IWay Software

How-to's

Configuring the Neo4j Connector

Neo4j® is a highly scalable native graph database, built to leverage not only data, but also data
relationships. The Neo4j Connector uses the Neo4j HTTP API to provide the capability to execute Cypher®
(Neo4j graph query language) statements and run basic operations, such as create, update, delete, merge,
and select nodes, or relationships against a Neo4j graph database instance.

This how-to includes the following topics:

e Installing the Neo4j Server on Windows Platforms

e Adding the Neo4j Connector to a Process Flow

e Creating a New Neo4j Configuration

e Understanding Neo4j Connector Actions

Installing the Neo4j Server on Windows Platforms

1. Download a Neo4jServer from https://neo4dj.com/download-center/.
2. Right-click the downloaded ZIP file and extract all files to a directory (for example, C:\NEO4J).

3. Using the Command Prompt, change the directory to the bin directory of the extracted
directory, as shown in the following image.

.| Administrator: Admin Command Prompt

https://neo4j.com/download-center/

4. Run the Neodj Server as a Windows console application or Windows service.

Windows console application. To run the Neo4j Server as a Windows console
application, you can type the neo4j console command to start the server, as shown in
the following image.

x| Administrator: Admin Command Prompt - neodj console

Note: You can Ctrl-C to stop the server.

Windows service. To run the Neo4j Server as a Windows service, the available commands for
Neodj are help, start, stop, restart, status, install-service, uninstall-service, and update-
service. You can install the service with the neo4j install-service command, and start the
service with the neo4j start command, as shown in the following image.

&+ Administrator: Admin Command Prompt

Adding the Neo4j Connector to a Process Flow

After the Neodj Server starts, follow the steps shown below to use iWay Integration Tool (ilT) to
configure an object of the Neo4j Connector in a process flow and run the process flow to query the
Neo4j database.

1. Launch iWay Integration Tool (ilT).
2. Create a new Application Project.

3. Create a process flow.

4. From the Palette, under Big Data Connectors, drag and drop Neo4j to the process flow, as shown

in the following image.

L4 °
G
v & yoe fires text
= APz
(= Channels LQ iompo-‘\enb P
= Configurations & Connectors
v Flows © AWS Connectors
€ i G r@j ,o A Azure Connectors
Resources /1 »-'J v §3 Big Data Connectors
Templates Stant Neod) End < Apache Cassandra
Tansforms wo Apache HBase
bundle i) Apache HOFS
: £ Apache Kafka
&) Avro File
ation Adapters
v
< 5 - Legacy Adapters ¥
Trebmabnrms A bt e
Sl o e .|
o 1| 9 Error Log) Consote Vi Problems I Teeminai —
Configuration € Neodj Connector Pigase select an action below 2
.
x > Pre-Execution
v
Figure 4

5. Configure the object of the Neo4j Connector.

6. Run the created process flow.

Creating a New Neo4j Configuration

From the Select Action drop-down list, select an action which you want to execute.

From the Configuration drop-down list, select an existing configuration or click the
plus (+) button to create a new configuration. A configuration contains Neo4j
connection information and HTTP/HTTPS provider settings.

Fill out all required fields, as shown in the following image.

@ emor Q Consale [Prodiems 3 Tarminal
4 >

Configuration

Pre-Execution
Post-Execution
Geraral

Configuration properties for neodj
A generic for using Neodj Connector

Generic Name: | neody,1

([Connection /@ HTTP Settings

URL: hetp:/NNocalhost 74T/
User: mryusename

@ Password | sesesssens
Password:

O Expression:
2

Cancel

€ Neodj Connector Jeion detected

Select Action: create nodes
Configuration:

» Nodeds)

b Registers (1 fekd i requiced)
» Transaction

Tt Action

Configuration properties for neodj
A generic for using Neodj Connector,
Generic Name: | meod). 1

Connection{ @) HTIP Settings

within the server rantime.

Configurstion for HTTP con be set by creating @ configuration
here or by entenng o name of @ glebol configuration faund

Cancel

Configuration properties fo
This provider crestes 2
reusable configuration for
Provider Name: | HitpChent Provider.|
Security| Pooling | Sockets | Praxy| Policies | Cookes
TLS/SSL Configuration:

Kesberos Login Entry:

. Hdd Provide =

2

Figure §

Configuration Properties

The following are configuration properties for using the Neo4j Connector.

