropriate or you
cannot decide, then leave the default Hyperledger Fabric group selected. You can always
modify this at a later time.

Agent Name

The Agent Name parameter is the actual Java class name that will be used when the Fabric
Wizard generates the Java source code.

When determining an agent name, ensure that the name is descriptive of the class. For
example, PostMT101 when the class is used for posting a SWIFT MT101 message (Request
for Transfer). Java classes typically have the first character in the name capitalized. In this
example, the P in post is capitalized. As a best practice, the first letter of each word that would
follow a space in the name of the class is capitalized. In this example, post MT101 becomes
PostMT101.

Agent Label

The Agent Label parameter contains a short descriptive sentence.

This sentence should describe precisely what the Fabric agent does. The Agent Label is what
is displayed in the selection list when you look for the agent to configure, as shown in the
following image.

Understanding the Basics

52

Agent Comment

The Agent Comment parameter is used to enter more descriptive text about the agent's
function.

This comment is used within the Java's JAVADOC and displayed to the user when the agent is
selected for configuration, as shown in the following image.

Fabric Channel Provider

The Fabric Channel Provider parameter allows you to select an available Fabric Provider from a
drop-down list, as shown in the following image.

Each configured provider will contain the parameters that are required to execute the Fabric
transaction (for example, User Name, MSPID, Enrollment Certificate, and so on). Since these
parameters are shared between all Fabric chaincode calls and should not change, a provider is
used where a centralized repository of Fabric values is available. This topic does not go into
detail describing each of those parameters. You can set default values for your Fabric Provider
that are appropriate to your application design.

Click the drop-down list to display a list of available Fabric Providers, as shown in the following
image.

Select a Fabric Provider from this list. Note that your list will vary. The names and the number
of entries are based on the names and number of Fabric Providers that you have configured.

3. Using the Fabric Wizard to Create a Fabric Agent Skin

Service Manager and Blockchain Solutions Development Guide 53

Operation Name

The Operation Name parameter, by convention normally the first argument (Argument 0) to
follow Fabric chaincode specific parameters is the Fabric's chaincode operation. In this
example, we are going to enter Post, as shown in the following image.

Number of Parms

The Number of Parms parameter allows you to customize the parameters that will be displayed
when your Skinned Fabric Agent is presented for configuration.

By default the Fabric Agent displays 5 generic parameters labeled Argument 0 through
Argument 4, as shown in the following image.

Understanding the Basics

54

Each of the above argument (Argument 0 through Argument 4) values would have to be
configured at design time. But when you set the Number of Parms to a value other than 0, and
define those parameters, the Fabric call parameters become much more relevant and easier
for a user to understand and configure, as shown in the following image.

Defining Additional Parameters

When you select a number of parameters from the list (up to 10) the skinner displays the
parameter configuration block for each parameter, as shown in the following image.

This block shows the default for the first parameter, and is the same for each parameter
configuration block that follows.

3. Using the Fabric Wizard to Create a Fabric Agent Skin

Service Manager and Blockchain Solutions Development Guide 55

Parm (Parameter) Name

This is the name that will be used by the Java class to identify the parameter. Based on usage
guidelines, the first character in the name is not capitalized. For example, a good parameter
name that can be used to identify the source of funds in a financial transaction could be
fromAccount. Notice that the first letter in Account was capitalized, which improves readability.
Ensure that parameter names are descriptive, but not too long.

Label

The Label parameter is used to identify the parameter to the person who is configuring this
agent.

The value (description) entered here should be concise (one to three words). The Description
parameter that follows allows you to provide more descriptive content as required.

Description

The Description parameter allows you to enter a detailed description of the field in question.

The description can also include suggestions on possible entries in this field or any other
information that would help the user make a valid entry into this field.

Group Name

This parameter is not used at this time and can be left blank.

Understanding the Basics

56

Required

Clicking on the required field displays a drop-down listing of two choices; required or optional.

This drop-down list allows you to select between the two options.

required. Indicates that the person configuring the parameter must make a valid entry in
the field. If a field is required a visual queue of "*" follows the field label on the screen.

optional. An entry in this field is not necessary and may be left blank by the person
configuring the agent.

Type

The type parameter tells the Java class what type of data to expect in this field.

