
1 
 

 

Configuring the Neo4j Connector 
 

Neo4j® is a highly scalable native graph database, built to leverage not only data, but also data 

relationships. The Neo4j Connector uses the Neo4j HTTP API to provide the capability to execute Cypher® 

(Neo4j graph query language) statements and run basic operations, such as create, update, delete, merge, 

and select nodes, or relationships against a Neo4j graph database instance. 

This how-to includes the following topics: 

 Installing the Neo4j Server on Windows Platforms 

 Adding the Neo4j Connector to a Process Flow 

 Creating a New Neo4j Configuration 

 Understanding Neo4j Connector Actions 

________________________________________________________________________________________ 

Installing the Neo4j Server on Windows Platforms 

1. Download a Neo4j Server from https://neo4j.com/download-center/. 
 

2. Right-click the downloaded ZIP file and extract all files to a directory (for example, C:\NEO4J). 
 

3. Using the Command Prompt, change the directory to the bin directory of the extracted 
directory, as shown in the following image. 
 

 

 

 

 

 

 

 

https://neo4j.com/download-center/


2 
 

4. Run the Neo4j Server as a Windows console application or Windows service. 

Windows console application. To run the Neo4j Server as a Windows console 

application, you can type the neo4j console command to start the server, as shown in 

the following image. 

 

Note: You can Ctrl-C to stop the server. 

Windows service. To run the Neo4j Server as a Windows service, the available commands for 

Neo4j are help, start, stop, restart, status, install-service, uninstall-service, and update- 

service. You can install the service with the neo4j install-service command, and start the 

service with the neo4j start command, as shown in the following image. 
 

 

Adding the Neo4j Connector to a Process Flow 

After the Neo4j Server starts, follow the steps shown below to use iWay Integration Tool (iIT) to 

configure an object of the Neo4j Connector in a process flow and run the process flow to query the 

Neo4j database. 

1. Launch iWay Integration Tool (iIT). 

2. Create a new Application Project. 

3. Create a process flow. 

 

 

 

 



3 
 

4. From the Palette, under Big Data Connectors, drag and drop Neo4j to the process flow, as shown 
in the following image. 

 

 

5. Configure the object of the Neo4j Connector. 

6. Run the created process flow. 

Creating a New Neo4j Configuration 

 
1. From the Select Action drop-down list, select an action which you want to execute. 

2. From the Configuration drop-down list, select an existing configuration or click the 
plus (+) button to create a new configuration. A configuration contains Neo4j 
connection information and HTTP/HTTPS provider settings. 
 

3. Fill out all required fields, as shown in the following image. 
 

 



4 
 

Configuration Properties 

The following are configuration properties for using the Neo4j Connector. 

URL. Remote interface for accessing the Neo4j Server. 

User. User name for logging into the Neo4j Server. 

Password. Password for the user logging into the Neo4j Server. 

Configuration. Provider which creates a reusable configuration for making HTTP/HTTPS requests. 

The Namespace and Transaction ID properties are used to configure transactions for most actions, 

except the authenticate to access the server action. The Neo4j transactional HTTP endpoint allows 

you to execute an action within the scope of a transaction. The transaction may be kept open 

across multiple HTTP requests, until the client chooses to commit or roll back. You can also 

include an action, along with a request, to begin or commit a transaction. 

Namespace. Name of the special registers namespace to prepend to any created register or 

variable returned by the object. It can be used to uniquely identify an object of the Neo4j 

Connector in a process flow. 
 

Transaction ID. Used to identify a transaction. You can open a new transaction by choosing Open New 
Transaction or use an existing opened transaction to send request(s). 

To use an existing opened transaction, you can either type _sreg([Namespace].transactionid) or 

a valid transaction ID to represent the opened transaction (for example, type 

_sreg(mynp.transactionid), which is used by a Neo4j agent whose Namespace is mynp. 

In a process flow, if one object of the Neo4j Connector opens a new transaction or uses an 

opened transaction to send a request, then another object of the Neo4j Connector must 

exist in the process to run the commit an open transaction or rollback an open transaction 

action, as shown in the following image. 

 

 

 

 

 

 

 

 

 

 



5 
 

By default, the Neo4j Connector will begin and commit a transaction in one request, as 

shown in the following image. 

 

 

Understanding Neo4j Connector Actions 

The Neo4j Connector sends a request to the Neo4j Server according to a selected action. Each 

action is used for a particular purpose. For most actions, the Neo4j Connector makes a request 

based on the fields that you fill in. For execute Cypher statement(s) and commit an open transaction 

actions, in addition to using filled fields to make the request, the Neo4j Connector can also use an 

input document as the request (in this case, you must leave empty cells in the Cypher Statement 

Table). The Neo4j Connector can send multiple Cypher statements in the same request for the 

execute Cypher statement(s) or commit an open transaction action, as shown in the following image. 

 

 

You can add Cypher statement(s) using the Cypher Statement Table. In the table, each row of data 

represents a Cypher statement. The Query field is a parameter of statement and is required. The 

Parameters field is a parameter of statement and is optional. 

 

 

 



6 
 

The following are samples for the execute Cypher statement(s) or commit an open transaction action: 

 Request based on input document. Each of the following statements (Data1 through Data5) 

can be passed to the Neo4j Connector, and the Neo4j Connector can send it as request 

body to a Neo4j Server. 

 

 Request based on Cypher Statement Table. Each of the statements (Data1 through Data5) can 

be stored in a Cypher Statement Table, as shown in the following images. 

Data 1 

 

Data 2 

 

 

 

 



7 
 

Data 3 

 

Data 4 

 

 

 

 

 

 



8 
 

Data 5 

 

 