URL. Remote interface for accessing the Neo4j Server.

User. User name for logging into the Neo4j Server.

Password. Password for the user logging into the Neo4j Server.

Configuration. Provider which creates a reusable configuration for making HTTP/HTTPS requests.

The Namespace and Transaction ID properties are used to configure transactions for most actions,
except the authenticate to access the server action. The Neo4j transactional HTTP endpoint allows
you to execute an action within the scope of a transaction. The transaction may be kept open
across multiple HTTP requests, until the client chooses to commit or roll back. You can also
include an action, along with a request, to begin or commit a transaction.

Namespace. Name of the special registers namespace to prepend to any created register or
variable returned by the object. It can be used to uniquely identify an object of the Neo4;
Connector in a process flow.

Transaction ID. Used to identify a transaction. You can open a new transaction by choosing Open New
Transaction or use an existing opened transaction to send request(s).

To use an existing opened transaction, you can either type _sreg([Namespace].transactionid) or
a valid transaction ID to represent the opened transaction (for example, type
_sreg(mynp.transactionid), which is used by a Neo4j agent whose Namespace is mynp.

In a process flow, if one object of the Neo4j Connector opens a new transaction or uses an
opened transaction to send a request, then another object of the Neo4j Connector must
exist in the process to run the commit an open transaction or rollback an open transaction
action, as shown in the following image.

G----—9® >® -® sk i)
Stant % Neodi 1 HbEé i‘ End

Select Action: commit #n Open transaction

snsaction 10 | new Transacton ;| _sreg(N1.transactionid) . OR
e = P Ee

By default, the Neo4j Connector will begin and commit a transaction in one request, as
shown in the following image.

O

Start Neo4j End

I
|
I
v
D: @
|
|
|

| w Transaction

Transaction ID: | default,

User will begin and commit a
transaction in one request

Figure 7

Understanding Neo4j Connector Actions

The Neodj Connector sends a request to the Neo4j Server according to a selected action. Each
action is used for a particular purpose. For most actions, the Neo4j Connector makes a request
based on the fields that you fill in. For execute Cypher statement(s) and commit an open transaction
actions, in addition to using filled fields to make the request, the Neo4j Connector can also use an
input document as the request (in this case, you must leave empty cells in the Cypher Statement
Table). The Neo4j Connector can send multiple Cypher statements in the same request for the
execute Cypher statement(s) or commit an open transaction action, as shown in the following image.

Neodj Connector

Select Action: | execute Cypher statement(s) ~

Configuration: | neodj.1 || ||
= Cypher Statement(s)

If the Cypher Statement Table is not empty, the Neod! connector will send request to Neodf server based
on data entered in the table, chenwise the request will be the document passed in. In the second case,
the passed document must be JSON format and accepted by Neodf HTTP API. For example:{
‘statements”: [{ “stotement”: "CREATE (n) RETURN id(n)" }, { “statement”: "CREATE (n {props}) RETURN
n", "parameters”: {"props”: {"name": "My Node")} }]}

Query Parameters =

Cypher Statement Table

You can add Cypher statement(s) using the Cypher Statement Table. In the table, each row of data
represents a Cypher statement. The Query field is a parameter of statement and is required. The
Parameters field is a parameter of statement and is optional.

The following are samples for the execute Cypher statement(s) or commit an open transaction action:

e Requestbasedoninputdocument.Each of the following statements (Datal through Data5)
can be passed to the Neo4j Connector, and the Neo4j Connector can send it as request
body to a Neodj Server.

e Requestbased onCypherStatementTable. Each of the statements (Datal through Data5) can
be stored in a Cypher Statement Table, as shown in the following images.