Clicking on this field displays a drop-down list. The Type selected is used by the Service
Manager to validate the parameter's data field at design time.

integer. The integer type will contain a number that can be written without a fractional
component. For example, 21, 4, 0, and ?2048 are integers, while 9.75, 4.8 are not.

string. The string type will contain any combination of letters numbers and white space
(except tabs).

directory. The directory type will contain a fully qualified path to a directory accessible to
iSM.

file. The file type will contain a fully qualified path to a file accessible to the Service
Manager.

3. Using the Fabric Wizard to Create a Fabric Agent Skin

Service Manager and Blockchain Solutions Development Guide 57

enumeration. The enumeration type allows you to enter a fixed list of values that the
person configuring the agent can choose from during design time. To build the list, enter
the value in the field to the left of the Add button. Once a value is specified, click Add to
add the entry to the list.

The entry will then be moved to the list that is forming under the field. To remove an entry
from the list. Highlight the entry in the list and click the Delete button.

combobox. The combobox type is similar to the enumeration. The combobox allows you to
enter a selection of values that the person configuring the agent can choose from but also
allow the person to enter a value into the field that is not on the list of values.

boolean. The boolean type will display a selection list with only two items in the list true or
false.

path. Similar to the directory or file types field will contain a fully qualified path to a
directory or file that is accessible to iSM.

password. Similar to the string type the field will contain any combination of letters
numbers and white space (except tabs). The difference is that the value entered will not be
shown, in its place each character is replaced by the "*" character.

Default Value

The Default Value is what the Service manager will display to the user at design time.

Understanding the Basics

58

When you have completed configuring all of the parameters click the Submit button. The
generator produces two files:

Text properties

Agent executable code:

#Text Strings associated with PostMT101.java
#Mon Aug 07 11:20:21 EDT 2017
PostMT101.desc=Posts a SWFT DB/CR from MT101 Message
PostMT101.amtParm.desc=Amount to transfer in USD
…

The new agent as generated should be compiled and loaded into an iSM extension. For more
information, see the iSM Programmer's Guide. This agent can now be used in a process flow.

The values entered into the fields will be the defaults for the configuration. They can be
overridden at the time the agent is configured.

3. Using the Fabric Wizard to Create a Fabric Agent Skin

Service Manager and Blockchain Solutions Development Guide 59

Understanding the Basics

60

Chapter4
Blockchain Example

This chapter provides an example that demonstrates how an application can be used to
accept a SWIFT MT101 message (Request for Transfer) and post the transfer to a
blockchain (synchronously and asynchronously).

In this chapter:

Understanding the Process Flow

Sample SWIFT MT101 Documents

Understanding the Process Flow

The application in this example contains a channel that uses an arbitrary listener to read the
MT101 message found in Original SWIFT MT101 Message (Request for Transfer) on page 66.
The e-Business Information Exchange (Ebix) file for SWIFT converts this message to XML as
shown in Transformed SWIFT MT101 Message (XML Format) on page 67, before passing the
message to a process flow. For simplicity and demonstration purposes, most of the MT101
message, after it has been transformed into XML, is omitted.

The process flow performs the following steps:

1. Updates a local database with the ancillary data required for the actual financial records.
These additional data fields are not carried on the blockchain. No commit is done.

2. Sends the transaction fields to the blockchain.

3. If successful, then the process flow completes and a commit is automatically made to the
database.

4. If the transaction is rejected by a timeout, then the database is rolled back and the
message is sent as rejected with an iSM retry. This retry causes the message to be
represented to the process flow at a later time (as configured). For more information on
retry processing, see the iWay Service Manager User’s Guide.

5. If the transaction is rejected as an error, then the database is rolled back and an email is
sent to a responsible party.

Service Manager and Blockchain Solutions Development Guide 61

The following table lists the parameter values that are used by this example for the original
(raw) Hyperledger Fabric Transaction service.

Parameter Value

arg0 Post

arg1 _xpath(/_101/A/_50H/Account__)

arg2 _xpath(/_101/B/_59/Account__)

arg3 _xpath(/_101/B/_32B/Amount__)

arg4 _xpath(/_101/A/_20/Reference__)

arg5 _sreg(tid)

The following table lists the corresponding parameter values that are used by this example for
the skinned version of the Hyperledger Fabric Transaction service. For more information, see
Using the Fabric Wizard to Create a Fabric Agent Skin on page 45.

Parameter Value

Function Post

From Party _xpath(/_101/A/_50H/Account__)

To Party _xpath(/_101/B/_59/Account__)

Amount _xpath(/_101/B/_32B/Amount__)

Message Reference _xpath(/_101/A/_20/Reference__)

Correlation _sreg(tid)

Understanding the Process Flow

62

Synchronous Posting Example

The following diagram illustrates the general process flow used for synchronous posting.

Complete posting to the Hyperledger Fabric is handled by this single process flow.

Asynchronous Posting Example

Asynchronous posting divides the work between two process flows. The first process flow
performs the actual post and the second process flow checks the post result. The wait time for
posting to the Hyperledger Fabric is reduced by not waiting for a response from the Orderer.
The following pair of diagrams illustrate the general approach used for asynchronous posting.

4. Blockchain Example

Service Manager and Blockchain Solutions Development Guide 63

The first process flow posts and checks for problems (only from the peers), as shown in the
following diagram.

Understanding the Process Flow

64

The actual posting result from the Orderer is handled in the response process flow, as shown
in the following diagram.

Application Design Consideration

iWay Correlation Manager (not shown in this example) can be used for tracking expected
events in longer running process flows (for example, the delay between the post and the
response). Consider a scenario where the posting side might open the correlation using the
transaction ID for correlation, and the response side might close the correlation. For more
information on iWay Correlation Manager, see the iWay Business Activity Monitor User’s Guide.

Sample SWIFT MT101 Documents

For reference purposes, this section provides the original and XML transformed version of the
SWIFT MT101 document.

Standard iSM services are used to generate an XML representation of the SWIFT MT101
message, which is suitable for use in a process flow. For this example, portions of the
transformed SWIFT MT101 message in XML format that are not required have been removed.

For more information on integrating with SWIFT using iSM, see the iWay Integration Solution for
SWIFT 2017 User's Guide.

4. Blockchain Example

Service Manager and Blockchain Solutions Development Guide 65

Original SWIFT MT101 Message (Request for Transfer)

{1:F01FNBCUS44A1230000000000}{2:I101BOFAUS6SX123N2}{4:
:20:091117-DSNY0001
:28D:1/1
:50H:/12345-67891
WALT DISNEY COMPANY
MOUSE STREET 1
LOS ANGELES CA
:30:091117
:21:WDC091117RPCUS
:32B:USD377250,
:50L:WALT DISNEY COMPANY LOS ANGELES CA
:57A:WFBIUS6S
:59:/26351-38947
RIVERS PAPER COMPANY
37498 STONE ROAD
SAN RAMON CA
:71A:OUR
-}

Sample SWIFT MT101 Documents

66

Transformed SWIFT MT101 Message (XML Format)

<?xml version="1.0" encoding="ISO-8859-1" ?><Output><SWIFTMT101>
 <Basic_Header>
 …
 </Basic_Header>
 <Application_Header>
 <I>…
 <Message_Type__>101</Message_Type__>
 </I>
 </Application_Header>
 <_101>
 <A>
 <_20>
 <Reference__>091117-DSNY0001</Reference__>
 </_20>
…
 <_50H>
 <Account__>12345-67891</Account__>
 <Name_Address__>…</Name_Address__>
 </_50H>
 <_30>
 <Date__>091117</Date__>
 </_30>

 <_21>
 <Transaction_Reference__>WDC091117RPCUS</
Transaction_Reference__>
 </_21>
 <_32B>
 <Currency__>USD</Currency__>
 <Amount__>377250,</Amount__>
 </_32B>
 <_50L>
 <Party_Identifier__>…</Party_Identifier__>
 </_50L>
 <_57a>
 <Identifier_Code__>WFBIUS6S</Identifier_Code__>
 </_57a>
 <_59>
 <Account__>26351-38947</Account__>
 <Name_Address…</Name_Address__>
 </_59>
 <_71A>
 <Code__>OUR</Code__>

</_71A>

 </_101>
</SWIFTMT101></Output>

4. Blockchain Example

Service Manager and Blockchain Solutions Development Guide 67

Sample SWIFT MT101 Documents

68

Glossary

This appendix provides a reference for common terms that are used in blockchain discussions
with iWay Service Manager (iSM).

Block:

A block is a collection of data that contains zero or more transactions, the hash of the
previous block (parent), and other data. The genesis block is the first block. The total set of
blocks is called the blockchain and contains the entire transaction history of a network.

Note that some blockchain-based cryptocurrencies such as Bitcoin use the word ledger instead
of blockchain. The two are roughly equivalent.

Blockchain:

An ever-extending series of data blocks that grows as new transactions are confirmed as part
of a new block.