Data 1l

f
\

"statements" : [{

"statement” : " MATCH (n) RETURN n"

|
s
¥ Cypher Statement(s)

If the Cypher Statement Table is not empty, the Neod) connector will send request to Neodj server based on data entered in the table. ohenvise the request will
be the document passed in. In the second case, the passed document must be JSON format and accepted by Neodi HTTP API. For example:{ “statements”; [{

“stotement”: "CREATE (n) RETURN id(n)" }, { "statement” : "CREATE (n (props}) RETURN n", ‘parometers”: {*props’: {"neme”: "My Node')} }]}
‘ Query Parameters ‘ -
| MATCH (n) RETURN n

Cypher Statement Table

Data 2

f
1

"statements” : [{

“statement” : "CREATE (m:MYLABEL {props}) RETURN n",
"parameters” : {

"props" : {

"name" : "My TEMP Node"

~ Cypher Statement(s)

If the Cypher Statement Table (s not empty. the Neod) connector will send request to Neodj server based on dato entered in the table. oherwise the request will
be the document passed in, In the second cose, the possed document must be JSON format and accepted by Neodj HTTP API. For example:{ “stotements”: [{
“statement” : "CREATE (n) RETURN id(n)"), { "statement”: "CREATE (n {props}) RETURN n", ‘parometers”: {'props”: {"name" : "My Node')} }]}

Query Parameters

n{,n
[CREATE (n:MYLABLE(props]) RETURN n { "props™{"name : My TEMP Node'}}]

"
x

Cypher Statement Table

Data 3

{
“"statements”: [{
"statement™: " MATCH (n:HTH) WHERE n.name = $name RETURN n, LABELS(n)",
"parameters": {

"name"; "Alex"

|
}
w Cypher Statement(s)
If the Cypher Statement Tabie is not empty, the Neod/ connector will send request to Neodj server based on data entered in the table. oherwise the request will
be the document passed in. In the second case, the possed document must be JSON formot and accepted by Neodj HTTP APL For example:(“statements”: [{
“statement’ : "CREATE (n) RETURN id(n)"), { “statement": "CREATE (n {props}) RETURN n’, ‘porameters: ("props’: {'name": "My Node® J} }]}

Query Parameters EJ
{ MATCH (n:HTH) WHERE n.name=S$name RETURN n, LABELS(n) {"name":"Alex"} I"—.J

£l

Cypher Statement Table

Data 4

{

“statements” : [{

"statement” : "MATCH (n:HTH) WHERE n.name=\"Alex\" SET n = $props".

"parameters” :
{
"props” : {
"school" : "UP".
"position” : "Developer”,
"Age”:36
}
h
B
}

w Cypher Statement(s)

1f the Cypher Statement Table is not empty, the Neod/ connector will send request to Neodj server based on date entered in the table. cherwise the request will
be the document passed in. In the second case, the passed document must be JSON format and accepted by Neod HTTP APL For example:{ “statements”: [{
“statement” : "CREATE (n) RETURN id(n)"], "stotement” : "CREATE (n (props)) RETURN n", ‘parameters’: ("props”: {'nome’ : "My Node')} }]}

Query Parameters [7+
{"school :UP", " positi ;]
Cypher Statement Table =/

Data 5

{
*statements” 1 [{
"statement’ : "CREATE p =(a:IBI { name-'Andy' })-[:WORKS_AT {name:'linel'}]>
(b:.LOCATION {name:'US'})<-[:WORKS_AT {name-line2'}]-(c: APPLE{
name: Michael' }) RETURN p"
hi

*statement" : "CREATE (It:Country {name: Ttly'}) "
i

"statement” : "MATCH (n) RETURNn "
3

"statement” : "MATCH ()-[n]{) RETURNn "
bl

w Cypher Statementis)

¥ the Cypher Stotement Tobie is not emply, the Neod/ connector will send request to Neod server bosed on doto entered in the tobie. chenwise the request mill be the document passed in. In the second
case, the possed document must be JSON format and accepted by Neod HTTP APL For exampie:{ “statements”: [{ “statement”: "CREATE (n) RETURN id(n)" |, { “statement”: ‘CREATE (n {props]) RETURN
o', ‘porometens”: (‘props”: ('nome": "My Node')} 1)

' Query P. E:]
[CREATE p = (s:1B1 { nsme-'Andy’ |)-{:WORKS_AT|neme-ine1']]-> (b:LOCATION{name US Tj<-[:W Pt

TION{name US j<-[:WORKS_AT{nsme: line2 |]-(c: APPLE[name: Michael’) RETURN p .
CREATE (t:Country [name: Ity T}
Cypher Statement Table | MATCH (n) RETURN n

]
| MATCH 0-{n]-0 RETURN 0