Chaincode:

Chaincode is a program that implements a prescribed interface. It initializes and manages
ledger state through transactions submitted by applications.

Decentralization:

The elimination of a single owner of validity of the data (and the data itself) to a joint
ownership by the network peers.

Hash:

A cryptographic function which takes an input (or 'message') and returns a fixed-size value,
which is called the hash. A hash function (or hash algorithm) is a process by which a document
(for example, a piece of data or file) is processed into a small piece of data (usually 32-bytes)
which looks completely random, and from which no meaningful data can be recovered about
the document, but which has the important property that the result of hashing one particular
document is always the same.

Additionally, it is crucially important that it is computationally infeasible to find two documents
that have the same hash. Generally, changing even one letter in a document will completely
randomize the hash; for example, the SHA256 hash of iWay Software (lower-case “i”) is:

561ce1ea04f6297138c0416c31cb9a31a851b46cbd9253a8efa702c585ef50cf

The SHA256 hash of IWay Software (upper-case “I”) is:

d3336e44c81730e05021588fd424651068daebe0ec385fe730edf12ae5cfcbde

Hashes are usually used as a way of creating a globally agreed-upon identifier for a particular
document that cannot be forged.

Service Manager and Blockchain Solutions Development Guide 69

A common term for hash is checksum.

Peer:

Other computers on the network also running in Fabric with an exact copy of the blockchain
that you have.

Signing:

Producing a piece of data from the data to be signed using your private key, to prove that the
data originates from you. Usually a hash of the data is signed rather than the whole message.

Public, Private, and Consortium Blockchains:

Most Ethereum projects today rely on Ethereum as a public blockchain, which grants access to
a larger audience of users, network nodes, currency, and markets. However, there are often
reasons to prefer a private blockchain or consortium blockchain (among a group of trusted
participants). For example, a number of companies in verticals, like banking, are looking to
Ethereum as a platform for their own private blockchains.

Below is an excerpt from a blog post On Public and Private Blockchains that explains the
difference between the three types of blockchains based on permissioning:

Public Blockchains. A public blockchain is a blockchain that anyone in the world can read,
anyone in the world can send transactions to and expect to see them included if they are
valid, and anyone in the world can participate in the consensus process - the process for
determining what blocks get added to the chain and what the current state is. As a
substitute for centralized or quasi-centralized trust, public blockchains are secured by
cryptoeconomics - the combination of economic incentives and cryptographic verification
using mechanisms such as proof of work or proof of stake, following a general principle
that the degree to which someone can have an influence in the consensus process is
proportional to the quantity of economic resources that they can bring to bear. These
blockchains are generally considered to be fully decentralized.

Consortium Blockchains. A consortium blockchain is a blockchain where the consensus
process is controlled by a pre-selected set of nodes; for example, one might imagine a
consortium of 15 financial institutions, each of which operates a node and of which 10
must sign every block in order for the block to be valid. The right to read the blockchain
may be public, or restricted to the participants, and there are also hybrid routes such as
the root hashes of the blocks being public together with an API that allows members of the
public to make a limited number of queries and get back cryptographic proofs of some
parts of the blockchain state. These blockchains may be considered partially decentralized.

Glossary

70

Private Blockchains. A fully private blockchain is a blockchain where write permissions are
kept centralized to one organization. Read permissions may be public or restricted to an
arbitrary extent. Likely applications include database management, auditing, etc internal to
a single company, and so public readability may not be necessary in many cases at all,
though in other cases public auditability is desired.

Glossary

Service Manager and Blockchain Solutions Development Guide 71

Glossary

72

Legal and Third-Party Notices

SOME TIBCO SOFTWARE EMBEDS OR BUNDLES OTHER TIBCO SOFTWARE. USE OF SUCH
EMBEDDED OR BUNDLED TIBCO SOFTWARE IS SOLELY TO ENABLE THE FUNCTIONALITY (OR
PROVIDE LIMITED ADD-ON FUNCTIONALITY) OF THE LICENSED TIBCO SOFTWARE. THE
EMBEDDED OR BUNDLED SOFTWARE IS NOT LICENSED TO BE USED OR ACCESSED BY ANY
OTHER TIBCO SOFTWARE OR FOR ANY OTHER PURPOSE.

USE OF TIBCO SOFTWARE AND THIS DOCUMENT IS SUBJECT TO THE TERMS AND CONDITIONS
OF A LICENSE AGREEMENT FOUND IN EITHER A SEPARATELY EXECUTED SOFTWARE LICENSE
AGREEMENT, OR, IF THERE IS NO SUCH SEPARATE AGREEMENT, THE CLICKWRAP END USER
LICENSE AGREEMENT WHICH IS DISPLAYED DURING DOWNLOAD OR INSTALLATION OF THE
SOFTWARE (AND WHICH IS DUPLICATED IN THE LICENSE FILE) OR IF THERE IS NO SUCH
SOFTWARE LICENSE AGREEMENT OR CLICKWRAP END USER LICENSE AGREEMENT, THE
LICENSE(S) LOCATED IN THE "LICENSE" FILE(S) OF THE SOFTWARE. USE OF THIS DOCUMENT
IS SUBJECT TO THOSE TERMS AND CONDITIONS, AND YOUR USE HEREOF SHALL CONSTITUTE
ACCEPTANCE OF AND AN AGREEMENT TO BE BOUND BY THE SAME.

This document is subject to U.S. and international copyright laws and treaties. No part of this
document may be reproduced in any form without the written authorization of TIBCO Software
Inc.

TIBCO, the TIBCO logo, the TIBCO O logo, FOCUS, iWay, Omni-Gen, Omni-HealthData, and
WebFOCUS are either registered trademarks or trademarks of TIBCO Software Inc. in the
United States and/or other countries.

Java and all Java based trademarks and logos are trademarks or registered trademarks of
Oracle Corporation and/or its affiliates.

All other product and company names and marks mentioned in this document are the property
of their respective owners and are mentioned for identification purposes only.

This software may be available on multiple operating systems. However, not all operating
system platforms for a specific software version are released at the same time. See the
readme file for the availability of this software version on a specific operating system platform.

THIS DOCUMENT IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

THIS DOCUMENT COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS.
CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL
BE INCORPORATED IN NEW EDITIONS OF THIS DOCUMENT. TIBCO SOFTWARE INC. MAY MAKE
IMPROVEMENTS AND/OR CHANGES IN THE PRODUCT(S) AND/OR THE PROGRAM(S)
DESCRIBED IN THIS DOCUMENT AT ANY TIME.

 73

THE CONTENTS OF THIS DOCUMENT MAY BE MODIFIED AND/OR QUALIFIED, DIRECTLY OR
INDIRECTLY, BY OTHER DOCUMENTATION WHICH ACCOMPANIES THIS SOFTWARE, INCLUDING
BUT NOT LIMITED TO ANY RELEASE NOTES AND "READ ME" FILES.

This and other products of TIBCO Software Inc. may be covered by registered patents. Please
refer to TIBCO's Virtual Patent Marking document (https://www.tibco.com/patents) for details.

Copyright © 2021. TIBCO Software Inc. All Rights Reserved.

74

	Contents
	1. Introducing Blockchain
	What is a Blockchain?
	Supported Blockchains

	Blockchain Prerequisites
	How can iWay Service Manager Integrate With My Blockchain Application?
	Hyperledger Fabric Components
	Channel Provider
	Transaction Service
	Synchronous Posting
	Asynchronous Posting

	Query Service
	Query Block Service
	Fabric Listener

	2. Hyperledger Fabric Component Reference
	Hyperledger Fabric Channel Provider
	Hyperledger Fabric Transaction Service
	Hyperledger Fabric Query Service
	Hyperledger Fabric Query Block Service
	Hyperledger Fabric Key History Service
	Hyperledger Fabric Listener

	3. Using the Fabric Wizard to Create a Fabric Agent Skin
	Fabric Wizard Overview
	Original Agent Configuration
	The Template (“Fabric Skinner”)
	Accesing the Fabric Wizard
	Understanding the Basics
	Agent Package
	Output Directory
	Agent Group
	Agent Name
	Agent Label
	Agent Comment
	Fabric Channel Provider
	Operation Name
	Number of Parms
	Defining Additional Parameters
	Parm (Parameter) Name
	Label
	Description
	Group Name
	Required
	Type
	Default Value

	4. Blockchain Example
	Understanding the Process Flow
	Synchronous Posting Example
	Asynchronous Posting Example

	Sample SWIFT MT101 Documents
	Original SWIFT MT101 Message (Request for Transfer)
	Transformed SWIFT MT101 Message (XML Format)

	Glossary
	Legal and Third-Party Notices

